Impacts of Gravity Waves in the Martian Thermosphere: The Mars Global Ionosphere-Thermosphere Model Coupled With a Whole Atmosphere Gravity Wave Scheme
dc.contributor.author | Roeten, K. J. | |
dc.contributor.author | Bougher, S. W. | |
dc.contributor.author | Yiğit, E. | |
dc.contributor.author | Medvedev, A. S. | |
dc.contributor.author | Benna, M. | |
dc.contributor.author | Elrod, M. K. | |
dc.date.accessioned | 2023-01-11T16:22:24Z | |
dc.date.available | 2024-01-11 11:22:21 | en |
dc.date.available | 2023-01-11T16:22:24Z | |
dc.date.issued | 2022-12 | |
dc.identifier.citation | Roeten, K. J.; Bougher, S. W.; Yiğit, E. ; Medvedev, A. S.; Benna, M.; Elrod, M. K. (2022). "Impacts of Gravity Waves in the Martian Thermosphere: The Mars Global Ionosphere- Thermosphere Model Coupled With a Whole Atmosphere Gravity Wave Scheme." Journal of Geophysical Research: Planets 127(12): n/a-n/a. | |
dc.identifier.issn | 2169-9097 | |
dc.identifier.issn | 2169-9100 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/175413 | |
dc.description.abstract | Gravity waves are a key mechanism that facilitates coupling between the lower and upper atmosphere of Mars. In order to better understand the mean, large-scale impacts of gravity waves on the thermosphere, a modern whole atmosphere, nonlinear, non-orographic gravity wave parameterization scheme has been incorporated into a three-dimensional ground-to-exosphere Mars general circulation model, the Mars Global Ionosphere-Thermosphere Model (M-GITM). M-GITM simulations utilizing the gravity wave parameterization indicate that significant gravity wave momentum is deposited in the thermosphere, especially within the altitude range of 90–170 km. This impacts the winds in the thermosphere; in particular, M-GITM simulations show a decrease in speed of the wind maximum in the summer hemisphere by over a factor of two. Gravity wave effects also impact the temperatures above 120 km in the model, producing a cooler simulated thermosphere at most latitudes. M-GITM results were also compared to upper atmospheric temperature and wind data sets from the MAVEN (Mars Atmosphere and Volatile Evolution) spacecraft. Some aspects of wind data-model comparisons improved once the gravity wave scheme was added to M-GITM; furthermore, a cooler temperature profile produced by these new M-GITM simulations for the MAVEN Deep Dip 2 observational campaign resulted in a closer data-model comparison, particularly above 180 km. Overall, these modeling results show that gravity waves play an important role for the energy and momentum budget of the Martian thermosphere.Plain Language SummaryAtmospheric gravity waves are an important physical process in the upper atmosphere of Mars. To better understand the average effects of gravity waves on the temperatures and winds above 100 km, a modern numerical scheme designed to represent the relevant physics has been added to a 3-D general circulation model, M-GITM (Mars Global Ionosphere-Thermosphere Model), which extends from the surface to about 250 km. Results from these M-GITM simulations show that in the upper atmosphere, the wind maximum in the summer hemisphere decreases in speed by over a factor of two once the effects of gravity waves are added to the model. Additionally, above 120 km, the model now produces a cooler upper atmosphere, on average. The new M-GITM results were also compared to select upper atmospheric temperature and wind data sets from the MAVEN (Mars Atmosphere and Volatile Evolution) spacecraft. Data-model comparisons in upper atmospheric wind speeds for a January 2017 observational campaign improve with the addition of gravity wave effects, as do data-model comparisons for upper atmospheric temperatures for a MAVEN Deep Dip campaign. Overall, these model results show that gravity waves can have significant impacts on the winds and temperature structure in the Martian upper atmosphere.Key PointsLarge-scale impacts of gravity waves in the thermosphere are examined using a modern gravity wave scheme in a Mars general circulation modelSignificant gravity wave momentum deposition is found in model simulations from 90 to 170 km altitudeGravity waves which propagate to the upper atmosphere of Mars can have an appreciable impact on thermospheric winds and temperatures | |
dc.publisher | Cambridge University Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | general circulation model | |
dc.subject.other | gravity waves | |
dc.subject.other | MAVEN | |
dc.subject.other | thermosphere | |
dc.subject.other | M-GITM | |
dc.subject.other | Mars | |
dc.title | Impacts of Gravity Waves in the Martian Thermosphere: The Mars Global Ionosphere-Thermosphere Model Coupled With a Whole Atmosphere Gravity Wave Scheme | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175413/1/jgre22076.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175413/2/jgre22076_am.pdf | |
dc.identifier.doi | 10.1029/2022JE007477 | |
dc.identifier.source | Journal of Geophysical Research: Planets | |
dc.identifier.citedreference | Shaposhnikov, D. S., Medvedev, A. S., Rodin, A. V., & Hartogh, P. ( 2019 ). Seasonal water “pump” in the atmosphere of Mars: Vertical transport to the thermosphere. Geophysical Research Letters, 46 ( 8 ), 4161 – 4169. https://doi.org/10.1029/2019GL082839 | |
dc.identifier.citedreference | Parish, H. F., Schubert, G., Hickey, M., & Walterscheid, R. L. ( 2009 ). Propagation of tropospheric gravity waves into the upper atmosphere of Mars. Icarus, 203 ( 1 ), 28 – 37. https://doi.org/10.1016/j.icarus.2009.04.031 | |
dc.identifier.citedreference | Ridley, A., Deng, Y., & Tòth, G. ( 2006 ). The global ionosphere-thermosphere model. Journal of Atmospheric and Solar-Terrestrial Physics, 68 ( 8 ), 839 – 864. https://doi.org/10.1016/j.jastp.2006.01.008 | |
dc.identifier.citedreference | Roeten, K. J., & Bougher, S. W. ( 2022 ). M-GITM datasets used for a modeling study of the mean impacts of subgrid-scale gravity waves on thermospheric velocities and temperatures at Mars [Dataset]. University of Michigan - Deep Blue Data. https://doi.org/10.7302/7hab-2340 | |
dc.identifier.citedreference | Roeten, K. J., Bougher, S. W., Benna, M., Mahaffy, P. R., Lee, Y., Pawlowski, D., et al. ( 2019 ). MAVEN/NGIMS thermospheric neutral wind observations: Interpretation using the M-GITM general circulation model. Journal of Geophysical Research: Planets, 124 ( 12 ), 3283 – 3303. https://doi.org/10.1029/2019JE005957 | |
dc.identifier.citedreference | Rohrbaugh, R., Nisbet, J., Bleuler, E., & Herman, J. ( 1979 ). The effect of energetically produced O 2 + ${mathrm{O}}_{2}^{+}$ on the ion temperatures of the Martian thermosphere. Journal of Geophysical Research, 84 ( A7 ), 3327 – 3338. https://doi.org/10.1029/JA084iA07p03327 | |
dc.identifier.citedreference | Sakib, M. N., & Yiğit, E. ( 2022 ). A brief overview of gravity wave retrieval techniques from observations. Frontiers in Astronomy and Space Science, 9, 824875. https://doi.org/10.3389/fspas.2022.824875 | |
dc.identifier.citedreference | Shaposhnikov, D. S., Medvedev, A. S., Rodin, A. V., Yiğit, E., & Hartogh, P. ( 2022 ). Martian dust storms and gravity waves: Disentangling water transport to the upper atmosphere. Journal of Geophysical Research: Planets, 127 ( 1 ), e2021JE007102. https://doi.org/10.1029/2021JE007102 | |
dc.identifier.citedreference | Siddle, A., Mueller-Wodarg, I., Stone, S., & Yelle, R. ( 2019 ). Global characteristics of gravity waves in the upper atmosphere of Mars as measured by MAVEN/NGIMS. Icarus, 333, 12 – 21. https://doi.org/10.1016/j.icarus.2019.05.021 | |
dc.identifier.citedreference | Snowden, D., Yelle, R.-V., Cui, J., Wahlund, J.-E., Edberg, N. J. T., & Agren, K. ( 2013 ). The thermal structure of Titan’s upper atmosphere: 1. Temperature profiles from Cassini INMS observations. Icarus, 226, 552 – 582. https://doi.org/10.1016/j.icarus.2013.06.006 | |
dc.identifier.citedreference | Starichenko, E. D., Belyaev, D. A., Medvedev, A. S., Fedorova, A. A., Korablev, O. I., Trokhimovskiy, A., et al. ( 2021 ). Gravity wave activity in the Martian atmosphere at altitudes 20–160 km from ACS/TGO occultation measurements. Journal of Geophysical Research: Planets, 126 ( 8 ), e2021JE006899. https://doi.org/10.1029/2021JE006899 | |
dc.identifier.citedreference | Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., & Mahaffy, P. R. ( 2018 ). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. Journal of Geophysical Research: Planets, 123 ( 11 ), 2842 – 2867. https://doi.org/10.1029/2018JE005559 | |
dc.identifier.citedreference | Terada, N., Leblanc, F., Nakagawa, H., Medvedev, A. S., Yiğit, E., Kuroda, T., et al. ( 2017 ). Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 2374 – 2397. https://doi.org/10.1002/2016JA023476 | |
dc.identifier.citedreference | Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., & Jakosky, B. M. ( 2017 ). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2748 – 2767. https://doi.org/10.1002/2016JA023512 | |
dc.identifier.citedreference | Tolson, R., Keating, G., Zurek, R., Bougher, S., Justus, C., & Fritts, D. ( 2007 ). Application of acclerometer data to atmospheric modeling during Mars aerobraking operations. Journal of Spacecraft and Rockets, 44 ( 6 ), 1172 – 1179. https://doi.org/10.2514/1.28472 | |
dc.identifier.citedreference | Vals, M., Spiga, A., Forget, F., Millour, E., Montabone, L., & Lott, F. ( 2019 ). Study of gravity waves distribution and propagation in the thermosphere of Mars based on MGS, ODY, MRO, and MAVEN density measurements. Planetary and Space Science, 178, 104708. https://doi.org/10.1016/j.pss.2019.104708 | |
dc.identifier.citedreference | Watanabe, S., & Miyahara, S. ( 2009 ). Quantification of the gravity wave forcing of the migrating diurnal tide in a gravity wave–resolving general circulation model. Journal of Geophysical Research, 114 ( D7 ), D07110. https://doi.org/10.1029/2008JD011218 | |
dc.identifier.citedreference | Yiğit, E., Aylward, A. D., & Medvedev, A. S. ( 2008 ). Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study. Journal of Geophysical Research, 113 ( D19 ), D19106. https://doi.org/10.1029/2008JD010135 | |
dc.identifier.citedreference | Yiğit, E., England, S. L., Liu, G., Medvedev, A. S., Mahaffy, P. R., Kuroda, T., & Jakosky, B. M. ( 2015 ). High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophysical Research Letters, 42 ( 21 ), 8993 – 9000. https://doi.org/10.1002/2015GL065307 | |
dc.identifier.citedreference | Yiğit, E., & Medvedev, A. S. ( 2009 ). Heating and cooling of the thermosphere by internal gravity waves. Geophysical Research Letters, 36 ( 14 ), L14807. https://doi.org/10.1029/2009GL038507 | |
dc.identifier.citedreference | Yiğit, E., & Medvedev, A. S. ( 2015 ). Internal wave coupling processes in Earth’s atmosphere. Advances in Space Research, 55 ( 5 ), 983 – 1003. https://doi.org/10.1016/j.asr.2014.11.020 | |
dc.identifier.citedreference | Yiğit, E., & Medvedev, A. S. ( 2019 ). Obscure waves in planetary atmospheres. Physics Today, 6, 40 – 46. https://doi.org/10.1063/PT.3.4226 | |
dc.identifier.citedreference | Yiğit, E., Medvedev, A. S., Aylward, A. D., Hartogh, P., & Harris, M. J. ( 2009 ). Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. Journal of Geophysical Research, 114 ( D7 ), D07101. https://doi.org/10.1029/2008JD011132 | |
dc.identifier.citedreference | Yiğit, E., Medvedev, A. S., Benna, M., & Jakosky, B. M. ( 2021 ). Dust storm-enhanced gravity wave activity in the Martian thermosphere observed by MAVEN and implication for atmospheric escape. Geophysical Research Letters, 48 ( 5 ), e2020GL092095. https://doi.org/10.1029/2020GL092095 | |
dc.identifier.citedreference | Yiğit, E., Medvedev, A. S., & Ern, M. ( 2021 ). Effects of latitude-dependent gravity wave source variations on the middle and upper atmosphere. Frontiers in Astronomy and Space Science, 7, 614018. https://doi.org/10.3389/fspas.2020.614018 | |
dc.identifier.citedreference | Yiğit, E., Medvedev, A. S., & Hartogh, P. ( 2018 ). Influence of gravity waves on the climatology of high-altitude Martian carbon dioxide ice clouds. Annales Geophysicae, 36 ( 6 ), 1631 – 1646. https://doi.org/10.5194/angeo-36-1631-2018 | |
dc.identifier.citedreference | Yiğit, E., Medvedev, A. S., & Hartogh, P. ( 2021 ). Variations of the Martian thermospheric gravity-wave activity during the recent solar minimum as observed by MAVEN. The Astrophysical Journal, 920 ( 2 ), 69. https://doi.org/10.3847/1538-4357/ac15fc | |
dc.identifier.citedreference | Zurek, R. W., Tolson, R. A., Bougher, S. W., Lugo, R. A., Baird, D. T., Bell, J. M., & Jakosky, B. M. ( 2017 ). Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 3798 – 3814. https://doi.org/10.1002/2016JA023641 | |
dc.identifier.citedreference | Ando, H., Imamura, T., Tsuda, T., Tellmann, S., Pätzold, M., & Häusler, B. ( 2015 ). Vertical wavenumber spectra of gravity waves in the venus atmosphere obtained from Venus Express radio occultation data: Evidence for saturation. Journal of the Atmospheric Sciences, 72 ( 6 ), 2318 – 2329. https://doi.org/10.1175/JAS-D-14-0315.1 | |
dc.identifier.citedreference | Benna, M., Bougher, S. W., Lee, Y., Roeten, K. J., Yiğit, E., Mahaffy, P. R., & Jakosky, B. M. ( 2019 ). Global circulation of Mars’ upper atmosphere. Science, 366 ( 6471 ), 1363 – 1366. https://doi.org/10.1126/science.aax1553 | |
dc.identifier.citedreference | Benna, M., & Lyness, E. ( 2014 ). MAVEN neutral gas and ion mass spectrometer data [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1518931 | |
dc.identifier.citedreference | Bougher, S. W., Bell, J. M., Murphy, J. R., Lopez-Valverde, M. A., & Withers, P. G. ( 2006 ). Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions. Geophysical Research Letters, 330 ( 2 ), L02203. https://doi.org/10.1029/2005GL024059 | |
dc.identifier.citedreference | Bougher, S. W., Brain, D. A., Fox, J. L., Gonzalez-Galindo, F., Simon-Wedlund, C., & Withers, P. G. ( 2017 ). Upper neutral atmosphere and ionosphere. In R. M. Haberle, R. T. Clancy, F. Forget, M. D. Smith, & R. W. Zurek (Eds.), The atmosphere and climate of Mars (pp. 433 – 463 ). Cambridge University Press. https://doi.org/10.1017/9781139060172.014 | |
dc.identifier.citedreference | Bougher, S. W., Engel, S., Roble, R. G., & Foster, B. ( 1999 ). Comparative terrestrial planet thermospheres 2. Solar cycle variation of global structure and winds at equinox. Journal of Geophysical Research, 1041 ( E7 ), 16591 – 16611. https://doi.org/10.1029/1998JE001019 | |
dc.identifier.citedreference | Bougher, S. W., Engel, S., Roble, R. G., & Foster, B. ( 2000 ). Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices. Journal of Geophysical Research, 105 ( E7 ), 17669 – 17692. https://doi.org/10.1029/1999JE001232 | |
dc.identifier.citedreference | Bougher, S. W., Fesen, C. G., Ridley, E. C., & Zurek, R. W. ( 1993 ). Mars mesosphere and thermosphere coupling: Semidiurnal tides. Journal of Geophysical Research, 95 ( E2 ), 3281 – 3295. https://doi.org/10.1029/92JE02727 | |
dc.identifier.citedreference | Bougher, S. W., Jakosky, B. M., Halekas, J., Grebowsky, J., Luhmann, J. G., Mahaffy, P., et al. ( 2015 ). Early MAVEN dip deep campaign reveals thermosphere and ionosphere variability. Science, 350 ( 6261 ), 1 – 7. https://doi.org/10.1126/science.aad0459 | |
dc.identifier.citedreference | Bougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., et al. ( 2015 ). Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120 ( 2 ), 311 – 342. https://doi.org/10.1002/2014JE004715 | |
dc.identifier.citedreference | Bougher, S. W., Roble, R. G., Ridley, E. C., & Dickinson, R. E. ( 1990 ). The Mars thermosphere 2. General circulation with coupled dynamics and composition. Journal of Geophysical Research, 95 ( B9 ), 14811 – 14827. https://doi.org/10.1029/JB095iB09p14811 | |
dc.identifier.citedreference | Bougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., et al. ( 2017 ). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 122 ( 1 ), 1296 – 1313. https://doi.org/10.1002/2016JA023454 | |
dc.identifier.citedreference | Conrath, B. J. ( 1975 ). Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971. Icarus, 24 ( 1 ), 36 – 46. https://doi.org/10.1016/0019-1035(75)90156-6 | |
dc.identifier.citedreference | Creasey, J. E., Forbes, J. M., & Keating, G. M. ( 2006 ). Density variability at scales typical of gravity waves observed in Mars’ thermosphere by the MGS accelerometer. Geophysical Research Letters, 33 ( 22 ), L22814. https://doi.org/10.1029/2006GL027583 | |
dc.identifier.citedreference | Elrod, M. K., Bougher, S. W., Roeten, K., Sharrar, R., & Murphy, J. ( 2020 ). Structural and compositional changes in the upper atmosphere related to the PEDE-2018 dust event on Mars as observed by MAVEN NGIMS. Geophysical Research Letters, 47 ( 4 ), e2019GL084378. https://doi.org/10.1029/2019GL084378 | |
dc.identifier.citedreference | England, S. L., Liu, G., Yiğit, E., Mahaffy, P. R., Elrod, M., Benna, M., et al. ( 2017 ). MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 2310 – 2335. https://doi.org/10.1002/2016JA023475 | |
dc.identifier.citedreference | Eparvier, F. G. ( 2022 ). MAVEN EUV modelled data bundle [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1517691 | |
dc.identifier.citedreference | Ergun, R. E., Morooka, M. W., Andersson, L. A., Fowler, C. M., Delory, G. T., Andrews, D. J., et al. ( 2015 ). Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophysical Research Letters, 42 ( 21 ), 8846 – 8853. https://doi.org/10.1002/2015GL065280 | |
dc.identifier.citedreference | Fang, X., Pawlowski, D., Ma, Y., Bougher, S., Thiemann, E., Eparvier, F., et al. ( 2019 ). Mars upper atmospheric responses to the 10 September 2017 solar flare: A global, time-dependent simulation. Geophysical Research Letters, 46 ( 16 ), 9334 – 9343. https://doi.org/10.1029/2019GL084515 | |
dc.identifier.citedreference | Forbes, J. M., Bruinsma, S. L., Doornbos, E., & Zhang, X. ( 2016 ). Gravity wave-induced variability of the middle thermosphere. Journal of Geophysical Research: Space Physics, 121 ( 7 ), 6914 – 6923. https://doi.org/10.1002/2016JA022923 | |
dc.identifier.citedreference | Fritts, D. C., Wang, L., & Tolson, R. H. ( 2006 ). Mean and gravity wave structures and variability in the Mars upper atmosphere inferred from Mars Global Surveyor and Mars Odyssey aerobraking densities. Journal of Geophysical Research: Space Physics (1978–2012), 111 ( A12 ), A12304. https://doi.org/10.1029/2006JA011897 | |
dc.identifier.citedreference | González-Galindo, F., Chaufray, J.-Y., López-Valverde, M. A., Gilli, G., Forget, F., Leblanc, F., et al. ( 2013 ). 3D Martian Ionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research, 118, 2105 – 2123. https://doi.org/10.1002/jgre.20150 | |
dc.identifier.citedreference | González-Galindo, F., López-Valverde, M. A., Forget, F., García-Comas, M., Millour, E., & Montabone, L. ( 2015 ). Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research: Planets, 120 ( 11 ), 2020 – 2035. https://doi.org/10.1002/2015JE004925 | |
dc.identifier.citedreference | Gu, H., Cui, J., Niu, D.-D., Cao, Y.-T., Wu, X.-S., Li, J., et al. ( 2020 ). Neutral heating efficiency in the dayside Martian upper atmosphere. The Astronomical Journal, 159 ( 2 ), 39. https://doi.org/10.3847/1538-3881/ab5fcc | |
dc.identifier.citedreference | Haberle, R. M., Joshi, M. M., Murphy, J. R., Barnes, J. R., Schofield, J. T., Wilson, G., et al. ( 1999 ). General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. Journal of Geophysical Research, 104 ( E4 ), 8957 – 8974. https://doi.org/10.1029/1998JE900040 | |
dc.identifier.citedreference | Heavens, N. G., Kass, D. M., Kleinböhl, A., & Schofield, J. T. ( 2020 ). A multiannual record of gravity wave activity in Mars’s lower atmosphere from on-planet observations by the Mars Climate Sounder. Icarus, 341, 113630. https://doi.org/10.1016/j.icarus.2020.113630 | |
dc.identifier.citedreference | Heavens, N. G., Pankine, A., Battalio, J. M., Wright, C., Kass, D. M., Kleinböhl, A., et al. ( 2022 ). Mars Climate Sounder observations of gravity-wave activity throughout Mars’s lower atmosphere. The Planetary Science Journal, 3 ( 3 ), 57. https://doi.org/10.3847/psj/ac51ce | |
dc.identifier.citedreference | Hinson, D., Pätzold, M., Tellmann, S., Häusler, B., & Tyler, G. ( 2008 ). The depth of the convective boundary layer on Mars. Icarus, 198 ( 1 ), 57 – 66. https://doi.org/10.1016/j.icarus.2008.07.003 | |
dc.identifier.citedreference | Jain, S. K., Bougher, S. W., Deighan, J., Schneider, N. M., González Galindo, F., Stewart, A. I. F., et al. ( 2020 ). Martian thermospheric warming associated with the planet encircling dust event of 2018. Geophysical Research Letters, 47 ( 3 ), e2019GL085302. https://doi.org/10.1029/2019GL085302 | |
dc.identifier.citedreference | Jakosky, B. M., Lin, R. P., Grebowksy, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., et al. ( 2015 ). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Science Reviews, 195 ( 1–4 ), 3 – 48. https://doi.org/10.1007/s11214-015-0139-x | |
dc.identifier.citedreference | Jesch, D., Medvedev, A. S., Castellini, F., Yiğit, E., & Hartogh, P. ( 2019 ). Density fluctuations in the lower thermosphere of Mars retrieved from the ExoMars Trace Gas Orbiter (TGO) aerobraking. Atmosphere, 10 ( 10 ), 620. https://doi.org/10.3390/atmos10100620 | |
dc.identifier.citedreference | Kuroda, T., Medvedev, A. S., & Yiğit, E. ( 2020 ). Gravity wave activity in the atmosphere of Mars during the 2018 global dust storm: Simulations with a high-resolution model. Journal of Geophysical Research: Planets, 125 ( 11 ), e2020JE006556. https://doi.org/10.1029/2020JE006556 | |
dc.identifier.citedreference | Kuroda, T., Medvedev, A. S., Yiğit, E., & Hartogh, P. ( 2016 ). Global distribution of gravity wave sources and fields in the Martian atmosphere during equinox and solstice inferred from a high-resolution general circulation model. Journal of the Atmospheric Sciences, 73 ( 12 ), 4895 – 4909. https://doi.org/10.1175/JAS-D-16-0142.1 | |
dc.identifier.citedreference | Leelavathi, V., Venkateswara Rao, N., & Rao, S. V. B. ( 2020 ). Interannual variability of atmospheric gravity waves in the Martian thermosphere: Effects of the 2018 planet-encircling dust event. Journal of Geophysical Research: Planets, 125 ( 12 ), e2020JE006649. https://doi.org/10.1029/2020JE006649 | |
dc.identifier.citedreference | Lilienthal, F., Yiğit, E., Samtleben, N., & Jacobi, C. ( 2020 ). Variability of gravity wave effects on the zonal mean circulation and migrating terdiurnal tide as studied with the middle and upper atmosphere model (MUAM2019) using a nonlinear gravity wave scheme. Frontiers in Astronomy and Space Sciences, 2020 ( 7 ), 588956. https://doi.org/10.3389/fspas.2020.588956 | |
dc.identifier.citedreference | Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., & Jakosky, B. M. ( 2015 ). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 42 ( 21 ), 8951 – 8957. https://doi.org/10.1002/2015GL065329 | |
dc.identifier.citedreference | Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., et al. ( 2015 ). The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Science Reviews, 195 ( 1–4 ), 49 – 73. https://doi.org/10.1007/s11214-014-0091-1 | |
dc.identifier.citedreference | Medvedev, A. S., González-Galindo, F., Yiğit, E., Feofilov, A. G., Forget, F., & Hartogh, P. ( 2015 ). Cooling of the Martian thermosphere by CO 2 radiation and gravity waves: An intercomparison study with two general circulation models. Journal of Geophysical Research: Planets, 120 ( 5 ), 913 – 927. https://doi.org/10.1002/2015JE004802 | |
dc.identifier.citedreference | Medvedev, A. S., & Klaassen, G. P. ( 2000 ). Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: Basic formulation and sensitivity tests. Journal of Atmospheric and Solar-Terrestrial Physics, 62 ( 11 ), 1015 – 1033. https://doi.org/10.1016/S1364-6826(00)00067-5 | |
dc.identifier.citedreference | Medvedev, A. S., Nakagawa, H., Mockel, C., Yiğit, E., Kuroda, T., Hartogh, P., et al. ( 2016 ). Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling. Geophysical Research Letters, 43 ( 7 ), 3095 – 3104. https://doi.org/10.1002/2016GL068388 | |
dc.identifier.citedreference | Medvedev, A. S., & Yiğit, E. ( 2012 ). Thermal effects of internal gravity waves in the Martian upper atmosphere. Geophysical Research Letters, 39 ( 5 ), L05201. https://doi.org/10.1029/2012GL050852 | |
dc.identifier.citedreference | Medvedev, A. S., & Yiğit, E. ( 2019 ). Gravity waves in planetary atmospheres: Their effects and parameterization in global circulation models. Atmosphere, 10 ( 9 ), 531. https://doi.org/10.3390/atmos10090531 | |
dc.identifier.citedreference | Medvedev, A. S., Yiğit, E., & Hartogh, P. ( 2011 ). Estimates of gravity wave drag on Mars: Indication of a possible lower thermosphere wind reversal. Icarus, 211 ( 1 ), 909 – 912. https://doi.org/10.1016/j.icarus.2010.10.013 | |
dc.identifier.citedreference | Medvedev, A. S., Yiğit, E., & Hartogh, P. ( 2017 ). Ion friction and quantification of the geomagnetic influence on gravity wave propagation and dissipation in the thermosphere-ionosphere. Journal of Geophysical Research: Space Physics, 122 ( 12 ), 12464 – 12475. https://doi.org/10.1002/2017JA024785 | |
dc.identifier.citedreference | Medvedev, A. S., Yiğit, E., Hartogh, P., & Becker, E. ( 2011 ). Influence of gravity waves on the Martian atmosphere: General circulation modeling. Journal of Geophysical Research, 116 ( E10 ), E10004. https://doi.org/10.1029/2011JE003848 | |
dc.identifier.citedreference | Medvedev, A. S., Yiğit, E., Kuroda, T., & Hartogh, P. ( 2013 ). General circulation modeling of the Martian upper atmosphere during global dust storms. Journal of Geophysical Research: Planets, 118 ( 10 ), 1 – 13. https://doi.org/10.1002/2013JE004429 | |
dc.identifier.citedreference | Miyoshi, Y., & Yiğit, E. ( 2019 ). Impact of gravity wave drag on the thermospheric circulation: Implementation of a nonlinear gravity wave parameterization in a whole atmosphere model. Annales Geophysicae, 37 ( 5 ), 955 – 969. https://doi.org/10.5194/angeo-37-955-2019 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.