Show simple item record

Anharmonic Cation–Anion Coupling Dynamics Assisted Lithium-Ion Diffusion in Sulfide Solid Electrolytes

dc.contributor.authorXu, Zhenming
dc.contributor.authorChen, Xi
dc.contributor.authorZhu, Hong
dc.contributor.authorLi, Xin
dc.date.accessioned2023-01-11T16:23:02Z
dc.date.available2024-01-11 11:23:00en
dc.date.available2023-01-11T16:23:02Z
dc.date.issued2022-12
dc.identifier.citationXu, Zhenming; Chen, Xi; Zhu, Hong; Li, Xin (2022). "Anharmonic Cation–Anion Coupling Dynamics Assisted Lithium-Ion Diffusion in Sulfide Solid Electrolytes." Advanced Materials 34(49): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/175429
dc.description.abstractSulfide-based lithium superionic conductors often show higher Li-ion conductivity than other types of electrolyte materials. This work unveils a unique Li-ion conductive behavior in these materials through the perspective of anharmonic coupling assisted Li-ion diffusion. Li hopping events can happen simultaneously with various types of lattice dynamics, while only a statistically important synchronization of motions may indicate coupling. This method enables a direct evaluation of the coupling strength between these motions, which more fundamentally decides if a specific type of lattice motion is really anharmonically coupled to the Li hopping event and whether the coupling can facilitate the Li diffusion. By a new ab initio computational approach, this work unveils a unique phenomenon in prototype sulfide electrolytes in comparison with typical halide ones, that Li-ion conduction can be boosted by the anharmonic coupling of low-frequency Li phonon modes with high-frequency anion stretching or flexing phonon modes, rather than the low-frequency rotational modes. The coupling pushes Li ions toward the diffusion channels for reduced diffusion barriers. The result from the lower temperature range (≈0–300 K) of simulation can also be more relevant to the application of solid-state batteries.By comparing the anharmonic phonon coupling calculations with the ab initio molecular dynamics calculations, this study unveils a unique phenomenon in sulfide solid electrolytes in comparison with halide ones, that Li-ion conduction can be boosted by the anharmonic coupling of low-frequency Li phonon modes with high-frequency anion stretching or flexing modes, rather than the low-frequency rotational modes.
dc.publisherNorth-Holland Publishing Company
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstretching mode
dc.subject.otheranharmonic coupling
dc.subject.otherionic conductors
dc.subject.otherdiffusion dynamics
dc.subject.othervibrational density of states
dc.titleAnharmonic Cation–Anion Coupling Dynamics Assisted Lithium-Ion Diffusion in Sulfide Solid Electrolytes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175429/1/adma202207411-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175429/2/adma202207411.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175429/3/adma202207411_am.pdf
dc.identifier.doi10.1002/adma.202207411
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceR. Mankowsky, A. Subedi, M. Forst, S. O. Mariager, M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B. Keimer, A. Georges, A. Cavalleri, Nature 2014, 516, 71.
dc.identifier.citedreferenceN. Andersen, P. Bandaranayake, M. Careem, M. Dissanayake, C. Wijayasekera, R. Kaber, A. Lunden, B. Mellander, L. Nilsson, J. Thomas, Solid State Ionics 1992, 57, 203.
dc.identifier.citedreferenceE. A. Secco, J. Solid State Chem. 1992, 96, 366.
dc.identifier.citedreferenceR. W. Impey, M. L. Klein, I. R. McDonald, J. Chem. Phys. 1985, 82, 4690.
dc.identifier.citedreferenceJ. Huang, L. Zhang, H. Wang, J. Zhao, J. Cheng, Weinan E, J. Chem. Phys. 2021, 154, 094703.
dc.identifier.citedreferenceS. Muy, J. C. Bachman, H.-H. Chang, L. Giordano, F. Maglia, S. Lupart, P. Lamp, W. G. Zeier, Y. Shao-Horn, Chem. Mater. 2018, 30, 5573.
dc.identifier.citedreferenceK. Wakamura, Phys. Rev. B 1997, 56, 11593.
dc.identifier.citedreferenceS. Kim, X. Chen, W. Fitzhugh, X. Li, Phys. Rev. Lett. 2018, 121, 157001.
dc.identifier.citedreferenceX. Chen, J. Dong, X. Li, NPJ Comput. Mater. 2020, 6, 103.
dc.identifier.citedreferenceM. T. Dove, Introduction to Lattice Dynamics, Cambridge University Press, New York 1993.
dc.identifier.citedreferenceY. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, Energy Environ. Sci. 2014, 7, 627.
dc.identifier.citedreferenceN. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682.
dc.identifier.citedreferenceT. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075.
dc.identifier.citedreferenceZ. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, C. Liang, J. Am. Chem. Soc. 2013, 135, 975.
dc.identifier.citedreferenceW. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
dc.identifier.citedreferenceP. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
dc.identifier.citedreferenceS. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys Rev B 1998, 57, 1505.
dc.identifier.citedreferenceH. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
dc.identifier.citedreferenceE. v. d. M. Niek, J. J. de Klerk,. Wagemaker, ACS Appl. Energy Mater. 2018, 1, 3230.
dc.identifier.citedreferenceZ. Xu, Y. Xia, J. Mater. Chem. 2022, 10, 11854.
dc.identifier.citedreferenceW. G. Hoover, Phys. Rev. A 1985, 31, 1695.
dc.identifier.citedreferenceM. Kresch, M. Lucas, O. Delaire, J. Y. Y. Lin, B. Fultz, Phys. Rev. B 2008, 77, 024301.
dc.identifier.citedreferenceO. Delaire, I. I. Al-Qasir, J. Ma, A. M. dos Santos, B. C. Sales, L. Mauger, M. B. Stone, D. L. Abernathy, Y. Xiao, M. Somayazulu, Phys. Rev. B 2013, 87, 184304.
dc.identifier.citedreferenceJ. E. Herriman, O. Hellman, B. Fultz, Phys. Rev. B 2018, 98, 214105.
dc.identifier.citedreferenceA. Togo, I. Tanaka, Scr. Mater. 2015, 108, 1.
dc.identifier.citedreferenceA. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.
dc.identifier.citedreferenceC. Sun, J. Liu, Y. Gong, D. P. Wilkinson, J. Zhang, Nano Energy 2017, 33, 363.
dc.identifier.citedreferenceQ. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Adv. Mater. 2019, 31, 1901131.
dc.identifier.citedreferenceY. Wang, L. Ye, X. Chen, X. Li, JACS Au 2022, 2, 886.
dc.identifier.citedreferenceL. Ye, X. Li, Nature 2021, 593, 218.
dc.identifier.citedreferenceY. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026.
dc.identifier.citedreferenceX. He, Q. Bai, Y. Liu, A. M. Nolan, C. Ling, Y. Mo, Adv. Energy Mater. 2019, 9, 1902078.
dc.identifier.citedreferenceD. Di Stefano, A. Miglio, K. Robeyns, Y. Filinchuk, M. Lechartier, A. Senyshyn, H. Ishida, S. Spannenberger, D. Prutsch, S. Lunghammer, D. Rettenwander, M. Wilkening, B. Roling, Y. Kato, G. Hautier, Chem 2019, 5, 2450.
dc.identifier.citedreferenceX. He, Y. Zhu, Y. Mo, Nat. Commun. 2017, 8, 15893.
dc.identifier.citedreferenceZ.-H. Fu, X. Chen, N. Yao, X. Shen, X.-X. Ma, S. Feng, S. Wang, R. Zhang, L. Zhang, Q. Zhang, J. Energy Chem. 2022, 70, 59.
dc.identifier.citedreferenceS. Muy, J. C. Bachman, L. Giordano, H.-H. Chang, D. L. Abernathy, D. Bansal, O. Delaire, S. Hori, R. Kanno, F. Maglia, S. Lupart, P. Lamp, Y. Shao-Horn, Energy Environ. Sci. 2018, 11, 850.
dc.identifier.citedreferenceA. K. Sagotra, D. Chu, C. Cazorla, Phys. Rev. Mater. 2019, 3, 035405.
dc.identifier.citedreferenceJ. G. Smith, D. J. Siegel, Nat. Commun. 2020, 11, 1483.
dc.identifier.citedreferenceZ. Zhang, H. Li, K. Kaup, L. Zhou, P.-N. Roy, L. F. Nazar, Matter 2020, 2, 1667.
dc.identifier.citedreferenceZ. Zhang, P. N. Roy, H. Li, M. Avdeev, L. F. Nazar, J. Am. Chem. Soc. 2019, 141, 19360.
dc.identifier.citedreferenceM. K. Gupta, J. Ding, N. C. Osti, D. L. Abernathy, W. Arnold, H. Wang, Z. Hood, O. Delaire, Energy Environ. Sci. 2021, 14, 6554.
dc.identifier.citedreferenceT. Krauskopf, S. Muy, S. P. Culver, S. Ohno, O. Delaire, Y. Shao-Horn, W. G. Zeier, J. Am. Chem. Soc. 2018, 140, 14464.
dc.identifier.citedreferenceJ. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.
dc.identifier.citedreferenceS. Muy, R. Schlem, Y. Shao-Horn, W. G. Zeier, Adv. Energy Mater. 2020, 11, 2002787.
dc.identifier.citedreferenceS. Muy, J. Voss, R. Schlem, R. Koerver, S. J. Sedlmaier, F. Maglia, P. Lamp, W. G. Zeier, Y. Shao-Horn, iScience 2019, 16, 270.
dc.identifier.citedreferenceM. A. Kraft, S. P. Culver, M. Calderon, F. Bocher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek, W. G. Zeier, J. Am. Chem. Soc. 2017, 139, 10909.
dc.identifier.citedreferenceT. Famprikis, J. A. Dawson, F. Fauth, O. Clemens, E. Suard, B. Fleutot, M. Courty, J.-N. Chotard, M. S. Islam, C. Masquelier, ACS Mater. Lett. 2019, 1, 641.
dc.identifier.citedreferenceJ. Ding, J. L. Niedziela, D. Bansal, J. Wang, X. He, A. F. May, G. Ehlers, D. L. Abernathy, A. Said, A. Alatas, Y. Ren, G. Arya, O. Delaire, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 3930.
dc.identifier.citedreferenceJ. L. Niedziela, D. Bansal, A. F. May, J. Ding, T. Lanigan-Atkins, G. Ehlers, D. L. Abernathy, A. Said, O. Delaire, Nat. Phys. 2018, 15, 73.
dc.identifier.citedreferenceA. B. Kvist, A. Bengtzelius, in Fast Ion Transport in Solids: Solid State Batteries and Devices, (Ed.: W. van Gool ), North-Holland Publishing Company, Amsterdam, The Netherlands 1973, pp. 193 – 199.
dc.identifier.citedreferenceM. Jansen, Angew. Chem. Int. Ed. 1991, 30, 1547.
dc.identifier.citedreferenceL. Nilsson, J. O. Thomas, B. C. Tofield, J. Phys. C: Solid State Phys. 1980, 13, 6441.
dc.identifier.citedreferenceR. Kaber, L. Nilsson, N. H. Andersen, A. Lunden, J. O. Thomas, J. Phys.: Condens. Matter 1992, 4, 1925.
dc.identifier.citedreferenceA. Lundén, Solid State Ionics 1988, 28–30, 163.
dc.identifier.citedreferenceD. Blanchard, A. Nale, D. Sveinbjörnsson, T. M. Eggenhuisen, M. H. W. Verkuijlen, Suwarno, T. Vegge, A. P. M. Kentgens, P. E. de Jongh, Adv. Funct. Mater. 2015, 25, 184.
dc.identifier.citedreferenceK. E. Kweon, J. B. Varley, P. Shea, N. Adelstein, P. Mehta, T. W. Heo, T. J. Udovic, V. Stavila, B. C. Wood, Chem. Mater. 2017, 29, 9142.
dc.identifier.citedreferenceN. Verdal, T. J. Udovic, V. Stavila, W. S. Tang, J. J. Rush, A. V. Skripov, J. Phys. Chem. C 2014, 118, 17483.
dc.identifier.citedreferenceC. S. Babu, B. L. Tembe, Chem. Phys. Lett. 1992, 194, 351.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.