Show simple item record

An asynchronous variational integrator for the phase field approach to dynamic fracture

dc.contributor.authorNiu, Zongwu
dc.contributor.authorZiaei-Rad, Vahid
dc.contributor.authorWu, Zongyuan
dc.contributor.authorShen, Yongxing
dc.date.accessioned2023-01-11T16:21:50Z
dc.date.available2024-02-11 11:21:47en
dc.date.available2023-01-11T16:21:50Z
dc.date.issued2023-01-30
dc.identifier.citationNiu, Zongwu; Ziaei-Rad, Vahid ; Wu, Zongyuan; Shen, Yongxing (2023). "An asynchronous variational integrator for the phase field approach to dynamic fracture." International Journal for Numerical Methods in Engineering 124(2): 434-457.
dc.identifier.issn0029-5981
dc.identifier.issn1097-0207
dc.identifier.urihttps://hdl.handle.net/2027.42/175398
dc.description.abstractThe phase field approach is widely used to model fracture behaviors due to the absence of the need to track the crack topology and the ability to predict crack nucleation and branching. In this work, the asynchronous variational integrator (AVI) is adapted for the phase field approach of dynamic brittle fracture. The AVI is derived from Hamilton’s principle and allows each element in the mesh to have its own local time step that may be different from others’. While the displacement field is explicitly updated, the phase field is implicitly solved, with upper and lower bounds strictly and conveniently enforced. In particular, two important variants of the phase field approach, the AT1 and AT2 models, are equally easily implemented. Several benchmark problems are used to study the performances of both the AT1 and AT2 models, and the results show that the AVI for the phase field approach significantly speeds up the computational efficiency and successfully captures the complicated dynamic fracture behavior.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherdynamic fracture
dc.subject.otherphase field approach
dc.subject.othercomputational efficiency
dc.subject.otherasynchronous variational integrators
dc.titleAn asynchronous variational integrator for the phase field approach to dynamic fracture
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175398/1/nme7127_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175398/2/nme7127.pdf
dc.identifier.doi10.1002/nme.7127
dc.identifier.sourceInternational Journal for Numerical Methods in Engineering
dc.identifier.citedreferenceSchlüter A, Kuhn C, Müller R. Phase field approximation of dynamic brittle fracture. Proc Appl Math Mech. 2014; 14 ( 1 ): 143 - 144. doi: 10.1002/pamm.201410059
dc.identifier.citedreferenceWu JY. Robust numerical implementation of non-standard phase-field damage models for failure in solids. Comput Methods Appl Mech Eng. 2018; 340: 767 - 797. doi: 10.1016/j.cma.2018.06.007
dc.identifier.citedreferenceFarrell P, Maurini C. Linear and nonlinear solvers for variational phase-field models of brittle fracture. Int J Numer Methods Eng. 2017; 109 ( 5 ): 648 - 667. doi: 10.1002/nme.5300
dc.identifier.citedreferenceKnuth DE. The Art of Computer Programming. Addison Wesley; 1998.
dc.identifier.citedreferenceSong JH, Wang H, Belytschko T. A comparative study on finite element methods for dynamic fracture. Comput Mech. 2008; 42: 239 - 250. doi: 10.1007/s00466-007-0210-x
dc.identifier.citedreferenceRamulu M, Kobayashi AS. Mechanics of crack curving and branching – A dynamic fracture analysis. Int J Fract. 1985; 27: 187 - 201. doi: 10.1007/BF00017967
dc.identifier.citedreferenceSharon E, Fineberg J. Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B Condens Matter. 1996; 54 ( 10 ): 7128 - 7139. doi: 10.1103/physrevb.54.7128
dc.identifier.citedreferenceLiu G, Li Q, Msekh MA, Zuo Z. Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model. Comput Mater Sci. 2016; 121: 35 - 47. doi: 10.1016/j.commatsci.2016.04.009
dc.identifier.citedreferenceBobaru F, Zhang G. Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract. 2015; 196: 59 - 98. doi: 10.1007/s10704-015-0056-8
dc.identifier.citedreferenceMandal TK, Nguyen VP, Wu JY. Evaluation of variational phase-field models for dynamic brittle fracture. Eng Fract Mech. 2020; 235: 107169. doi: 10.1016/j.engfracmech.2020.107169
dc.identifier.citedreferenceKalthoff JF. Shadow optical analysis of dynamic shear fracture. Opt Eng. 1988; 27 ( 10 ): 835 - 840. doi: 10.1117/12.7976772
dc.identifier.citedreferenceKalthoff JF. Modes of dynamic shear failure in solids. Int J Fract. 2000; 101 ( 1 ): 1 - 31. doi: 10.1023/A:1007647800529
dc.identifier.citedreferenceWang H, Xu Y, Huang D. A non-ordinary state-based peridynamic formulation for thermo-visco-plastic deformation and impact fracture. Int J Mech Sci. 2019; 159: 336 - 344. doi: 10.1016/j.ijmecsci.2019.06.008
dc.identifier.citedreferenceChu D, Li X, Liu Z. Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling. Int J Fract. 2017; 208: 115 - 130. doi: 10.1007/s10704-017-0220-4
dc.identifier.citedreferenceZhou S, Rabczuk T, Zhuang X. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv Eng Softw. 2018; 122: 31 - 49. doi: 10.1016/j.advengsoft.2018.03.012
dc.identifier.citedreferenceZhang Y, Ren H, Areias P, Zhuang X, Rabczuk T. Quasi-static and dynamic fracture modeling by the nonlocal operator method. Eng Anal Bound Elem. 2021; 133: 120 - 137. doi: 10.1016/j.enganabound.2021.08.020
dc.identifier.citedreferencePark K, Paulino GH, Celes W, Espinha R. Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. Int J Numer Methods Eng. 2012; 92 ( 1 ): 1 - 35. doi: 10.1002/nme.3163
dc.identifier.citedreferenceTangella RG, Kumbhar P, Annabattula RK. Hybrid phase field modelling of dynamic brittle fracture and implementation in FEniCS. In: Krishnapillai SRV, Ha SK, eds. Composite Materials for Extreme Loading. Springer; 2022: 15 - 24.
dc.identifier.citedreferenceReddy SSK, Amirtham R, Reddy JN. Modeling fracture in brittle materials with inertia effects using the phase field method. Mech Adv Mater Struct. 2021. doi: 10.1080/15376494.2021.2010289
dc.identifier.citedreferenceBourdin B, Francfort GA, Marigo JJ. The variational approach to fracture. J Elast. 2008; 91: 5 - 148. doi: 10.1007/s10659-007-9107-3
dc.identifier.citedreferenceBleyer J, Roux-Langlois C, Molinari JF. Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms. Int J Fract. 2017; 204: 79 - 100. doi: 10.1007/s10704-016-0163-1
dc.identifier.citedreferenceYin BB, Zhang LW. Phase field method for simulating the brittle fracture of fiber reinforced composites. Eng Fract Mech. 2019; 211: 321 - 340. doi: 10.1016/j.engfracmech.2019.02.033
dc.identifier.citedreferenceSumi Y, Wang ZN. A finite-element simulation method for a system of growing cracks in a heterogeneous material. Mech Mater. 1998; 28 ( 1 ): 197 - 206. doi: 10.1016/S0167-6636(97)00048-3
dc.identifier.citedreferenceYao Y, Keer LM. Cohesive fracture mechanics based numerical analysis to BGA packaging and lead free solders under drop impact. Microelectron Reliab. 2013; 53 ( 4 ): 629 - 637. doi: 10.1016/j.microrel.2012.12.007
dc.identifier.citedreferenceLew A, Marsden JE, Ortiz M, West M. Asynchronous variational integrators. Arch Ration Mech Anal. 2003; 167 ( 2 ): 85 - 146. doi: 10.1007/s00205-002-0212-y
dc.identifier.citedreferenceZhang R, Zhang X, Kang T, He F. Dynamic fracture propagation model for oriented perforation steering fracturing in low permeability reservoir based on microelement method. J Nat Gas Sci Eng. 2020; 74: 103105. doi: 10.1016/j.jngse.2019.103105
dc.identifier.citedreferenceChen S, Zang M, Wang D, Yoshimura S, Yamada T. Numerical analysis of impact failure of automotive laminated glass: a review. Compos Part B. 2017; 122: 47 - 60. doi: 10.1016/j.compositesb.2017.04.007
dc.identifier.citedreferenceFreund LB. Dynamic Fracture Mechanics. Cambridge University Press; 1998.
dc.identifier.citedreferenceRavi-Chandar K. Dynamic Fracture. Elsevier; 2004.
dc.identifier.citedreferenceFineberg J, Bouchbinder E. Recent developments in dynamic fracture: some perspectives. Int J Fract. 2015; 196 ( 1-2 ): 33 - 57. doi: 10.1007/s10704-015-0038-x
dc.identifier.citedreferenceSun Y, Edwards MG, Chen B, Li C. A state-of-the-art review of crack branching. Eng Fract Mech. 2021; 257: 108036. doi: 10.1016/j.engfracmech.2021.108036
dc.identifier.citedreferenceRabczuk T. Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. International Scholarly Research Notices. 2013; 2013: 1 - 38. doi: 10.1155/2013/849231
dc.identifier.citedreferenceRéthoré J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. Int J Numer Methods Eng. 2005; 63 ( 5 ): 631 - 659. doi: 10.1002/nme.1283
dc.identifier.citedreferenceNguyen VP. Discontinuous Galerkin/extrinsic cohesive zone modeling: implementation caveats and applications in computational fracture mechanics. Eng Fract Mech. 2014; 128: 37 - 68. doi: 10.1016/j.engfracmech.2014.07.003
dc.identifier.citedreferenceLiu Y, Filonova V, Hu N, et al. A regularized phenomenological multiscale damage model. Int J Numer Methods Eng. 2014; 99 ( 12 ): 867 - 887. doi: 10.1002/nme.4705
dc.identifier.citedreferenceZhang Y, Zhuang X. Cracking elements method for dynamic brittle fracture. Theor Appl Fract Mech. 2019; 102: 1 - 9. doi: 10.1016/j.tafmec.2018.09.015
dc.identifier.citedreferenceSong JH, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng. 2006; 67 ( 6 ): 868 - 893. doi: 10.1002/nme.1652
dc.identifier.citedreferenceLi T, Marigo JJ, Guilbaud D, Potapov S. Gradient damage modeling of brittle fracture in an explicit dynamics context. Int J Numer Methods Eng. 2016; 108 ( 11 ): 1381 - 1405. doi: 10.1002/nme.5262
dc.identifier.citedreferenceMoreau K, Moës N, Picart D, Stainier L. Explicit dynamics with a non-local damage model using the thick level set approach. Int J Numer Methods Eng. 2015; 102 ( 3-4 ): 808 - 838. doi: 10.1002/nme.4824
dc.identifier.citedreferenceBourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. J Mech Phys Solids. 2000; 48 ( 4 ): 797 - 826. doi: 10.1016/S0022-5096(99)00028-9
dc.identifier.citedreferenceFrancfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids. 1998; 46 ( 8 ): 1319 - 1342. doi: 10.1016/S0022-5096(98)00034-9
dc.identifier.citedreferenceAmiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theor Appl Fract Mech. 2014; 69: 102 - 109. doi: 10.1016/j.tafmec.2013.12.002
dc.identifier.citedreferenceLai W, Gao J, Li Y, Arroyo M, Shen Y. Phase field modeling of brittle fracture in an Euler-Bernoulli beam accounting for transverse part-through cracks. Comput Methods Appl Mech Eng. 2020; 361: 112787. doi: 10.1016/j.cma.2019.112787
dc.identifier.citedreferenceMollaali M, Ziaei-Rad V, Shen Y. Numerical modeling of CO2 fracturing by the phase field approach. J Nat Gas Sci Eng. 2019; 70: 102905. doi: 10.1016/j.jngse.2019.102905
dc.identifier.citedreferenceShen Y, Mollaali M, Li Y, Ma W, Jiang J. Implementation details for the phase field approaches to fracture. J Shanghai Jiaotong Univ (Sci). 2018; 23 ( 1 ): 166 - 174. doi: 10.1007/s12204-018-1922-0
dc.identifier.citedreferenceBorden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM. A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng. 2012; 217-220: 77 - 95. doi: 10.1016/j.cma.2012.01.008
dc.identifier.citedreferenceNguyen VP, Wu JY. Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput Methods Appl Mech Eng. 2018; 340: 1000 - 1022. doi: 10.1016/j.cma.2018.06.015
dc.identifier.citedreferenceHao S, Shen Y, Cheng JB. Phase field formulation for the fracture of a metal under impact with a fluid formulation. Eng Fract Mech. 2022; 261: 108142. doi: 10.1016/j.engfracmech.2021.108142
dc.identifier.citedreferenceHao S, Chen Y, Cheng JB, Shen Y. A phase field model for high-speed impact based on the updated Lagrangian formulation. Finite Elem Anal Des. 2022; 199: 103652. doi: 10.1016/j.finel.2021.103652
dc.identifier.citedreferenceTian F, Tang X, Xu T, Yang J, Li L. A hybrid adaptive finite element phase-field method for quasi-static and dynamic brittle fracture. Int J Numer Methods Eng. 2019; 120 ( 9 ): 1108 - 1125. doi: 10.1002/nme.6172
dc.identifier.citedreferenceZiaei-Rad V, Shen Y. Massive parallelization of the phase field formulation for crack propagation with time adaptivity. Comput Methods Appl Mech Eng. 2016; 312: 224 - 253. doi: 10.1016/j.cma.2016.04.013
dc.identifier.citedreferenceLi Y, Lai W, Shen Y. Variational h-adaption method for the phase field approach to fracture. Int J Fract. 2019; 217: 83 - 103. doi: 10.1007/s10704-019-00372-y
dc.identifier.citedreferenceEngwer C, Pop IS, Wick T. Dynamic and weighted stabilizations of the L-scheme applied to a phase-field model for fracture propagation; 2021: 1177 - 1184; Springer International Publishing, Cham.
dc.identifier.citedreferenceLew A, Marsden JE, Ortiz M, West M. Variational time integrators. Int J Numer Methods Eng. 2004; 60 ( 1 ): 153 - 212. doi: 10.1002/nme.958
dc.identifier.citedreferenceFong W, Darve E, Lew A. Stability of asynchronous variational integrators. J Comput Phys. 2008; 227 ( 18 ): 8367 - 8394. doi: 10.1016/j.jcp.2008.05.017
dc.identifier.citedreferenceFocardi M, Mariano PM. Convergence of asynchronous variational integrators in linear elastodynamics. Int J Numer Methods Eng. 2008; 75 ( 7 ): 755 - 769. doi: 10.1002/nme.2271
dc.identifier.citedreferenceRyckman RA, Lew AJ. An explicit asynchronous contact algorithm for elastic body-rigid wall interaction. Int J Numer Methods Eng. 2012; 89 ( 7 ): 869 - 896. doi: 10.1002/nme.3266
dc.identifier.citedreferenceLiu P, Yang JZ, Yuan C. Extended synchronous variational integrators for wave propagations on non-uniform meshes. Commun Comput Phys. 2020; 28 ( 2 ): 691 - 722. doi: 10.4208/cicp.OA-2019-0167
dc.identifier.citedreferenceThomaszewski B, Pabst S, Straßer W. Asynchronous cloth simulation. Proceedings of the 2008 International Conference on Computer Graphics and Virtual Reality; 2008.
dc.identifier.citedreferencePham K, Amor H, Marigo JJ, Maurini C. Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech. 2011; 20 ( 4 ): 618 - 652. doi: 10.1177/1056789510386852
dc.identifier.citedreferenceRen HL, Zhuang X, Anitescu C, Rabczuk T. An explicit phase field method for brittle dynamic fracture. Comput Struct. 2019; 217: 45 - 56. doi: 10.1016/j.compstruc.2019.03.005
dc.identifier.citedreferenceSuh HS, Sun W. Asynchronous phase field fracture model for porous media with thermally non-equilibrated constituents. Comput Methods Appl Mech Eng. 2021; 387: 114182. doi: 10.1016/j.cma.2021.114182
dc.identifier.citedreferenceMiehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng. 2010; 199 ( 45 ): 2765 - 2778. doi: 10.1016/j.cma.2010.04.011
dc.identifier.citedreferenceAmor H, Marigo JJ, Maurini C. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids. 2009; 57 ( 8 ): 1209 - 1229. doi: 10.1016/j.jmps.2009.04.011
dc.identifier.citedreferenceLiu Y, Cheng C, Ziaei-Rad V, Shen Y. A micromechanics-informed phase field model for brittle fracture accounting for unilateral constraint. Eng Fract Mech. 2021; 241: 107358. doi: 10.1016/j.engfracmech.2020.107358
dc.identifier.citedreferenceWu JY, Nguyen VP, Zhou H, Huang Y. A variationally consistent phase-field anisotropic damage model for fracture. Comput Methods Appl Mech Eng. 2020; 358: 112629. doi: 10.1016/j.cma.2019.112629
dc.identifier.citedreferenceMarsden JE, West M. Discrete mechanics and variational integrators. Acta Numer. 2001; 10 ( 10 ): 357 - 514. doi: 10.1017/S096249290100006X
dc.identifier.citedreferenceGerasimov T, De Lorenzis L. On penalization in variational phase-field models of brittle fracture. Comput Methods Appl Mech Eng. 2019; 354: 990 - 1026. doi: 10.1016/j.cma.2019.05.038
dc.identifier.citedreferenceGeelen RJM, Liu Y, Hu T, Tupek MR, Dolbow JE. A phase-field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng. 2019; 348: 680 - 711. doi: 10.1016/j.cma.2019.01.026
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.