Show simple item record

Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management

dc.contributor.authorHristov, Alexandra C.
dc.contributor.authorTejasvi, Trilokraj
dc.contributor.authorWilcox, Ryan A.
dc.date.accessioned2023-01-11T16:21:59Z
dc.date.available2024-02-11 11:21:57en
dc.date.available2023-01-11T16:21:59Z
dc.date.issued2023-01
dc.identifier.citationHristov, Alexandra C.; Tejasvi, Trilokraj; Wilcox, Ryan A. (2023). "Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management." American Journal of Hematology 98(1): 193-209.
dc.identifier.issn0361-8609
dc.identifier.issn1096-8652
dc.identifier.urihttps://hdl.handle.net/2027.42/175402
dc.description.abstractDisease OverviewCutaneous T-cell lymphomas are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS).DiagnosisThe diagnosis of MF or SS requires the integration of clinical and histopathologic data.Risk-Adapted TherapyTNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a “risk-adapted,” multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or the blood involvement are generally approached with systemic therapies, including biologic-response modifiers, histone deacetylase inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleCutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175402/1/ajh26760_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175402/2/ajh26760.pdf
dc.identifier.doi10.1002/ajh.26760
dc.identifier.sourceAmerican Journal of Hematology
dc.identifier.citedreferenceEdelson R, Berger C, Gasparro F, et al. Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med. 1987; 316: 297 - 303.
dc.identifier.citedreferenceO’Connor OA, Hamlin PA, Portlock C, et al. Pralatrexate, a novel class of antifol with high affinity for the reduced folate carrier-type 1, produces marked complete and durable remissions in a diversity of chemotherapy refractory cases of T-cell lymphoma. Br J Haematol. 2007; 139: 425 - 428.
dc.identifier.citedreferenceSerova M, Bieche I, Sablin MP, et al. Single agent and combination studies of pralatrexate and molecular correlates of sensitivity. Br J Cancer. 2011; 104: 272 - 280.
dc.identifier.citedreferenceZain J, O’Connor O. Pralatrexate: basic understanding and clinical development. Expert Opin Pharmacother. 2010; 11: 1705 - 1714.
dc.identifier.citedreferenceO’Connor OA, Pro B, Pinter-Brown L, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2011; 29: 1182 - 1189.
dc.identifier.citedreferenceFoss F, Horwitz S, Pinter-Brown L, et al. Pralatrexate is an effective treatment for heavily pretreated patients with relapsed/refractory transformed mycosis Fungoides (tMF). Blood. 2010; 116: 1762.
dc.identifier.citedreferenceHorwitz S, Kim YH, Foss F, et al. Identification of an active, well-tolerated dose of Pralatrexate In patients with relapsed or refractory cutaneous T-cell lymphoma (CTCL): final results of a multicenter dose-finding study. Blood. 2010; 116: 2800.
dc.identifier.citedreferenceRueda A, Casanova M, Quero C, Medina-Perez A. Pralatrexate, a new hope for aggressive T-cell lymphomas? Clin Transl Oncol. 2009; 11: 215 - 220.
dc.identifier.citedreferenceZinzani PL, Musuraca G, Tani M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007; 25: 4293 - 4297.
dc.identifier.citedreferenceQuerfeld C, Rosen ST, Guitart J, et al. Results of an open-label multicenter phase 2 trial of lenalidomide monotherapy in refractory mycosis fungoides and Sezary syndrome. Blood. 2014; 123: 1159 - 1166.
dc.identifier.citedreferenceWilcox RA. A three signal model of T-cell lymphoma pathogenesis. Am J Hematol. 2015; 91: 113 - 122.
dc.identifier.citedreferenceDevata S, Wilcox RA. Cutaneous T-cell lymphoma: a review with a focus on targeted agents. Am J Clin Dermatol. 2016; 17: 225 - 237.
dc.identifier.citedreferenceWu PA, Kim YH, Lavori PW, Hoppe RT, Stockerl-Goldstein KE. A meta-analysis of patients receiving allogeneic or autologous hematopoietic stem cell transplant in mycosis fungoides and Sezary syndrome. Biol Blood Marrow Transplant. 2009; 15: 982 - 990.
dc.identifier.citedreferenceDuarte RF, Schmitz N, Servitje O, Sureda A. Haematopoietic stem cell transplantation for patients with primary cutaneous T-cell lymphoma. Bone Marrow Transplant. 2008; 41: 597 - 604.
dc.identifier.citedreferenceDuarte RF, Canals C, Onida F, et al. Allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sezary syndrome: a retrospective analysis of the lymphoma working Party of the European Group for blood and marrow transplantation. J Clin Oncol. 2010; 28: 4492 - 4499.
dc.identifier.citedreferenceDomingo-Domenech E, Duarte RF, Boumedil A, et al. Allogeneic hematopoietic stem cell transplantation for advanced mycosis fungoides and Sezary syndrome. An updated experience of the lymphoma working Party of the European Society for blood and marrow transplantation. Bone Marrow Transplant. 2021; 56: 1391 - 1401.
dc.identifier.citedreferenceLechowicz MJ, Lazarus HM, Carreras J, et al. Allogeneic hematopoietic cell transplantation for mycosis fungoides and Sezary syndrome. Bone Marrow Transplant. 2014; 49: 1360 - 1365.
dc.identifier.citedreferenceIqbal M, Reljic T, Ayala E, et al. Efficacy of allogeneic hematopoietic cell transplantation in cutaneous T cell lymphoma: results of a systematic review and meta-analysis. Biol Blood Marrow Transplant. 2020; 26: 76 - 82.
dc.identifier.citedreferenceSchlaak M, Theurich S, Pickenhain J, Skoetz N, Kurschat P, von Bergwelt-Baildon M. Allogeneic stem cell transplantation for advanced primary cutaneous T-cell lymphoma: a systematic review. Crit Rev Oncol Hematol. 2013; 85: 21 - 31.
dc.identifier.citedreferenceHosing C, Bassett R, Dabaja B, et al. Allogeneic stem-cell transplantation in patients with cutaneous lymphoma: updated results from a single institution. Ann Oncol. 2015; 26: 2490 - 2495.
dc.identifier.citedreferenceHodak E, Klein T, Gabay B, et al. Familial mycosis fungoides: report of 6 kindreds and a study of the HLA system. J Am Acad Dermatol. 2005; 52: 393 - 402.
dc.identifier.citedreferenceHodak E, Lapidoth M, Kohn K, et al. Mycosis fungoides: HLA class II associations among Ashkenazi and non-Ashkenazi Jewish patients. Br J Dermatol. 2001; 145: 974 - 980.
dc.identifier.citedreferenceWillemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005; 105: 3768 - 3785.
dc.identifier.citedreferenceWillemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019; 133: 1703 - 1714.
dc.identifier.citedreferenceAlaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization classification of Haematolymphoid Tumours: lymphoid neoplasms. Leukemia. 2022; 36: 1720 - 1748.
dc.identifier.citedreferenceCampo E, Jaffe ES, Cook JR, et al. The international consensus classification of mature lymphoid neoplasms: a report from the clinical advisory committee. Blood. 2022; 140: 1229 - 1253.
dc.identifier.citedreferenceCriscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973-2002. Arch Dermatol. 2007; 143: 854 - 859.
dc.identifier.citedreferenceBradford PT, Devesa SS, Anderson WF, Toro JR. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009; 113: 5064 - 5073.
dc.identifier.citedreferenceJohnson WT, Kartan S, Sokol K, Nikbakht N, Porcu P. Clinical characteristics and outcomes of black patients with mycosis fungoides and Sezary syndrome: a subgroup analysis of the phase III MAVORIC trial. Leuk Lymphoma. 2021; 62 ( 8 ): 1877 - 1883.
dc.identifier.citedreferenceGeller S, Lebowitz E, Pulitzer MP, et al. Outcomes and prognostic factors in African American and black patients with mycosis fungoides/Sezary syndrome: retrospective analysis of 157 patients from a referral cancer center. J Am Acad Dermatol. 2020; 83: 430 - 439.
dc.identifier.citedreferenceBurns MK, Ellis CN, Cooper KD. Mycosis fungoides--type cutaneous T-cell lymphoma arising before 30 years of age. Immunophenotypic, immunogenotypic and clinicopathologic analysis of nine cases. J Am Acad Dermatol. 1992; 27: 974 - 978.
dc.identifier.citedreferencePope E, Weitzman S, Ngan B, et al. Mycosis fungoides in the pediatric population: report from an international childhood registry of cutaneous lymphoma. J Cutan Med Surg. 2010; 14: 1 - 6.
dc.identifier.citedreferenceAgar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol. 2010; 28: 4730 - 4739.
dc.identifier.citedreferenceJung JM, Lim DJ, Won CH, Chang SE, Lee MW, Lee WJ. Mycosis Fungoides in children and adolescents: a systematic review. JAMA Dermatol. 2021; 157: 431 - 438.
dc.identifier.citedreferenceGoyal A, O’Leary D, Goyal K, Patel K, Pearson D, Janakiram M. Cutaneous T-cell lymphoma is associated with increased risk of lymphoma, melanoma, lung cancer, and bladder cancer: a systematic review and meta-analysis. J Am Acad Dermatol. 2020; 85: 1418 - 1428.
dc.identifier.citedreferenceGoyal A, O’Leary D, Goyal K, et al. Increased risk of second primary hematologic and solid malignancies in patients with mycosis fungoides: a surveillance, epidemiology, and end results analysis. J Am Acad Dermatol. 2020; 83: 404 - 411.
dc.identifier.citedreferenceElenitoba-Johnson KS, Wilcox R. A new molecular paradigm in mycosis fungoides and Sezary syndrome. Semin Diagn Pathol. 2017; 34: 15 - 21.
dc.identifier.citedreferenceJones CL, Degasperi A, Grandi V, et al. Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma. Sci Rep. 2021; 11: 3962.
dc.identifier.citedreferencePark J, Daniels J, Wartewig T, et al. Integrated genomic analyses of cutaneous T cell lymphomas reveal the molecular bases for disease heterogeneity. Blood. 2021; 138: 1225 - 1236.
dc.identifier.citedreferenceWhittemore AS, Holly EA, Lee IM, et al. Mycosis fungoides in relation to environmental exposures and immune response: a case-control study. J Natl Cancer Inst. 1989; 81: 1560 - 1567.
dc.identifier.citedreferenceMagro CM, Crowson AN, Kovatich AJ, Burns F. Drug-induced reversible lymphoid dyscrasia: a clonal lymphomatoid dermatitis of memory and activated T cells. Hum Pathol. 2003; 34: 119 - 129.
dc.identifier.citedreferenceJahan-Tigh RR, Huen AO, Lee GL, Pozadzides JV, Liu P, Duvic M. Hydrochlorothiazide and cutaneous T cell lymphoma: prospective analysis and case series. Cancer. 2013; 119: 825 - 831.
dc.identifier.citedreferenceJackow CM, McHam JB, Friss A, Alvear J, Reveille JR, Duvic M. HLA-DR5 and DQB1*03 class II alleles are associated with cutaneous T-cell lymphoma. J Invest Dermatol. 1996; 107: 373 - 376.
dc.identifier.citedreferenceTuyp E, Burgoyne A, Aitchison T, MacKie R. A case-control study of possible causative factors in mycosis fungoides. Arch Dermatol. 1987; 123: 196 - 200.
dc.identifier.citedreferenceWohl Y, Tur E. Environmental risk factors for mycosis fungoides. Curr Probl Dermatol. 2007; 35: 52 - 64.
dc.identifier.citedreferenceMorales Suarez-Varela MM, Olsen J, Kaerlev L, et al. Are alcohol intake and smoking associated with mycosis fungoides? A European multicentre case-control study. Eur J Cancer. 2001; 37: 392 - 397.
dc.identifier.citedreferenceMorales-Suarez-Varela MM, Olsen J, Johansen P, et al. Occupational sun exposure and mycosis fungoides: a European multicenter case-control study. J Occup Environ Med. 2006; 48: 390 - 393.
dc.identifier.citedreferenceWilcox RA. Cutaneous T-cell lymphoma: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2017; 92: 1085 - 1102.
dc.identifier.citedreferenceKim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT. Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol. 2003; 139: 857 - 866.
dc.identifier.citedreferencevan Doorn R, Van Haselen CW, van Voorst Vader PC, et al. Mycosis fungoides: disease evolution and prognosis of 309 Dutch patients. Arch Dermatol. 2000; 136: 504 - 510.
dc.identifier.citedreferenceArulogun SO, Prince HM, Ng J, et al. Long-term outcomes of patients with advanced-stage cutaneous T-cell lymphoma and large cell transformation. Blood. 2008; 112: 3082 - 3087.
dc.identifier.citedreferenceHurabielle C, Ingen-Housz-Oro S, Ortonne N, et al. Frequency and prognostic value of cutaneous molecular residual disease in mycosis fungoides: a prospective multicentre trial of the cutaneous lymphoma French study group. Br J Dermatol. 2015; 173: 1015 - 1023.
dc.identifier.citedreferenceDereure O, Picot E, Comte C, Bessis D, Guillot B. Treatment of early stages of mycosis fungoides with narrowband ultraviolet B. A clinical, histological and molecular evaluation of results. Dermatology. 2009; 218: 1 - 6.
dc.identifier.citedreferencePimpinelli N, Olsen EA, Santucci M, et al. Defining early mycosis fungoides. J Am Acad Dermatol. 2005; 53: 1053 - 1063.
dc.identifier.citedreferenceSong SX, Willemze R, Swerdlow SH, Kinney MC, Said JW. Mycosis fungoides: report of the 2011 Society for Hematopathology/European Association for Haematopathology workshop. Am J Clin Pathol. 2013; 139: 466 - 490.
dc.identifier.citedreferenceMorgan SM, Hodges E, Mitchell TJ, Harris S, Whittaker SJ, Smith JL. Molecular analysis of T-cell receptor beta genes in cutaneous T-cell lymphoma reveals Jbeta1 bias. J Invest Dermatol. 2006; 126: 1893 - 1899.
dc.identifier.citedreferencePonti R, Quaglino P, Novelli M, et al. T-cell receptor gamma gene rearrangement by multiplex polymerase chain reaction/heteroduplex analysis in patients with cutaneous T-cell lymphoma (mycosis fungoides/Sezary syndrome) and benign inflammatory disease: correlation with clinical, histological and immunophenotypical findings. Br J Dermatol. 2005; 153: 565 - 573.
dc.identifier.citedreferenceGuitart J, Magro C. Cutaneous T-cell lymphoid dyscrasia: a unifying term for idiopathic chronic dermatoses with persistent T-cell clones. Arch Dermatol. 2007; 143: 921 - 932.
dc.identifier.citedreferencePosnett DN, Sinha R, Kabak S, Russo C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy ”. J Exp Med. 1994; 179: 609 - 618.
dc.identifier.citedreferenceEpling-Burnette PK, Painter JS, Rollison DE, et al. Prevalence and clinical association of clonal T-cell expansions in myelodysplastic syndrome. Leukemia. 2007; 21: 659 - 667.
dc.identifier.citedreferenceMartinez A, Pittaluga S, Villamor N, et al. Clonal T-cell populations and increased risk for cytotoxic T-cell lymphomas in B-CLL patients: clinicopathologic observations and molecular analysis. Am J Surg Pathol. 2004; 28: 849 - 858.
dc.identifier.citedreferenceKohler S, Jones CD, Warnke RA, Zehnder JL. PCR-heteroduplex analysis of T-cell receptor gamma gene rearrangement in paraffin-embedded skin biopsies. Am J Dermatopathol. 2000; 22: 321 - 327.
dc.identifier.citedreferenceThurber SE, Zhang B, Kim YH, Schrijver I, Zehnder J, Kohler S. T-cell clonality analysis in biopsy specimens from two different skin sites shows high specificity in the diagnosis of patients with suggested mycosis fungoides. J Am Acad Dermatol. 2007; 57: 782 - 790.
dc.identifier.citedreferenceRojansky R, Fernandez-Pol S, Wang E, et al. Cutaneous T-cell lymphomas with pathogenic somatic mutations and absence of detectable clonal T-cell receptor gene rearrangement: two case reports. Diagn Pathol. 2020; 15: 122.
dc.identifier.citedreferenceSufficool KE, Lockwood CM, Abel HJ, et al. T-cell clonality assessment by next-generation sequencing improves detection sensitivity in mycosis fungoides. J Am Acad Dermatol. 2015; 73 ( 228–236 ): e222.
dc.identifier.citedreferenceRea B, Haun P, Emerson R, et al. Role of high-throughput sequencing in the diagnosis of cutaneous T-cell lymphoma. J Clin Pathol. 2018; 71: 814 - 820.
dc.identifier.citedreferenceGibbs JD, Ma S, Kim A, et al. Utility of flow cytometry and gene rearrangement analysis in tissue and blood of patients with suspected cutaneous Tcell lymphoma. Oncol Rep. 2021; 45: 349 - 358.
dc.identifier.citedreferenceRaghavan SS, Wang JY, Gru AA, et al. Next-generation sequencing confirms T-cell clonality in a subset of pediatric pityriasis lichenoides. J Cutan Pathol. 2022; 49: 252 - 260.
dc.identifier.citedreferenceGniadecki R, Lukowsky A. Monoclonal T-cell dyscrasia of undetermined significance associated with recalcitrant erythroderma. Arch Dermatol. 2005; 141: 361 - 367.
dc.identifier.citedreferenceOrmsby A, Bergfeld WF, Tubbs RR, Hsi ED. Evaluation of a new paraffin-reactive CD7 T-cell deletion marker and a polymerase chain reaction-based T-cell receptor gene rearrangement assay: implications for diagnosis of mycosis fungoides in community clinical practice. J Am Acad Dermatol. 2001; 45: 405 - 413.
dc.identifier.citedreferenceMichie SA, Abel EA, Hoppe RT, Warnke RA, Wood GS. Discordant expression of antigens between intraepidermal and intradermal T cells in mycosis fungoides. Am J Pathol. 1990; 137: 1447 - 1451.
dc.identifier.citedreferenceEspinosa ML, Walker CJ, Guitart J, Mhlaba JM. Morphology of mycosis Fungoides and Sezary syndrome in skin of color. Cutis. 2022; 109: E3 - E7.
dc.identifier.citedreferenceKazakov DV, Burg G, Kempf W. Clinicopathological spectrum of mycosis fungoides. J Eur Acad Dermatol Venereol. 2004; 18: 397 - 415.
dc.identifier.citedreferenceHadi R, Miller TI, May C, et al. Impact of clinical photographs on the accuracy and confidence in the histopathological diagnosis of mycosis fungoides. J Cutan Pathol. 2021; 48: 842 - 846.
dc.identifier.citedreferenceDittmer M, Brown-Joel ZO, Smith HL, Liu V. Influence of clinical information on the histopathological diagnosis of mycosis fungoides: a follow-up study using scanned slide image review. J Cutan Pathol. 2021; 48: 719 - 720.
dc.identifier.citedreferenceSezary A, Bouvrain Y. Erythrodermie avec presence de cellules monstrueses dans le derme et le sang circulant. Bull Soc Fr Derm Syph. 1938; 45: 254 - 260.
dc.identifier.citedreferenceMain RA, Goodall HB, Swanson WC. Sezary’s syndrome. Br J Dermatol. 1959; 71: 335 - 343.
dc.identifier.citedreferenceTaswell HF, Winkelmann RK. Sezary syndrome--a malignant reticulemic erythroderma. JAMA. 1961; 177: 465 - 472.
dc.identifier.citedreferenceLutzner MA, Emerit I, Durepaire R, Flandrin G, Grupper C, Prunieras M. Cytogenetic, cytophotometric, and ultrastructural study of large cerebriform cells of the Sezary syndrome and description of a small-cell variant. J Natl Cancer Inst. 1973; 50: 1145 - 1162.
dc.identifier.citedreferenceLutzner MA, Jordan HW. The ultrastructure of an abnormal cell in Sezary’s syndrome. Blood. 1968; 31: 719 - 726.
dc.identifier.citedreferenceEdelson RL, Lutzner MA, Kirkpatrick CH, Shevach EM, Green I. Morphologic and functional properties of the atypical T lymphocytes of the Sezary syndrome. Mayo Clin Proc. 1974; 49: 558 - 566.
dc.identifier.citedreferenceLutzner MA, Hobbs JW, Horvath P. Ultrastructure of abnormal cells in Sezary syndrome, mycosis fungoides, and parapsoriasis en plaque. Arch Dermatol. 1971; 103: 375 - 386.
dc.identifier.citedreferenceMatutes E, Robinson D, O’Brien M, Haynes BF, Zola H, Catovsky D. Candidate counterparts of Sezary cells and adult T-cell lymphoma-leukaemia cells in normal peripheral blood: an ultrastructural study with the immunogold method and monoclonal antibodies. Leuk Res. 1983; 7: 787 - 801.
dc.identifier.citedreferenceReinhold U, Herpertz M, Kukel S, Oltermann I, Uerlich M, Kreysel HW. Induction of nuclear contour irregularity during T-cell activation via the T-cell receptor/CD3 complex and CD2 antigens in the presence of phorbol esters. Blood. 1994; 83: 703 - 706.
dc.identifier.citedreferenceScheffer E, Meijer CJ, van Vloten WA, Willemze R. A histologic study of lymph nodes from patients with the Sezary syndrome. Cancer. 1986; 57: 2375 - 2380.
dc.identifier.citedreferenceWillemze R, van Vloten WA, Hermans J, Damsteeg MJ, Meijer CJ. Diagnostic criteria in Sezary’s syndrome: a multiparameter study of peripheral blood lymphocytes in 32 patients with erythroderma. J Invest Dermatol. 1983; 81: 392 - 397.
dc.identifier.citedreferenceBoumsell L, Bernard A, Reinherz EL, et al. Surface antigens on malignant Sezary and T-CLL cells correspond to those of mature T cells. Blood. 1981; 57: 526 - 530.
dc.identifier.citedreferenceVonderheid EC, Bernengo MG, Burg G, et al. Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas. J Am Acad Dermatol. 2002; 46: 95 - 106.
dc.identifier.citedreferenceHristov AC, Vonderheid EC, Borowitz MJ. Simplified flow cytometric assessment in mycosis fungoides and Sezary syndrome. Am J Clin Pathol. 2011; 136: 944 - 953.
dc.identifier.citedreferenceBernengo MG, Quaglino P, Novelli M, et al. Prognostic factors in Sezary syndrome: a multivariate analysis of clinical, haematological and immunological features. Ann Oncol. 1998; 9: 857 - 863.
dc.identifier.citedreferenceHarmon CB, Witzig TE, Katzmann JA, Pittelkow MR. Detection of circulating T cells with CD4+CD7- immunophenotype in patients with benign and malignant lymphoproliferative dermatoses. J Am Acad Dermatol. 1996; 35: 404 - 410.
dc.identifier.citedreferenceKlemke CD, Booken N, Weiss C, et al. Histopathological and immunophenotypical criteria for the diagnosis of Sezary syndrome in differentiation from other erythrodermic skin diseases: a European Organisation for Research and Treatment of Cancer (EORTC) cutaneous lymphoma task force study of 97 cases. Br J Dermatol. 2015; 173: 93 - 105.
dc.identifier.citedreferenceBoonk SE, Zoutman WH, Marie-Cardine A, et al. Evaluation of Immunophenotypic and molecular biomarkers for Sezary syndrome using standard operating procedures: a multicenter study of 59 patients. J Invest Dermatol. 2016; 136: 1364 - 1372.
dc.identifier.citedreferenceBogen SA, Pelley D, Charif M, et al. Immunophenotypic identification of Sezary cells in peripheral blood. Am J Clin Pathol. 1996; 106: 739 - 748.
dc.identifier.citedreferenceGinaldi L, Matutes E, Farahat N, De Martinis M, Morilla R, Catovsky D. Differential expression of CD3 and CD7 in T-cell malignancies: a quantitative study by flow cytometry. Br J Haematol. 1996; 93: 921 - 927.
dc.identifier.citedreferenceJones D, Dang NH, Duvic M, Washington LT, Huh YO. Absence of CD26 expression is a useful marker for diagnosis of T-cell lymphoma in peripheral blood. Am J Clin Pathol. 2001; 115: 885 - 892.
dc.identifier.citedreferencePierson DM, Jones D, Muzzafar T, et al. Utility of CD26 in flow cytometric immunophenotyping of T-cell lymphomas in tissue and body fluid specimens. Cytometry B Clin Cytom. 2008; 74: 341 - 348.
dc.identifier.citedreferenceSokolowska-Wojdylo M, Wenzel J, Gaffal E, et al. Absence of CD26 expression on skin-homing CLA+ CD4+ T lymphocytes in peripheral blood is a highly sensitive marker for early diagnosis and therapeutic monitoring of patients with Sezary syndrome. Clin Exp Dermatol. 2005; 30: 702 - 706.
dc.identifier.citedreferenceScarisbrick JJ, Hodak E, Bagot M, et al. Blood classification and blood response criteria in mycosis fungoides and Sezary syndrome using flow cytometry: recommendations from the EORTC cutaneous lymphoma task force. Eur J Cancer. 2018; 93: 47 - 56.
dc.identifier.citedreferenceOlsen EA, Whittaker S, Willemze R, et al. Primary cutaneous lymphoma: recommendations for clinical trial design and staging update from the ISCL, USCLC, and EORTC. Blood. 2021; 140: 419 - 437.
dc.identifier.citedreferenceVermeer MH, Moins-Teisserenc H, Bagot M, Quaglino P, Whittaker S. Flow cytometry for the assessment of blood tumour burden in cutaneous T-cell lymphoma: towards a standardized approach. Br J Dermatol. 2022; 187: 21 - 28.
dc.identifier.citedreferenceBahler DW, Hartung L, Hill S, Bowen GM, Vonderheid EC. CD158k/KIR3DL2 is a useful marker for identifying neoplastic T-cells in Sezary syndrome by flow cytometry. Cytometry B Clin Cytom. 2008; 74: 156 - 162.
dc.identifier.citedreferencePoszepczynska-Guigne E, Schiavon V, D’Incan M, et al. CD158k/KIR3DL2 is a new phenotypic marker of Sezary cells: relevance for the diagnosis and follow-up of Sezary syndrome. J Invest Dermatol. 2004; 122: 820 - 823.
dc.identifier.citedreferenceKlemke CD, Brade J, Weckesser S, et al. The diagnosis of Sezary syndrome on peripheral blood by flow cytometry requires the use of multiple markers. Br J Dermatol. 2008; 159: 871 - 880.
dc.identifier.citedreferenceMorice WG, Kimlinger T, Katzmann JA, et al. Flow cytometric assessment of TCR-Vbeta expression in the evaluation of peripheral blood involvement by T-cell lymphoproliferative disorders: a comparison with conventional T-cell immunophenotyping and molecular genetic techniques. Am J Clin Pathol. 2004; 121: 373 - 383.
dc.identifier.citedreferenceSchwab C, Willers J, Niederer E, et al. The use of anti-T-cell receptor-Vbeta antibodies for the estimation of treatment success and phenotypic characterization of clonal T-cell populations in cutaneous T-cell lymphomas. Br J Haematol. 2002; 118: 1019 - 1026.
dc.identifier.citedreferenceClark RA, Shackelton JB, Watanabe R, et al. High-scatter T cells: a reliable biomarker for malignant T cells in cutaneous T-cell lymphoma. Blood. 2011; 117: 1966 - 1976.
dc.identifier.citedreferenceHorna P, Otteson GE, Shi M, Jevremovic D, Yuan J, Olteanu H. Flow cytometric evaluation of surface and cytoplasmic TRBC1 expression in the differential diagnosis of immature T-cell proliferations. Am J Clin Pathol. 2022; 157: 64 - 72.
dc.identifier.citedreferenceHorna P, Shi M, Jevremovic D, Craig FE, Comfere NI, Olteanu H. Utility of TRBC1 expression in the diagnosis of peripheral blood involvement by cutaneous T-cell lymphoma. J Invest Dermatol. 2021; 141 ( 821–829 ): e822.
dc.identifier.citedreferenceHorna P, Shi M, Olteanu H, Johansson U. Emerging role of T-cell receptor constant beta Chain-1 (TRBC1) expression in the flow Cytometric diagnosis of T-cell malignancies. Int J Mol Sci. 2021; 22: 1817.
dc.identifier.citedreferenceWang L, Rocas D, Dalle S, et al. Primary cutaneous peripheral T-cell lymphomas with a T follicular helper phenotype: an integrative clinical, pathological, and molecular case series study. Br J Dermatol. 2022 (online ahead of print).
dc.identifier.citedreferenceWilcox RA. Cutaneous T-cell lymphoma: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol. 2011; 86: 928 - 948.
dc.identifier.citedreferenceOlsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of cancer (EORTC). Blood. 2007; 110: 1713 - 1722.
dc.identifier.citedreferenceScheffer E, Meijer CJ, Van Vloten WA. Dermatopathic lymphadenopathy and lymph node involvement in mycosis fungoides. Cancer. 1980; 45: 137 - 148.
dc.identifier.citedreferenceSausville EA, Worsham GF, Matthews MJ, et al. Histologic assessment of lymph nodes in mycosis fungoides/Sezary syndrome (cutaneous T-cell lymphoma): clinical correlations and prognostic import of a new classification system. Hum Pathol. 1985; 16: 1098 - 1109.
dc.identifier.citedreferenceClendenning WE, Rappaport HW. Report of the Committee on pathology of cutaneous T cell lymphomas. Cancer Treat Rep. 1979; 63: 719 - 724.
dc.identifier.citedreferenceHodak E, Sherman S, Papadavid E, et al. Cutaneous lymphoma international consortium i. should we be imaging lymph nodes at initial diagnosis of early-stage mycosis fungoides? Results from the PROspective cutaneous lymphoma international prognostic index (PROCLIPI) international study. Br J Dermatol. 2021; 184: 524 - 531.
dc.identifier.citedreferenceWillemze R, Hodak E, Zinzani PL, Specht L, Ladetto M, Committee EG. Primary cutaneous lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018; 29: iv30 - iv40.
dc.identifier.citedreferenceFraser-Andrews EA, Mitchell T, Ferreira S, et al. Molecular staging of lymph nodes from 60 patients with mycosis fungoides and Sezary syndrome: correlation with histopathology and outcome suggests prognostic relevance in mycosis fungoides. Br J Dermatol. 2006; 155: 756 - 762.
dc.identifier.citedreferenceAssaf C, Hummel M, Steinhoff M, et al. Early TCR-beta and TCR-gamma PCR detection of T-cell clonality indicates minimal tumor disease in lymph nodes of cutaneous T-cell lymphoma: diagnostic and prognostic implications. Blood. 2005; 105: 503 - 510.
dc.identifier.citedreferenceScarisbrick JJ, Whittaker S, Evans AV, et al. Prognostic significance of tumor burden in the blood of patients with erythrodermic primary cutaneous T-cell lymphoma. Blood. 2001; 97: 624 - 630.
dc.identifier.citedreferenceFraser-Andrews EA, Woolford AJ, Russell-Jones R, Seed PT, Whittaker SJ. Detection of a peripheral blood T cell clone is an independent prognostic marker in mycosis fungoides. J Invest Dermatol. 2000; 114: 117 - 121.
dc.identifier.citedreferenceMourad A, Gniadecki R. Overall survival in mycosis Fungoides: a systematic review and meta-analysis. J Invest Dermatol. 2020; 140 ( 495–497 ): e495.
dc.identifier.citedreferenceBenton EC, Crichton S, Talpur R, et al. A cutaneous lymphoma international prognostic index (CLIPi) for mycosis fungoides and Sezary syndrome. Eur J Cancer. 2013; 49: 2859 - 2868.
dc.identifier.citedreferenceScarisbrick JJ, Prince HM, Vermeer MH, et al. Cutaneous lymphoma international consortium study of outcome in advanced stages of mycosis Fungoides and Sezary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015; 33: 3766 - 3773.
dc.identifier.citedreferenceVergier B, de Muret A, Beylot-Barry M, et al. Transformation of Mycosis Fungoides: clinicopathological and prognostic features of 45 cases. French Study Group of Cutaneious Lymphomas. Blood. 2000; 95: 2212 - 2218.
dc.identifier.citedreferenceGreer JP, Salhany KE, Cousar JB, et al. Clinical features associated with transformation of cerebriform T-cell lymphoma to a large cell process. Hematol Oncol. 1990; 8: 215 - 227.
dc.identifier.citedreferenceSalhany KE, Cousar JB, Greer JP, Casey TT, Fields JP, Collins RD. Transformation of cutaneous T cell lymphoma to large cell lymphoma. A clinicopathologic and immunologic study. Am J Pathol. 1988; 132: 265 - 277.
dc.identifier.citedreferenceDiamandidou E, Colome M, Fayad L, Duvic M, Kurzrock R. Prognostic factor analysis in mycosis fungoides/Sezary syndrome. J Am Acad Dermatol. 1999; 40: 914 - 924.
dc.identifier.citedreferenceDiamandidou E, Colome-Grimmer M, Fayad L, Duvic M, Kurzrock R. Transformation of mycosis fungoides/Sezary syndrome: clinical characteristics and prognosis. Blood. 1998; 92: 1150 - 1159.
dc.identifier.citedreferenceCharli-Joseph Y, Kashani-Sabet M, McCalmont TH, et al. Association of a proposed new staging system for folliculotropic mycosis fungoides with prognostic variables in a US cohort. JAMA Dermatol. 2021; 157: 157 - 165.
dc.identifier.citedreferencevan Santen S, Roach RE, van Doorn R, et al. Clinical staging and prognostic factors in folliculotropic mycosis fungoides. JAMA Dermatol. 2016; 152: 992 - 1000.
dc.identifier.citedreferenceKim YH, Willemze R, Pimpinelli N, et al. TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of cancer (EORTC). Blood. 2007; 110: 479 - 484.
dc.identifier.citedreferenceKaye FJ, Bunn PA Jr, Steinberg SM, et al. A randomized trial comparing combination electron-beam radiation and chemotherapy with topical therapy in the initial treatment of mycosis fungoides. N Engl J Med. 1989; 321: 1784 - 1790.
dc.identifier.citedreferenceQuaglino P, Prince HM, Cowan R, et al. Treatment of early-stage mycosis fungoides: results from the PROspective cutaneous lymphoma international prognostic index (PROCLIPI) study. Br J Dermatol. 2021; 184: 722 - 730.
dc.identifier.citedreferenceHughes CF, Khot A, McCormack C, et al. Lack of durable disease control with chemotherapy for mycosis fungoides and Sezary syndrome: a comparative study of systemic therapy. Blood. 2015; 125: 71 - 81.
dc.identifier.citedreferenceHanel W, Briski R, Ross CW, et al. A retrospective comparative outcome analysis following systemic therapy in mycosis fungoides and Sezary syndrome. Am J Hematol. 2016; 91: E491 - E495.
dc.identifier.citedreferenceTrautinger F, Knobler R, Willemze R, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome. Eur J Cancer. 2006; 42: 1014 - 1030.
dc.identifier.citedreferenceLansigan F, Foss FM. Current and emerging treatment strategies for cutaneous T-cell lymphoma. Drugs. 2010; 70: 273 - 286.
dc.identifier.citedreferenceHorwitz SM, Olsen EA, Duvic M, Porcu P, Kim YH. Review of the treatment of mycosis fungoides and sezary syndrome: a stage-based approach. J Natl Compr Cancer Netw. 2008; 6: 436 - 442.
dc.identifier.citedreferencePrince HM, Whittaker S, Hoppe RT. How I treat mycosis fungoides and Sezary syndrome. Blood. 2009; 114: 4337 - 4353.
dc.identifier.citedreferenceWhittaker SJ, Marsden JR, Spittle M, Russell JR. Joint British Association of Dermatologists and U.K. cutaneous lymphoma group guidelines for the management of primary cutaneous T-cell lymphomas. Br J Dermatol. 2003; 149: 1095 - 1107.
dc.identifier.citedreferenceJones GW, Kacinski BM, Wilson LD, et al. Total skin electron radiation in the management of mycosis fungoides: consensus of the European Organization for Research and Treatment of cancer (EORTC) cutaneous lymphoma project group. J Am Acad Dermatol. 2002; 47: 364 - 370.
dc.identifier.citedreferenceZackheim HS, Kashani-Sabet M, Amin S. Topical corticosteroids for mycosis fungoides. Experience in 79 patients. Arch Dermatol. 1998; 134: 949 - 954.
dc.identifier.citedreferenceDemierre MF, Kim YH, Zackheim HS. Prognosis, clinical outcomes and quality of life issues in cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 2003; 17: 1485 - 1507.
dc.identifier.citedreferenceKim EJ, Guitart J, Querfeld C, et al. The PROVe study: US real-world experience with Chlormethine/Mechlorethamine gel in combination with other therapies for patients with mycosis Fungoides cutaneous T-cell lymphoma. Am J Clin Dermatol. 2021; 22: 407 - 414.
dc.identifier.citedreferenceLessin SR, Duvic M, Guitart J, et al. Topical chemotherapy in cutaneous T-cell lymphoma: positive results of a randomized, controlled, multicenter trial testing the efficacy and safety of a novel mechlorethamine, 0.02%, gel in mycosis fungoides. JAMA Dermatol. 2013; 149: 25 - 32.
dc.identifier.citedreferenceBreneman D, Duvic M, Kuzel T, Yocum R, Truglia J, Stevens VJ. Phase 1 and 2 trial of bexarotene gel for skin-directed treatment of patients with cutaneous T-cell lymphoma. Arch Dermatol. 2002; 138: 325 - 332.
dc.identifier.citedreferenceHuen AO, Rook AH. Toll receptor agonist therapy of skin cancer and cutaneous T-cell lymphoma. Curr Opin Oncol. 2014; 26: 237 - 244.
dc.identifier.citedreferenceShipman AR, Scarisbrick J. New treatment options for mycosis Fungoides. Indian J Dermatol. 2016; 61: 119.
dc.identifier.citedreferenceRook AH, Gelfand JM, Wysocka M, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015; 126: 1452 - 1461.
dc.identifier.citedreferenceGathers RC, Scherschun L, Malick F, Fivenson DP, Lim HW. Narrowband UVB phototherapy for early-stage mycosis fungoides. J Am Acad Dermatol. 2002; 47: 191 - 197.
dc.identifier.citedreferenceOlsen EA, Hodak E, Anderson T, et al. Guidelines for phototherapy of mycosis fungoides and Sezary syndrome: a consensus statement of the United States cutaneous lymphoma consortium. J Am Acad Dermatol. 2016; 74: 27 - 58.
dc.identifier.citedreferenceFong S, Hong EK, Khodadoust MS, et al. Low-dose Total skin electron beam therapy combined with Mogamulizumab for refractory mycosis Fungoides and Sezary syndrome. Adv Radiat Oncol. 2021; 6: 100629.
dc.identifier.citedreferenceSpecht L, Dabaja B, Illidge T, Wilson LD, Hoppe RT. International lymphoma radiation oncology G. modern radiation therapy for primary cutaneous lymphomas: field and dose guidelines from the international lymphoma radiation oncology group. Int J Radiat Oncol Biol Phys. 2015; 92: 32 - 39.
dc.identifier.citedreferenceHoppe RT, Harrison C, Tavallaee M, et al. Low-dose total skin electron beam therapy as an effective modality to reduce disease burden in patients with mycosis fungoides: results of a pooled analysis from 3 phase-II clinical trials. J Am Acad Dermatol. 2015; 72: 286 - 292.
dc.identifier.citedreferenceWilcox RA. Cutaneous T-cell lymphoma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014; 89: 837 - 851.
dc.identifier.citedreferenceKempf W, Kettelhack N, Duvic M, Burg G. Topical and systemic retinoid therapy for cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 2003; 17: 1405 - 1419.
dc.identifier.citedreferenceZhang C, Duvic M. Retinoids: therapeutic applications and mechanisms of action in cutaneous T-cell lymphoma. Dermatol Ther. 2003; 16: 322 - 330.
dc.identifier.citedreferenceNieto-Rementeria N, Perez-Yarza G, Boyano MD, et al. Bexarotene activates the p53/p73 pathway in human cutaneous T-cell lymphoma. Br J Dermatol. 2009; 160: 519 - 526.
dc.identifier.citedreferenceZhang C, Hazarika P, Ni X, Weidner DA, Duvic M. Induction of apoptosis by bexarotene in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. Clin Cancer Res. 2002; 8: 1234 - 1240.
dc.identifier.citedreferenceDuvic M, Hymes K, Heald P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001; 19: 2456 - 2471.
dc.identifier.citedreferenceAbbott RA, Whittaker SJ, Morris SL, et al. Bexarotene therapy for mycosis fungoides and Sezary syndrome. Br J Dermatol. 2009; 160: 1299 - 1307.
dc.identifier.citedreferenceAssaf C, Bagot M, Dummer R, et al. Minimizing adverse side-effects of oral bexarotene in cutaneous T-cell lymphoma: an expert opinion. Br J Dermatol. 2006; 155: 261 - 266.
dc.identifier.citedreferenceGniadecki R, Assaf C, Bagot M, et al. The optimal use of bexarotene in cutaneous T-cell lymphoma. Br J Dermatol. 2007; 157: 433 - 440.
dc.identifier.citedreferenceScarisbrick JJ, Morris S, Azurdia R, et al. U.K. Consensus statement on safe clinical prescribing of bexarotene for patients with cutaneous T-cell lymphoma. Br J Dermatol. 2013; 168: 192 - 200.
dc.identifier.citedreferenceHuber MA, Kunzi-Rapp K, Staib G, Scharffetter-Kochanek K. Management of refractory early-stage cutaneous T-cell lymphoma (mycosis fungoides) with a combination of oral bexarotene and psoralen plus ultraviolet bath therapy. J Am Acad Dermatol. 2004; 50: 475 - 476.
dc.identifier.citedreferenceSchrump DS. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: mechanisms and potential clinical implications. Clin Cancer Res. 2009; 15: 3947 - 3957.
dc.identifier.citedreferenceLemoine M, Younes A. Histone deacetylase inhibitors in the treatment of lymphoma. Discov Med. 2010; 10: 462 - 470.
dc.identifier.citedreferenceGui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A. 2004; 101: 1241 - 1246.
dc.identifier.citedreferenceRichon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000; 97: 10014 - 10019.
dc.identifier.citedreferenceSandor V, Senderowicz A, Mertins S, et al. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer. 2000; 83: 817 - 825.
dc.identifier.citedreferenceZhang C, Richon V, Ni X, Talpur R, Duvic M. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol. 2005; 125: 1045 - 1052.
dc.identifier.citedreferenceShao W, Growney JD, Feng Y, et al. Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T-cell lymphoma models: defining molecular mechanisms of resistance. Int J Cancer. 2010; 127: 2199 - 2208.
dc.identifier.citedreferenceTang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008; 133: 612 - 626.
dc.identifier.citedreferenceZhao Y, Lu S, Wu L, et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol. 2006; 26: 2782 - 2790.
dc.identifier.citedreferenceDai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol. 2005; 25: 5429 - 5444.
dc.identifier.citedreferenceZhang XD, Gillespie SK, Borrow JM, Hersey P. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther. 2004; 3: 425 - 435.
dc.identifier.citedreferenceKim SH, Jeong JW, Park JA, et al. Regulation of the HIF-1alpha stability by histone deacetylases. Oncol Rep. 2007; 17: 647 - 651.
dc.identifier.citedreferenceHeider U, Kaiser M, Sterz J, et al. Histone deacetylase inhibitors reduce VEGF production and induce growth suppression and apoptosis in human mantle cell lymphoma. Eur J Haematol. 2006; 76: 42 - 50.
dc.identifier.citedreferenceCatley L, Weisberg E, Kiziltepe T, et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006; 108: 3441 - 3449.
dc.identifier.citedreferenceMunshi A, Kurland JF, Nishikawa T, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res. 2005; 11: 4912 - 4922.
dc.identifier.citedreferenceQu K, Zaba LC, Satpathy AT, et al. Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell. 2017; 32 ( 27–41 ): e24.
dc.identifier.citedreferenceGloghini A, Buglio D, Khaskhely NM, et al. Expression of histone deacetylases in lymphoma: implication for the development of selective inhibitors. Br J Haematol. 2009; 147: 515 - 525.
dc.identifier.citedreferencePrince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res. 2009; 15: 3958 - 3969.
dc.identifier.citedreferenceDuvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007; 109: 31 - 39.
dc.identifier.citedreferenceOlsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007; 25: 3109 - 3115.
dc.identifier.citedreferenceKim YH, Bagot M, Pinter-Brown L, et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018; 19: 1192 - 1204.
dc.identifier.citedreferenceKim E, Rook A, Kim Y, et al. Romidepsin activity in all three disease compartments (skin, blood, lymph nodes) in patients with cutaneous T-cell lymphoma (CTCL). J Clin Oncol. 2010; 28: 8047.
dc.identifier.citedreferenceDuvic M, Olsen EA, Breneman D, et al. Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2009; 9: 412 - 416.
dc.identifier.citedreferenceSager PT, Balser B, Wolfson J, et al. Electrocardiographic effects of class 1 selective histone deacetylase inhibitor romidepsin. Cancer Med. 2015; 4: 1178 - 1185.
dc.identifier.citedreferenceWhittaker SJ, Demierre MF, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010; 28: 4485 - 4491.
dc.identifier.citedreferencePiekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009; 27: 5410 - 5417.
dc.identifier.citedreferencePiekarz RL, Frye AR, Wright JJ, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006; 12: 3762 - 3773.
dc.identifier.citedreferenceMartinez-Escala ME, Kuzel TM, Kaplan JB, et al. Durable responses with maintenance dose-sparing regimens of Romidepsin in cutaneous T-cell lymphoma. JAMA Oncol. 2016; 2: 790 - 793.
dc.identifier.citedreferenceEllis L, Pan Y, Smyth GK, et al. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res. 2008; 14: 4500 - 4510.
dc.identifier.citedreferencePohlman B, Advani RH, Duvic M, et al. Final results of a phase II trial of Belinostat (PXD101) in patients with recurrent or refractory peripheral or cutaneous T-cell lymphoma. Blood. 2009; 114: abstract 920.
dc.identifier.citedreferenceFantin VR, Loboda A, Paweletz CP, et al. Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res. 2008; 68: 3785 - 3794.
dc.identifier.citedreferenceRobey RW, Zhan Z, Piekarz RL, Kayastha GL, Fojo T, Bates SE. Increased MDR1 expression in normal and malignant peripheral blood mononuclear cells obtained from patients receiving depsipeptide (FR901228, FK228, NSC630176). Clin Cancer Res. 2006; 12: 1547 - 1555.
dc.identifier.citedreferenceKarpova MB, Gunz D, Okoniewski MJ, et al. Transcriptome adaptation caused by vorinostat/bexarotene combination therapy in advanced cutaneous T-cell lymphoma. J Clin Oncol. 2010; 28: 8050.
dc.identifier.citedreferenceKhan O, Fotheringham S, Wood V, et al. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc Natl Acad Sci U S A. 2010; 107: 6532 - 6537.
dc.identifier.citedreferenceChakraborty AR, Robey RW, Luchenko VL, et al. MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor. Blood. 2013; 121: 4115 - 4125.
dc.identifier.citedreferenceHeider U, Rademacher J, Lamottke B, et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T cell lymphoma. Eur J Haematol. 2009; 82: 440 - 449.
dc.identifier.citedreferenceDummer R, Hymes K, Sterry W, et al. Vorinostat in combination with bexarotene in advanced cutaneous T-cell lymphoma: a phase I study. J Clin Oncol. 2009; 27: 8572.
dc.identifier.citedreferenceOlsen EA, Rosen ST, Vollmer RT, et al. Interferon alfa-2a in the treatment of cutaneous T cell lymphoma. J Am Acad Dermatol. 1989; 20: 395 - 407.
dc.identifier.citedreferenceSun WH, Pabon C, Alsayed Y, et al. Interferon-alpha resistance in a cutaneous T-cell lymphoma cell line is associated with lack of STAT1 expression. Blood. 1998; 91: 570 - 576.
dc.identifier.citedreferenceBunn PA Jr, Foon KA, Ihde DC, et al. Recombinant leukocyte a interferon: an active agent in advanced cutaneous T-cell lymphomas. Ann Intern Med. 1984; 101: 484 - 487.
dc.identifier.citedreferenceJumbou O, N’Guyen JM, Tessier MH, Legoux B, Dreno B. Long-term follow-up in 51 patients with mycosis fungoides and Sezary syndrome treated by interferon-alfa. Br J Dermatol. 1999; 140: 427 - 431.
dc.identifier.citedreferenceKaplan EH, Rosen ST, Norris DB, Roenigk HH Jr, Saks SR, Bunn PA Jr. Phase II study of recombinant human interferon gamma for treatment of cutaneous T-cell lymphoma. J Natl Cancer Inst. 1990; 82: 208 - 212.
dc.identifier.citedreferencePolansky M, Talpur R, Daulat S, Hosing C, Dabaja B, Duvic M. Long-term complete responses to combination therapies and allogeneic stem cell transplants in patients with Sezary syndrome. Clin Lymphoma Myeloma Leuk. 2015; 15: e83 - e93.
dc.identifier.citedreferenceOlsen EA, Bunn PA. Interferon in the treatment of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 1995; 9: 1089 - 1107.
dc.identifier.citedreferenceKuzel TM, Gilyon K, Springer E, et al. Interferon alfa-2a combined with phototherapy in the treatment of cutaneous T-cell lymphoma. J Natl Cancer Inst. 1990; 82: 203 - 207.
dc.identifier.citedreferenceStraus DJ, Duvic M, Kuzel T, et al. Results of a phase II trial of oral bexarotene (Targretin) combined with interferon alfa-2b (intron-a) for patients with cutaneous T-cell lymphoma. Cancer. 2007; 109: 1799 - 1803.
dc.identifier.citedreferenceDippel E, Schrag H, Goerdt S, Orfanos CE. Extracorporeal photopheresis and interferon-alpha in advanced cutaneous T-cell lymphoma. Lancet. 1997; 350: 32 - 33.
dc.identifier.citedreferenceFoss FM, Ihde DC, Breneman DL, et al. Phase II study of pentostatin and intermittent high-dose recombinant interferon alfa-2a in advanced mycosis fungoides/Sezary syndrome. J Clin Oncol. 1992; 10: 1907 - 1913.
dc.identifier.citedreferenceFritz TM, Kleinhans M, Nestle FO, Burg G, Dummer R. Combination treatment with extracorporeal photopheresis, interferon alfa and interleukin-2 in a patient with the Sezary syndrome. Br J Dermatol. 1999; 140: 1144 - 1147.
dc.identifier.citedreferenceZachariae H, Thestrup-Pedersen K. Interferon alpha and etretinate combination treatment of cutaneous T-cell lymphoma. J Invest Dermatol. 1990; 95: 206 S - 208 S.
dc.identifier.citedreferencePapa G, Tura S, Mandelli F, et al. Is interferon alpha in cutaneous T-cell lymphoma a treatment of choice? Br J Haematol. 1991; 79 ( Suppl 1 ): 48 - 51.
dc.identifier.citedreferenceRupoli S, Barulli S, Guiducci B, et al. Low dose Interferon-alpha2b combined with PUVA is an effective treatment of early stage mycosis fungoides: results of a Multicenter Study. Cutaneous-T Cell Lymphoma Multicenter Study Group. Haematologica. 1999; 84: 809 - 813.
dc.identifier.citedreferenceKuzel TM, Roenigk HH Jr, Samuelson E, et al. Effectiveness of interferon alfa-2a combined with phototherapy for mycosis fungoides and the Sezary syndrome. J Clin Oncol. 1995; 13: 257 - 263.
dc.identifier.citedreferenceRoenigk HH Jr, Kuzel TM, Skoutelis AP, et al. Photochemotherapy alone or combined with interferon alpha-2a in the treatment of cutaneous T-cell lymphoma. J Invest Dermatol. 1990; 95: 198 S - 205 S.
dc.identifier.citedreferenceChiarion-Sileni V, Bononi A, Fornasa CV, et al. Phase II trial of interferon-alpha-2a plus psolaren with ultraviolet light a in patients with cutaneous T-cell lymphoma. Cancer. 2002; 95: 569 - 575.
dc.identifier.citedreferenceFoss FM, Ihde DC, Linnoila IR, et al. Phase II trial of fludarabine phosphate and interferon alfa-2a in advanced mycosis fungoides/Sezary syndrome. J Clin Oncol. 1994; 12: 2051 - 2059.
dc.identifier.citedreferenceSuchin KR, Cucchiara AJ, Gottleib SL, et al. Treatment of cutaneous T-cell lymphoma with combined immunomodulatory therapy: a 14-year experience at a single institution. Arch Dermatol. 2002; 138: 1054 - 1060.
dc.identifier.citedreferenceBladon J, Taylor PC. Lymphocytes treated by extracorporeal photopheresis demonstrate a drop in the Bcl-2/Bax ratio: a possible mechanism involved in extracorporeal-photopheresis-induced apoptosis. Dermatology. 2002; 204: 104 - 107.
dc.identifier.citedreferenceBladon J, Taylor PC. Extracorporeal photopheresis: a focus on apoptosis and cytokines. J Dermatol Sci. 2006; 43: 85 - 94.
dc.identifier.citedreferenceOsella-Abate S, Zaccagna A, Savoia P, Quaglino P, Salomone B, Bernengo MG. Expression of apoptosis markers on peripheral blood lymphocytes from patients with cutaneous T-cell lymphoma during extracorporeal photochemotherapy. J Am Acad Dermatol. 2001; 44: 40 - 47.
dc.identifier.citedreferenceBerger C, Hoffmann K, Vasquez JG, et al. Rapid generation of maturationally synchronized human dendritic cells: contribution to the clinical efficacy of extracorporeal photochemotherapy. Blood. 2010; 116: 4838 - 4847.
dc.identifier.citedreferenceBerger CL, Xu AL, Hanlon D, et al. Induction of human tumor-loaded dendritic cells. Int J Cancer. 2001; 91: 438 - 447.
dc.identifier.citedreferenceKnobler R, Jantschitsch C. Extracorporeal photochemoimmunotherapy in cutaneous T-cell lymphoma. Transfus Apher Sci. 2003; 28: 81 - 89.
dc.identifier.citedreferenceZic JA. The treatment of cutaneous T-cell lymphoma with photopheresis. Dermatol Ther. 2003; 16: 337 - 346.
dc.identifier.citedreferenceQuaglino P, Knobler R, Fierro MT, et al. Extracorporeal photopheresis for the treatment of erythrodermic cutaneous T-cell lymphoma: a single center clinical experience with long-term follow-up data and a brief overview of the literature. Int J Dermatol. 2013; 52: 1308 - 1318.
dc.identifier.citedreferenceKnobler R, Berlin G, Calzavara-Pinton P, et al. Guidelines on the use of extracorporeal photopheresis. J Eur Acad Dermatol Venereol. 2014; 28 ( Suppl 1 ): 1 - 37.
dc.identifier.citedreferenceSanford KW, Anderson J, Roseff S, McPherson RA. Iron deficiency anemia in patients undergoing extracorporeal Photopheresis for cutaneous T-cell lymphoma. Lab Med. 2019; 50: 29 - 33.
dc.identifier.citedreferenceTatsuno K, Yamazaki T, Hanlon D, et al. Extracorporeal photochemotherapy induces bona fide immunogenic cell death. Cell Death Dis. 2019; 10: 578.
dc.identifier.citedreferenceVentura A, Vassall A, Yurter A, et al. Novel protocol for generating physiologic immunogenic dendritic cells. J Vis Exp. 2019; 147.
dc.identifier.citedreferenceGottlieb SL, Wolfe JT, Fox FE, et al. Treatment of cutaneous T-cell lymphoma with extracorporeal photopheresis monotherapy and in combination with recombinant interferon alfa: a 10-year experience at a single institution. J Am Acad Dermatol. 1996; 35: 946 - 957.
dc.identifier.citedreferenceHeald P, Rook A, Perez M, et al. Treatment of erythrodermic cutaneous T-cell lymphoma with extracorporeal photochemotherapy. J Am Acad Dermatol. 1992; 27: 427 - 433.
dc.identifier.citedreferenceZic JA, Stricklin GP, Greer JP, et al. Long-term follow-up of patients with cutaneous T-cell lymphoma treated with extracorporeal photochemotherapy. J Am Acad Dermatol. 1996; 35: 935 - 945.
dc.identifier.citedreferenceGao C, McCormack C, van der Weyden C, et al. Prolonged survival with the early use of a novel extracorporeal photopheresis regimen in patients with Sezary syndrome. Blood. 2019; 134: 1346 - 1350.
dc.identifier.citedreferenceWilcox RA. ECP in the spotLIGHT. Blood. 2019; 134: 1275 - 1277.
dc.identifier.citedreferenceWilson LD, Jones GW, Kim D, et al. Experience with total skin electron beam therapy in combination with extracorporeal photopheresis in the management of patients with erythrodermic (T4) mycosis fungoides. J Am Acad Dermatol. 2000; 43: 54 - 60.
dc.identifier.citedreferenceWilson LD, Licata AL, Braverman IM, et al. Systemic chemotherapy and extracorporeal photochemotherapy for T3 and T4 cutaneous T-cell lymphoma patients who have achieved a complete response to total skin electron beam therapy. Int J Radiat Oncol Biol Phys. 1995; 32: 987 - 995.
dc.identifier.citedreferenceTsirigotis P, Pappa V, Papageorgiou S, et al. Extracorporeal photopheresis in combination with bexarotene in the treatment of mycosis fungoides and Sezary syndrome. Br J Dermatol. 2007; 156: 1379 - 1381.
dc.identifier.citedreferenceGinaldi L, De Martinis M, Matutes E, et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res. 1998; 22: 185 - 191.
dc.identifier.citedreferenceLundin J, Hagberg H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood. 2003; 101: 4267 - 4272.
dc.identifier.citedreferenceBernengo MG, Quaglino P, Comessatti A, et al. Low-dose intermittent alemtuzumab in the treatment of Sezary syndrome: clinical and immunologic findings in 14 patients. Haematologica. 2007; 92: 784 - 794.
dc.identifier.citedreferenceFisher DC, Tawa M, Walsh M, Clark RA, Kupper TS. Low-dose alemtuzumab is uniquely effective in refractory leukemic cutaneous T-cell lymphoma (L-CTCL). Blood. 2009; 114: 3748.
dc.identifier.citedreferenceThursky KA, Worth LJ, Seymour JF, Miles Prince H, Slavin MA. Spectrum of infection, risk and recommendations for prophylaxis and screening among patients with lymphoproliferative disorders treated with alemtuzumab*. Br J Haematol. 2006; 132: 3 - 12.
dc.identifier.citedreferenceEnblad G, Hagberg H, Erlanson M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood. 2004; 103: 2920 - 2924.
dc.identifier.citedreferenceGautschi O, Blumenthal N, Streit M, Solenthaler M, Hunziker T, Zenhausern R. Successful treatment of chemotherapy-refractory Sezary syndrome with alemtuzumab (Campath-1H). Eur J Haematol. 2004; 72: 61 - 63.
dc.identifier.citedreferenceKennedy GA, Seymour JF, Wolf M, et al. Treatment of patients with advanced mycosis fungoides and Sezary syndrome with alemtuzumab. Eur J Haematol. 2003; 71: 250 - 256.
dc.identifier.citedreferenceO’Mahony D, Morris JC, Moses L, et al. Phase I trial of Siplizumab in CD2-positive lymphoproliferative disease. Blood. 2005; 106: 3353.
dc.identifier.citedreferenceKim YH, Duvic M, Obitz E, et al. Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood. 2007; 109: 4655 - 4662.
dc.identifier.citedreferenceKreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin anti-tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol. 2000; 18: 1622 - 1636.
dc.identifier.citedreferenceSuzuki R. Dosing of a phase I study of KW-0761, an anti-CCR4 antibody, for adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010; 28: e404 - e405; author reply e406.
dc.identifier.citedreferenceYamamoto K, Utsunomiya A, Tobinai K, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010; 28: 1591 - 1598.
dc.identifier.citedreferenceDuvic M, Pinter-Brown L, Foss F, et al. Results of a phase 1/2 study for KW-0761, a monoclonal antibody directed against CC chemokine receptor type 4 (CCR4), In CTCL patients. Blood. 2010; 116: 285.
dc.identifier.citedreferenceFrankel AE, Woo JH, Ahn C, et al. Resimmune, an anti-CD3epsilon recombinant immunotoxin, induces durable remissions in patients with cutaneous T-cell lymphoma. Haematologica. 2015; 100: 794 - 800.
dc.identifier.citedreferenceOgura M, Ishida T, Hatake K, et al. Multicenter phase II study of Mogamulizumab (KW-0761), a defucosylated anti-CC chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol. 2014; 32: 1157 - 1163.
dc.identifier.citedreferenceNi X, Jorgensen JL, Goswami M, et al. Reduction of regulatory T cells by mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sezary syndrome. Clin Cancer Res. 2015; 21: 274 - 285.
dc.identifier.citedreferenceNi X, Langridge T, Duvic M. Depletion of regulatory T cells by targeting CC chemokine receptor type 4 with mogamulizumab. Onco Targets Ther. 2015; 4: e1011524.
dc.identifier.citedreferenceWilcox RA. Mogamulizumab: 2 birds, 1 stone. Blood. 2015; 125: 1847 - 1848.
dc.identifier.citedreferenceHirotsu KE, Neal TM, Khodadoust MS, et al. Clinical characterization of Mogamulizumab-associated rash during treatment of mycosis fungoides or Sezary syndrome. JAMA Dermatol. 2021; 157: 700 - 707.
dc.identifier.citedreferencede Masson A, Darbord D, Dobos G, et al. Macrophage-derived CXCL9 and CXCL11, T-cell skin homing, and disease control in mogamulizumab-treated CTCL patients. Blood. 2022; 139: 1820 - 1832.
dc.identifier.citedreferenceDuvic M, Tetzlaff MT, Gangar P, Clos AL, Sui D, Talpur R. Results of a phase II trial of Brentuximab Vedotin for CD30+ cutaneous T-cell lymphoma and Lymphomatoid papulosis. J Clin Oncol. 2015; 33: 3759 - 3765.
dc.identifier.citedreferenceKim YH, Tavallaee M, Sundram U, et al. Phase II investigator-initiated study of Brentuximab Vedotin in mycosis fungoides and Sezary syndrome with variable CD30 expression level: a multi-institution collaborative project. J Clin Oncol. 2015; 33: 3750 - 3758.
dc.identifier.citedreferencePrince HM, Kim YH, Horwitz SM, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017; 390: 555 - 566.
dc.identifier.citedreferenceKim YH, Prince HM, Whittaker S, et al. Response to brentuximab vedotin versus physician’s choice by CD30 expression and large cell transformation status in patients with mycosis fungoides: an ALCANZA sub-analysis. Eur J Cancer. 2021; 148: 411 - 421.
dc.identifier.citedreferenceHorwitz SM, Scarisbrick JJ, Dummer R, et al. Randomized phase 3 ALCANZA study of brentuximab vedotin vs physician’s choice in cutaneous T-cell lymphoma: final data. Blood Adv. 2021; 5: 5098 - 5106.
dc.identifier.citedreferenceWilcox RA, Feldman AL, Wada DA, et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood. 2009; 114: 2149 - 2158.
dc.identifier.citedreferencePhillips T, Devata S, Wilcox RA. Challenges and opportunities for checkpoint blockade in T-cell lymphoproliferative disorders. J Immunother Cancer. 2016; 4: 95.
dc.identifier.citedreferenceLesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016; 34: 2698 - 2704.
dc.identifier.citedreferenceKhodadoust MS, Rook AH, Porcu P, et al. Pembrolizumab in relapsed and refractory mycosis fungoides and Sezary syndrome: a multicenter phase II study. J Clin Oncol. 2020; 38: 20 - 28.
dc.identifier.citedreferenceSong X, Chang S, Seminario-Vidal L, et al. Genomic and single-cell landscape reveals novel drivers and therapeutic vulnerabilities of transformed cutaneous T-cell lymphoma. Cancer Discov. 2022; 12: 1294 - 1313.
dc.identifier.citedreferenceBeygi S, Fernandez-Pol S, Duran G, et al. Pembrolizumab in mycosis fungoides with PD-L1 structural variants. Blood Adv. 2021; 5: 771 - 774.
dc.identifier.citedreferenceQuaglino P, Maule M, Prince HM, et al. Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the cutaneous lymphoma international consortium. Ann Oncol. 2017; 28: 2517 - 2525.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.