Show simple item record

Repeat-Associated Non-AUG Translation of AGAGGG Repeats that Cause X-Linked Dystonia-Parkinsonism

dc.contributor.authorReyes, Charles Jourdan
dc.contributor.authorAsano, Katsura
dc.contributor.authorTodd, Peter K.
dc.contributor.authorKlein, Christine
dc.contributor.authorRakovic, Aleksandar
dc.date.accessioned2022-12-05T16:42:04Z
dc.date.available2023-12-05 11:42:03en
dc.date.available2022-12-05T16:42:04Z
dc.date.issued2022-11
dc.identifier.citationReyes, Charles Jourdan; Asano, Katsura; Todd, Peter K.; Klein, Christine; Rakovic, Aleksandar (2022). "Repeat-Associated Non-AUG Translation of AGAGGG Repeats that Cause X-Linked Dystonia-Parkinsonism." Movement Disorders 37(11): 2284-2289.
dc.identifier.issn0885-3185
dc.identifier.issn1531-8257
dc.identifier.urihttps://hdl.handle.net/2027.42/175246
dc.description.abstractBackgroundX-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder caused by the intronic insertion of a SINE-VNTR-Alu (SVA) retrotransposon carrying an (AGAGGG)n repeat expansion in the TAF1 gene. The molecular mechanisms by which this mutation causes neurodegeneration remain elusive.ObjectivesWe investigated whether (AGAGGG)n repeats undergo repeat-associated non-AUG (RAN) translation, a pathogenic mechanism common among repeat expansion diseases.MethodsXDP-specific RAN translation reporter plasmids were generated, transfected in HEK293 cells, and putative dipeptide repeat proteins (DPRs) were detected by Western blotting. Immunocytochemistry was performed in COS-7 cells to determine the subcellular localization of one DPR.ResultsWe detected putative DPRs from two reading frames, supporting the translation of poly-(Glu-Gly) and poly-(Arg-Glu) species. XDP RAN translation initiates within the (AGAGGG)n sequence and poly-(Glu-Gly) DPRs formed nuclear inclusions in transfected cells.ConclusionsIn summary, our work provides the first in-vitro proof of principle that the XDP-linked (AGAGGG)n repeat expansions can undergo RAN translation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherTAF1
dc.subject.otherSVA retrotransposon
dc.subject.otherrepeat expansion
dc.subject.otherDipeptide repeat proteins
dc.subject.otherRAN translation
dc.subject.otherX-linked dystonia-parkinsonism
dc.titleRepeat-Associated Non-AUG Translation of AGAGGG Repeats that Cause X-Linked Dystonia-Parkinsonism
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175246/1/mds29183.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175246/2/mds29183_am.pdf
dc.identifier.doi10.1002/mds.29183
dc.identifier.sourceMovement Disorders
dc.identifier.citedreferenceMoens TG, Niccoli T, Wilson KM, et al. C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathol 2019; 137 ( 3 ): 487 – 500. https://doi.org/10.1007/s00401-018-1946-4
dc.identifier.citedreferenceJanakiraman U, Yu J, Moutal A, et al. TAF1-gene editing alters the morphology and function of the cerebellum and cerebral cortex. Neurobiol Dis 2019; 132 ( June ): 104539. https://doi.org/10.1016/j.nbd.2019.104539
dc.identifier.citedreferenceCirnaru M, Creus-Muncunill J, Nelson S, et al. Striatal cholinergic dysregulation after neonatal decrease in X-linked dystonia parkinsonism-related <scp>TAF1</scp> isoforms. Mov Disord 2021; 36 ( 12 ): 2780 – 2794. https://doi.org/10.1002/mds.28750
dc.identifier.citedreferenceReyes CJ, Laabs BH, Schaake S, et al. Brain regional differences in hexanucleotide repeat length in X-linked dystonia-parkinsonism using Nanopore sequencing. Neurol Genet 2021; 7 ( 4 ): e608. https://doi.org/10.1212/NXG.0000000000000608
dc.identifier.citedreferenceCampion LN, Mejia Maza A, Yadav R, et al. Tissue-specific and repeat length-dependent somatic instability of the X-linked dystonia parkinsonism-associated CCCTCT repeat. Acta Neuropathol Commun 2022; 10 ( 1 ): 49. https://doi.org/10.1186/s40478-022-01349-0
dc.identifier.citedreferenceBragg DC, Sharma N, Ozelius LJ. X-linked dystonia-parkinsonism: recent advances. Curr Opin Neurol 2019; 32 ( 4 ): 604 – 609. https://doi.org/10.1097/WCO.0000000000000708
dc.identifier.citedreferenceKearse MG, Green KM, Krans A, et al. CGG repeat-associated non-AUG translation utilizes a cap-dependent scanning mechanism of initiation to produce toxic proteins short article CGG repeat-associated non-AUG translation utilizes a cap-dependent scanning mechanism of initiation to produce toxi. Mol Cell 2016; 62 ( 2 ): 314 – 322. https://doi.org/10.1016/j.molcel.2016.02.034
dc.identifier.citedreferenceGreen KM, Glineburg MR, Kearse MG, et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun 2017; 8 ( 1 ): 2005. https://doi.org/10.1038/s41467-017-02200-0
dc.identifier.citedreferenceAneichyk T, Hendriks WT, Yadav R, et al. Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly a Mendelian form of dystonia arises from altered splicing and intron retention within a general transcription factor. Dissecting the causal. Cell 2018; 172: 897 – 909. https://doi.org/10.1016/j.cell.2018.02.011
dc.identifier.citedreferenceRakovic A, Domingo A, Grütz K, et al. Genome editing in induced pluripotent stem cells rescues TAF1 levels in X-linked dystonia-parkinsonism. Mov Disord 2018; 33 ( 7 ): 1108 – 1118. https://doi.org/10.1002/mds.27441
dc.identifier.citedreferenceHancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7 ( 1 ): 9. https://doi.org/10.1186/s13100-016-0065-9
dc.identifier.citedreferenceDamert A, Raiz J, Horn AV, et al. 5′-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res 2009; 19 ( 11 ): 1992 – 2008. https://doi.org/10.1101/gr.093435.109
dc.identifier.citedreferenceCourse MM, Gudsnuk K, Smukowski SN, et al. Evolution of a human-specific tandem repeat associated with ALS. Am J Hum Genet 2020; 107 ( 3 ): 445 – 460. https://doi.org/10.1016/j.ajhg.2020.07.004
dc.identifier.citedreferenceZhang YJ, Gendron TF, Ebbert MTW, et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat Med 2018; 24 ( 8 ): 1136 – 1142. https://doi.org/10.1038/s41591-018-0071-1
dc.identifier.citedreferenceJovičič A, Mertens J, Boeynaems S, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 2015; 18 ( 9 ): 1226 – 1229. https://doi.org/10.1038/nn.4085
dc.identifier.citedreferenceSaberi S, Stauffer JE, Jiang J, et al. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135 ( 3 ): 459 – 474. https://doi.org/10.1007/s00401-017-1793-8
dc.identifier.citedreferenceCook CN, Wu Y, Odeh HM, et al. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. Sci Transl Med 2020; 12 ( 559 ): eabb3774. https://doi.org/10.1126/scitranslmed.abb3774
dc.identifier.citedreferenceJohnson BS, McCaffery JM, Lindquist S, Gitler AD. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 2008; 105 ( 17 ): 6439 – 6444. https://doi.org/10.1073/pnas.0802082105
dc.identifier.citedreferenceGitler AD, Chesi A, Geddie ML, et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 2009; 41 ( 3 ): 308 – 315. https://doi.org/10.1038/ng.300
dc.identifier.citedreferenceSingh CR, Glineburg MR, Moore C, et al. Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Cell Rep 2021; 36 ( 2 ): 109376. https://doi.org/10.1016/j.celrep.2021.109376
dc.identifier.citedreferenceKearse MG, Goldman DH, Choi J, et al. Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes Dev 2019; 33 ( 13–14 ): 871 – 885. https://doi.org/10.1101/gad.324715.119
dc.identifier.citedreferenceCheng W, Wang S, Mestre AA, et al. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat Commun 2018; 9 ( 1 ): 51. https://doi.org/10.1038/s41467-017-02495-z
dc.identifier.citedreferenceAsamitsu S, Yabuki Y, Ikenoshita S, et al. CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. Sci Adv 2021; 7 ( 3 ): 1 – 15. https://doi.org/10.1126/sciadv.abd9440
dc.identifier.citedreferenceShi Y, Lin S, Staats KA, et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 2018; 24 ( 3 ): 313 – 325. https://doi.org/10.1038/nm.4490
dc.identifier.citedreferenceDepienne C, Mandel J. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108 ( 5 ): 764 – 785. https://doi.org/10.1016/j.ajhg.2021.03.011
dc.identifier.citedreferencePaulson H. Repeat Expansion Diseases. Vol. 147. 1st ed. Amsterdam, The Netherlands: Elsevier B. V; 2018 https://doi.org/10.1016/B978-0-444-63233-3.00009-9.
dc.identifier.citedreferenceMalik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22 ( 9 ): 589 – 607. https://doi.org/10.1038/s41580-021-00382-6
dc.identifier.citedreferenceZu T, Gibbens B, Doty NS, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 2011; 108 ( 1 ): 260 – 265. https://doi.org/10.1073/pnas.1013343108
dc.identifier.citedreferenceGoto S, Lee LV, Munoz EL, et al. Functional anatomy of the basal ganglia in X-linked recessive dystonia-parkinsonism. Ann Neurol 2005; 58 ( 1 ): 7 – 17. https://doi.org/10.1002/ana.20513
dc.identifier.citedreferenceArasaratnam CJ, Singh-Bains MK, Waldvogel HJ, Faull RLM. Neuroimaging and neuropathology studies of X-linked dystonia parkinsonism. Neurobiol Dis 2021; 148: 105186. https://doi.org/10.1016/j.nbd.2020.105186
dc.identifier.citedreferenceHanssen H, Heldmann M, Prasuhn J, et al. Basal ganglia and cerebellar pathology in X-linked dystonia-parkinsonism. Brain 2018; 141 ( 10 ): 2995 – 3008. https://doi.org/10.1093/brain/awy222
dc.identifier.citedreferenceBragg DC, Mangkalaphiban K, Vaine CA, et al. Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1. Proc Natl Acad Sci 2017; 114 ( 51 ): E11020 – E11028. https://doi.org/10.1073/pnas.1712526114
dc.identifier.citedreferenceWestenberger A, Reyes CJ, Saranza G, et al. A hexanucleotide repeat modifies expressivity of X-linked dystonia parkinsonism. Ann Neurol 2019; 85 ( 6 ): 812 – 822. https://doi.org/10.1002/ana.25488
dc.identifier.citedreferenceMakino S, Kaji R, Ando S, et al. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 2007; 80 ( 3 ): 393 – 406. https://doi.org/10.1086/512129
dc.identifier.citedreferenceSako W, Morigaki R, Kaji R, et al. Identification and localization of a neuron-specific isoform of TAF1 in rat brain: implications for neuropathology of DYT3 dystonia. Neuroscience 2011; 189: 100 – 107. https://doi.org/10.1016/j.neuroscience.2011.05.031
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.