Show simple item record

Acoustics Reveals Short-Term Air Temperature Fluctuations Near Mars’ Surface

dc.contributor.authorChide, Baptiste
dc.contributor.authorBertrand, Tanguy
dc.contributor.authorLorenz, Ralph D.
dc.contributor.authorMunguira, Asier
dc.contributor.authorHueso, Ricardo
dc.contributor.authorSánchez-Lavega, Agustin
dc.contributor.authorMartinez, German
dc.contributor.authorSpiga, Aymeric
dc.contributor.authorJacob, Xavier
dc.contributor.authorTorre Juarez, Manuel
dc.contributor.authorLemmon, Mark T.
dc.contributor.authorBanfield, Don
dc.contributor.authorNewman, Claire E.
dc.contributor.authorMurdoch, Naomi
dc.contributor.authorStott, Alexander
dc.contributor.authorViúdez-Moreiras, Daniel
dc.contributor.authorPla-Garcia, Jorge
dc.contributor.authorLarmat, Carène
dc.contributor.authorLanza, Nina L.
dc.contributor.authorRodríguez-Manfredi, José Antonio
dc.contributor.authorWiens, Roger C.
dc.date.accessioned2022-12-05T16:42:08Z
dc.date.available2023-12-05 11:42:06en
dc.date.available2022-12-05T16:42:08Z
dc.date.issued2022-11-16
dc.identifier.citationChide, Baptiste; Bertrand, Tanguy; Lorenz, Ralph D.; Munguira, Asier; Hueso, Ricardo; Sánchez-Lavega, Agustin ; Martinez, German; Spiga, Aymeric; Jacob, Xavier; Torre Juarez, Manuel; Lemmon, Mark T.; Banfield, Don; Newman, Claire E.; Murdoch, Naomi; Stott, Alexander; Viúdez-Moreiras, Daniel ; Pla-Garcia, Jorge ; Larmat, Carène ; Lanza, Nina L.; Rodríguez-Manfredi, José Antonio ; Wiens, Roger C. (2022). "Acoustics Reveals Short- Term Air Temperature Fluctuations Near Mars’ Surface." Geophysical Research Letters 49(21): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/175247
dc.description.abstractAcoustics is new on Mars: it allows the characterization of turbulence at smaller scales than previously possible within the lowest part of the Planetary Boundary Layer. Sound speed measurements, by the SuperCam instrument and its microphone onboard the NASA Perseverance rover, allow the retrieval of atmospheric temperatures at 0.77 m above the ground, at 3 Hz, with a ∼10 ms response time that is 20–100 times shorter than for typical thermocouple sensors used on Mars. Here we report on the first measurements of the sound speed-derived temperature and its fluctuations near the surface. Data highlight large and rapid fluctuations up to ±7 K/s, whose amplitude over such a timescale has never been reported, nor predicted by atmospheric models. These fluctuations follow the daytime pattern of the turbulence and highlight occasional high amplitude events that are likely due to the conjunction of low thermal inertia and strong winds.Plain Language SummaryThe atmospheric surface layer of Mars, is prone to various interactions between the surface and the atmosphere, which control most of the climate and the weather of the red planet. There, large temperature gradients generate an intense turbulence during the daytime. Hence, the measurement of the air temperature variations close to the surface is important to understand the spatial and temporal scales of this turbulence. The SuperCam instrument onboard the NASA Perseverance rover enables the retrieval of the near-surface atmospheric temperatures, and their fluctuations, at an unprecedented short timescale. Sound speed-derived temperatures, also call sonic temperatures, collected over the Northern spring and summer of Martian Year 36 reveal large and rapid thermal fluctuations up to ±7 K/s, whose amplitude over such a timescale is not reported by any weather station sensors, nor predicted by models that simulate small-scale eddies. These fluctuations follow the daytime pattern of the turbulence with a maximum amplitude early afternoon. Some occasional high temperature fluctuation events are observed, suggesting a complex effect of ground properties and local meteorological conditions on the turbulence. Overall, acoustics is a new and promising technique that records a unique view of atmospheric temperature variations near the surface of Mars.Key PointsSound speed derived temperature is used to study the microscale turbulence at an unprecedented short response timeAir temperature experiences fluctuations as high as ±7 K/s, which has never been reported in situ, nor resolved by mesoscale atmospheric modelsSonic temperature fluctuations follow the daytime turbulence pattern and find their origin in complex surface-atmosphere interactions
dc.publisherESAC Madrid
dc.publisherWiley Periodicals, Inc.
dc.subject.otheracoustics
dc.subject.otherMars atmosphere
dc.subject.othertemperature fluctuations
dc.subject.otherturbulence
dc.titleAcoustics Reveals Short-Term Air Temperature Fluctuations Near Mars’ Surface
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175247/1/grl64948.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175247/2/grl64948_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175247/3/2022GL100333-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2022GL100333
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferencePla-Garcia, J., Munguira, A., Rafkin, S., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., et al. ( 2022 ). Mars 2020 MEDA measurements of near surface atmospheric temperatures at Jezero. In Seventh international workshop on the Mars atmosphere: Modelling and observations. Retrieved from http://www-mars.lmd.jussieu.fr/paris2022/abstracts/oral_Pla-Garcia_Jorge.pdf
dc.identifier.citedreferenceBanfield, D., Rodriguez-Manfredi, J. A., Russell, C. T., Rowe, K. M., Leneman, D., Lai, H. R., et al. ( 2018 ). InSight auxiliary payload sensor suite (APSS). Space Science Reviews, 215 ( 1 ), 4. https://doi.org/10.1007/s11214-018-0570-x
dc.identifier.citedreferenceBanfield, D., Schindel, D. W., Tarr, S., & Dissly, R. W. ( 2016 ). A Martian acoustic anemometer. Journal of the Acoustical Society of America, 140 ( 2 ), 1420 – 1428. https://doi.org/10.1121/1.4960737
dc.identifier.citedreferenceBanfield, D., Spiga, A., Newman, C., Forget, F., Lemmon, M., Lorenz, R., et al. ( 2020 ). The atmosphere of Mars as observed by InSight. Nature Geoscience, 13 ( 3 ), 190 – 198. https://doi.org/10.1038/s41561-020-0534-0
dc.identifier.citedreferenceBury, Y., Chide, B., Murdoch, N., Cadu, A., Mimoun, D., & Maurice, S. ( 2019 ). Wake-induced pressure fluctuations on the Mars2020/SuperCam microphone inform on Martian wind properties. In EPSC-DPS joint meeting (p. 1589 ).
dc.identifier.citedreferenceChatain, A., Spiga, A., Banfield, D., Forget, F., & Murdoch, N. ( 2021 ). Seasonal variability of the daytime and nighttime atmospheric turbulence experienced by InSight on Mars. Geophysical Research Letters, 48 ( 22 ), e2021GL095453. https://doi.org/10.1029/2021gl095453
dc.identifier.citedreferenceChavez, A., de la Torre-Juarez, M., Tamppari, L., Hueso, R., Chide, B., Munguira, A., et al. ( 2021 ). Preliminary analysis of the diurnal cycle of air temperature fluctuations in Jezero crater. In AGU Fall Meeting 2021, (Vol. 2021 ). Retrieved from https://ui.adsabs.harvard.edu/abs/2021AGUFM.P25I2260C/abstract
dc.identifier.citedreferenceChide, B., Beyssac, O., Gauthier, M., Benzerara, K., Estève, I., Boulliard, J.-C., et al. ( 2021 ). Acoustic monitoring of laser-induced phase transitions in minerals: Implication for Mars exploration with SuperCam. Scientific Reports, 11 ( 1 ), 24019. https://doi.org/10.1038/s41598-021-03315-7
dc.identifier.citedreferenceChide, B., Maurice, S., Cousin, A., Bousquet, B., Mimoun, D., Beyssac, O., et al. ( 2020 ). Recording laser-induced sparks on Mars with the SuperCam microphone. Spectrochimica Acta Part B: Atomic Spectroscopy, 174, 106000. https://doi.org/10.1016/j.sab.2020.106000
dc.identifier.citedreferenceChide, B., Maurice, S., Murdoch, N., Lasue, J., Bousquet, B., Jacob, X., et al. ( 2019 ). Listening to laser sparks: A link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochimica Acta Part B: Atomic Spectroscopy, 153, 50 – 60. https://doi.org/10.1016/j.sab.2019.01.008
dc.identifier.citedreferenceChristensen, P. R., Mehall, G. L., Silverman, S. H., Anwar, S., Cannon, G., Gorelick, N., et al. ( 2003 ). Miniature thermal emission spectrometer for the Mars exploration rovers. Journal of Geophysical Research, 108 ( E12 ), 8064. https://doi.org/10.1029/2003je002117
dc.identifier.citedreferenceDavy, R., Davis, J. A., Taylor, P. A., Lange, C. F., Weng, W., Whiteway, J., & Gunnlaugson, H. P. ( 2010 ). Initial analysis of air temperature and related data from the phoenix MET station and their use in estimating turbulent heat fluxes. Journal of Geophysical Research, 115, E00E13. https://doi.org/10.1029/2009je003444
dc.identifier.citedreferenceForget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. ( 1999 ). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104 ( E10 ), 24155 – 24175. https://doi.org/10.1029/1999je001025
dc.identifier.citedreferenceGómez-Elvira, J., Armiens, C., Castañer, L., Dominguez, M., Genzer, M., Gomez, F., et al. ( 2012 ). REMS: The environmental sensor suite for the Mars Science Laboratory rover. Space Science Reviews, 170 ( 1–4 ), 583 – 640. https://doi.org/10.1007/s11214-012-9921-1
dc.identifier.citedreferenceHess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., & Tillman, J. E. ( 1977 ). Meteorological results from the surface of Mars: Viking 1 and 2. Journal of Geophysical Research, 82 ( 28 ), 4559 – 4574. https://doi.org/10.1029/js082i028p04559
dc.identifier.citedreferenceKaimal, J. C., & Gaynor, J. E. ( 1991 ). Another look at sonic thermometry. Boundary-Layer Meteorology, 56 ( 4 ), 401 – 410. https://doi.org/10.1007/bf00119215
dc.identifier.citedreferenceLemmon, M. T., Smith, M. D., Viudez-Moreiras, D., de la Torre-Juarez, M., Vicente-Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active Martian storm in Jezero Crater. Geophysical Research Letters, 49 ( 17 ), e2022GL100126. https://doi.org/10.1029/2022gl100126
dc.identifier.citedreferenceMartínez, G. M., Sebastián, E., Vicente-Retortillo, A., Fischer, E., Toledo, D., Gómez, F., et al. ( 2022 ). Albedo and thermal inertia at Jezero crater during the first 350 Sols of the Mars 2020 mission. In Seventh international workshop on the Mars atmosphere: Modelling and observations, (p. 1510 ). Retrieved from http://www-mars.lmd.jussieu.fr/paris2022/abstracts/poster_Martinez_German_albedo.pdf
dc.identifier.citedreferenceMartínez, G. M., Newman, C. N., Vicente-Retortillo, A. D., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern near-surface Martian climate: A review of in situ meteorological data from Viking to curiosity. Space Science Reviews, 212 ( 1–2 ), 295 – 338. https://doi.org/10.1007/s11214-017-0360-x
dc.identifier.citedreferenceMason, E. L., & Smith, M. D. ( 2021 ). Temperature fluctuations and boundary layer turbulence as seen by Mars exploration rovers miniature thermal emission spectrometer. Icarus, 360, 114350. https://doi.org/10.1016/j.icarus.2021.114350
dc.identifier.citedreferenceMaurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., et al. ( 2022 ). In situ recording of Mars soundscape. Nature, 605 ( 7911 ), 653 – 658. https://doi.org/10.1038/s41586-022-04679-0
dc.identifier.citedreferenceMaurice, S., Wiens, R. C., Bernardi, P., Cais, P., Robinson, S., Nelson, T., et al. ( 2021 ). The SuperCam instrument suite on the Mars 2020 rover: Science objectives and mast-unit description. Space Science Reviews, 217 ( 3 ), 47. https://doi.org/10.1007/s11214-021-00807-w
dc.identifier.citedreferenceMillour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., et al. ( 2018 ). The Mars climate database version 5.3. In Scientific workshop: From Mars express to ExoMars. ESAC Madrid. Retrieved from https://ui.adsabs.harvard.edu/link_gateway/2018fmee.confE..68M/PUB_PDF
dc.identifier.citedreferenceMunguira, A., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., Martinez, G., Newman, C., et al. ( 2022 ). Mars 2020 MEDA measurements of near surface atmospheric temperatures at Jezero. In Seventh international workshop on the Mars atmosphere: Modelling and observations. Retrieved from http://www-mars.lmd.jussieu.fr/paris2022/abstracts/poster_Munguira_Asier.pdf
dc.identifier.citedreferenceNewman, C. E., Hueso, R., Lemmon, M. T., Munguira, A., Vicente-Retortillo, A., Apestigue, V., et al. ( 2022 ). The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 8 ( 21 ), eabn3783. https://doi.org/10.1126/sciadv.abn3783
dc.identifier.citedreferencePetrosyan, A., Galperin, B., Larsen, S. E., Lewis, S. R., Määttänen, A., Read, P. L., et al. ( 2011 ). The Martian atmospheric boundary layer. Reviews of Geophysics, 49 ( 3 ), RG3005. https://doi.org/10.1029/2010rg000351
dc.identifier.citedreferenceRafkin, S., & Banfield, D. ( 2020 ). On the problem of a variable Mars atmospheric composition in the determination of temperature and density from the adiabatic speed of sound. Planetary and Space Science, 193, 105064. https://doi.org/10.1016/j.pss.2020.105064
dc.identifier.citedreferenceRead, P. L., Galperin, B., Larsen, S. E., Lewis, S. R., Määttänen, A., Petrosyan, A., et al. ( 2016 ). The Martian planetary boundary layer. In R. M. Haberle, R. T. Clancy, F. Forget, M. D. Smith, & R. W. Zurek (Eds.), The atmosphere and climate of Mars (pp. 172 – 202 ). Cambridge University Press. https://doi.org/10.1017/9781139060172.007
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 Perseverance Rover Mars Environmental Dynamics Analyzer (MEDA) Experiment Data Record (EDR) and Reduced Data Record (RDR) Data Products Archive Bundle [Dataset]. PDS Atmospheres Node. https://doi.org/10.17189/1522849
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., de la Torre Juarez, M., Alonso, A., Apestigue, V., Arruego, I., Atienza, T., et al. ( 2021 ). The Mars environmental dynamics analyzer, MEDA. a suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 48. https://doi.org/10.1007/s11214-021-00816-9
dc.identifier.citedreferenceRodríguez Manfredi, J. A., de la Torre Juarez, M., Sanchez-Lavega, A., Hueso, R., Martinez, G., Lemmon, M., et al. ( 2022 ). The rich meteorology of Jezero crater over the first 250 Sols of Perseverance on Mars. Nature Geoscience. https://doi.org/10.21203/rs.3.rs-1634885/v1
dc.identifier.citedreferenceSchofield, J. T., Barnes, J. R., Crisp, D., Haberle, R. M., Larsen, S., Magalhaaes, J. A., et al. ( 1997 ). The Mars pathfinder atmospheric structure investigation meteorology (ASI/MET) experiment. Science, 278 ( 5344 ), 1752 – 1758. https://doi.org/10.1126/science.278.5344.1752
dc.identifier.citedreferenceSmith, M. D., Wolff, M. J., Lemmon, M. T., Spanovich, N., Banfield, D., Budney, C. J., et al. ( 2004 ). First atmospheric science results from the Mars exploration rovers mini-TES. Science, 306 ( 5702 ), 1750 – 1753. https://doi.org/10.1126/science.1104257
dc.identifier.citedreferenceSmith, M. D., Wolff, M. J., Spanovich, N., Ghosh, A., Banfield, D., Christensen, P. R., et al. ( 2006 ). One Martian year of atmospheric observations using MER mini-TES. Journal of Geophysical Research, 111 ( E12 ), E12S13. https://doi.org/10.1029/2006je002770
dc.identifier.citedreferenceSpanovich, N., Smith, M., Smith, P., Wolff, M., Christensen, P., & Squyres, S. ( 2006 ). Surface and near-surface atmospheric temperatures for the Mars exploration rover landing sites. Icarus, 180 ( 2 ), 314 – 320. https://doi.org/10.1016/j.icarus.2005.09.014
dc.identifier.citedreferenceSpiga, A. ( 2019 ). The planetary boundary layer of Mars. Oxford Research Encyclopedia of Planetary Science. https://doi.org/10.1093/acrefore/9780190647926.013.130
dc.identifier.citedreferenceStott, A., Murdoch, N., Mimoun, D., Chide, B., Lorenz, R., Maurice, S., et al. ( 2021 ). The sound of the wind on Mars: Preliminary wind speed analysis with the SuperCam microphone on Perseverance. In Europlanet Science Congress 2021. https://doi.org/10.5194/epsc2021-557
dc.identifier.citedreferenceSun, V., Hand, K. P., Stack, K. M., Farley, K. A., Milkovich, S., Kronyak, R., et al. ( 2022 ). Exploring the Jezero crater floor: Overview of results from the Mars 2020 Perseverance rover’s first science campaign. In 53rd Lunar and Planetary Science Conference. Abstract #1798.
dc.identifier.citedreferenceViúdez-Moreiras, D., Newman, C. E., Gómez-Elvira, J., Harri, A.-M., Genzer, M., Tamppari, L., et al. ( 2022 ). The near-surface wind patterns as observed by NASA Mars 2020 Mission at Jezero Crater, Mars. In EGU General Assembly 2022. https://doi.org/10.5194/egusphere-egu22-6325
dc.identifier.citedreferenceWiens, R. C., & Maurice, S. ( 2021 ). Mars 2020 Perseverance Rover SuperCam Raw, Calibrated, and Derived Data Products [Dataset]. PDS Geosciences Node. https://doi.org/10.17189/1522646
dc.identifier.citedreferenceWu, Z., Richardson, M. I., Zhang, X., Cui, J., Heavens, N. G., Lee, C., et al. ( 2021 ). Large eddy simulations of the dusty Martian convective boundary layer with MarsWRF. Journal of Geophysical Research: Planets, 126 ( 9 ), e2020JE006752. https://doi.org/10.1029/2020je006752
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.