Show simple item record

Binary Mixtures in Linear Convection Arrays

dc.contributor.authorGhosh, Pulak K.
dc.contributor.authorZhou, Yuxin
dc.contributor.authorLi, Yunyun
dc.contributor.authorMarchesoni, Fabio
dc.contributor.authorNori, Franco
dc.date.accessioned2023-01-11T16:23:33Z
dc.date.available2024-02-11 11:23:30en
dc.date.available2023-01-11T16:23:33Z
dc.date.issued2023-01-03
dc.identifier.citationGhosh, Pulak K.; Zhou, Yuxin; Li, Yunyun; Marchesoni, Fabio; Nori, Franco (2023). "Binary Mixtures in Linear Convection Arrays." ChemPhysChem 24(1): n/a-n/a.
dc.identifier.issn1439-4235
dc.identifier.issn1439-7641
dc.identifier.urihttps://hdl.handle.net/2027.42/175439
dc.description.abstractWe numerically investigated the dynamics of a mixture of finite-size active and passive disks in a linear array of two-dimensional convection rolls. The interplay of advection and steric interactions produces a number of interesting effects, like the stirring of a passive colloidal fluid by a small fraction of slow active particles, or the separation of the mixture active and passive colloidal fractions by increasing the motility of the active one, which eventually clusters in stagnation areas along the array walls. These mechanisms are quantitatively characterized by studying the dependence of the diffusion constants of the active and passive particles on the parameters of the active mixture fraction.Binary mixtures of active-passive particles in convection arrays exhibit a conspicuous phase separation into two distinct colloidal fluids for strong self-propulsion of the active fraction. The passive fluid circulating inside the convection rolls and the active one accumulating in stagnation areas along the array walls. On the other hand, a little fraction of weak active particles exert a strong stirring action on a passive colloidal fluid.
dc.publisherWiley Periodicals, Inc.
dc.publisher(Springer Netherlands
dc.subject.otherclustering
dc.subject.otherActive particles
dc.subject.otherconvection rolls
dc.subject.otherdiffusion
dc.subject.otherphase-separation
dc.titleBinary Mixtures in Linear Convection Arrays
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175439/1/cphc202200471.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175439/2/cphc202200471_am.pdf
dc.identifier.doi10.1002/cphc.202200471
dc.identifier.sourceChemPhysChem
dc.identifier.citedreferenceT. Kolbab, D. Klotsa, Soft Matte r 2020, 16, 1967 – 1978.
dc.identifier.citedreferenceA. Zoettl, H. Stark, Phys. Rev. Lett. 2012, 108, 218104.
dc.identifier.citedreferenceR. Rusconi, J. S. Guasto, R. Stocker, Nat. Phys. 2014, 10, 212 – 217.
dc.identifier.citedreferenceK. Qi, H. Annepu, G. Gompper, R. G. Winkler, Phys. Rev. Res. 2020, 2, 033275.
dc.identifier.citedreferenceH. Stommel, J. Mar. Res. 1949, 8, 24 – 29.
dc.identifier.citedreferenceM. R. Maxey, Phys. Fluids 1987, 30, 1915.
dc.identifier.citedreferenceP. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992).
dc.identifier.citedreferenceY. Li, Q. Yin, F. Marchesoni, T. Debnath, P. K. Ghosh, Phys. Rev. E 2021, 103, L030106.
dc.identifier.citedreferenceY. Li, P. K. Ghosh, F. Marchesoni, Phys. Rev. Res. 2021, 3, L032065.
dc.identifier.citedreferenceM. E. Cates, J. Tailleur, Annu. Rev. Condens. Matter. Phys. 2015, 6, 219 – 244.
dc.identifier.citedreferenceJ. Stürmer, M. Seyrich, H. Stark, J. Chem. Phys. 2019, 150, 214901.
dc.identifier.citedreferenceJ. Agudo-Canalejo, R. Golestanian, Phys. Rev. Lett. 2019, 123, 018101.
dc.identifier.citedreferenceP. Dolai, A. Simha, S. Mishra, Soft Matter 2018, 14, 6137 – 6145.
dc.identifier.citedreferenceW. Yang, V. R. Misko, F. Marchesoni, F. Nori, J. Phys. Condens. Matter 2018, 30, 264004.
dc.identifier.citedreferenceX. Yang, M. L. Manning, M. C. Marchetti, Soft Matter 2014, 10, 6477 – 6484.
dc.identifier.citedreferenceJ. Stenhammar, R. Wittkowski, D. Marenduzzo, M. E. Cates, Phys. Rev. Lett. 2015, 114, 018301.
dc.identifier.citedreferenceA. Wysocki, R. G. Winkler, G. Gompper, New J. Phys. 2016, 18, 123030.
dc.identifier.citedreferenceK. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, R. E. Goldstein, Phys. Rev. Lett. 2009, 103, 198103.
dc.identifier.citedreferenceD. Debnath, P. K. Ghosh, V. R. Misko, Y. Li, F. Marchesoni, F. Nori, Nanoscale 2020, 12, 9717 – 9726.
dc.identifier.citedreferenceJ. Elgeti, G. Gompper, EPL 2013, 101, 48003.
dc.identifier.citedreferenceY. Fily, Y. Kafri, A. P. Solon, J. Tailleur, A. Turner, J. Phys. A 2018, 51, 044003.
dc.identifier.citedreferenceS. Das, G. Gompper, R. G. Winkler, Sci. Rep. 2019, 9, 6608.
dc.identifier.citedreferenceR. Matas-Navarro, R. Golestanian, T. B. Liverpool, S. M. Fielding, Phys. Rev. E 2014, 90, 032304.
dc.identifier.citedreferenceM. Theers, E. Westphal, K. Qi, R. G. Winkler, G. Gompper, Soft Matter 2018, 14, 8590 – 8603.
dc.identifier.citedreferenceN. Korin, M. Kanapathipillai, B. D. Matthews, M. Crescente, A. Brill, T. Mammoto, K. Ghosh, S. Jurek, S. A. Bencherif, D. Bhatta, A. U. Coskun, C. L. Feldman, D. D. Wagner, D. E. Ingber, Science 2012, 337, 738 – 42.
dc.identifier.citedreferenceM. J. Gomez-Garcia, A. L. Doiron, R. R. M. Steele, H. I. Labouta, B. Vafadar, R. D. Shepherd, I. D. Gates, D. T. Cramb, S. J. Childs, K. D. Rinker, Nanoscale 2018, 10, 15249 – 15261.
dc.identifier.citedreferenceM. F. Attia, N. Anton, J. Wallyn, Z. Omran, T. F. Vandamme, J. Pharm. Pharmacol. 2019, 71, 1185 – 1198.
dc.identifier.citedreferenceA. Zöttl, H. Stark, J. Phys. Condens. Matter 2016, 28, 253001.
dc.identifier.citedreferenceP. K. Ghosh, V. R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 2013, 110, 268301.
dc.identifier.citedreferenceJ. D. Weeks, D. Chandler, H. C. Andersen, J. Chem. Phys. 1971, 54, 5237.
dc.identifier.citedreferenceP. K. Ghosh, Y. Li, G. Marchegiani, F. Marchesoni, J. Chem. Phys. 2015, 143, 211101.
dc.identifier.citedreferenceD. Debnath, P. K. Ghosh, Y Li, F Marchesoni, B Li, Soft Matter 2016, 12, 2017 – 2024.
dc.identifier.citedreferenceH. K. Moffatt, G. M. Zaslavsky, P. Comte, M. Tabor Tabor (Eds.), Topological Aspects of the Dynamics of Fluids and Plasmas (Springer Netherlands, 1992).
dc.identifier.citedreferenceS. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, New York, 1967).
dc.identifier.citedreferenceS. Childress, Phys. Earth Planet. Inter. 1979, 20, 172 – 180.
dc.identifier.citedreferenceB. J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (Cambridge University Press, 2010).
dc.identifier.citedreferenceX. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, H. P. Zhang, Proc. Natl. Acad. Sci. USA 2017, 114, 9564 – 9569.
dc.identifier.citedreferenceM. N. Rosenbluth, H. L. Berk, I. Doxas, W. Horton, Phys. Fluids 1987, 30, 2636.
dc.identifier.citedreferenceA. M. Soward, J. Fluid Mech. 1987, 180, 267 – 295.
dc.identifier.citedreferenceB. I. Shraiman, Phys. Rev. A 1987, 36, 261.
dc.identifier.citedreferenceW. Young, A. Pumir, Y. Pomeau, Phys. Fluids 1989, 1, 462.
dc.identifier.citedreferenceT. H. Solomon, J. P. Gollub, Phys. Fluids 1988, 31, 1372.
dc.identifier.citedreferenceT. H. Solomon, I. Mezić, Nature (London) 2003, 425, 376 – 380.
dc.identifier.citedreferenceY.-N. Young, M. J. Shelley, Phys. Rev. Lett. 2007, 99, 058303.
dc.identifier.citedreferenceQ. Yin, Y. Li, F. Marchesoni, T. Debnath, P. K. Ghosh, Phys. Fluids 2020, 32, 092010.
dc.identifier.citedreferenceS. Jiang, S. Granick (Eds.), Janus particle synthesis, self-assembly and applications (RSC Publishing, Cambridge, 2012).
dc.identifier.citedreferenceA. Walther, A. H. E. Müller, Chem. Rev. 2013, 113, 5194 – 5261.
dc.identifier.citedreferenceM. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, R. A. Simha, Rev. Mod. Phys. 2013, 85, 1143.
dc.identifier.citedreferenceJ. Elgeti, R. G. Winkler, G. Gompper, Rep. Progr. Phys. 2015, 78, 056601.
dc.identifier.citedreferenceC. Torney, Z. Neufeld, Phys. Rev. Lett. 2007, 99, 078101.
dc.identifier.citedreferenceY. Li, L. Li, F. Marchesoni, D. Debnath, P. K. Ghosh, Phys. Rev. Res. 2020, 2, 013250.
dc.identifier.citedreferenceP. K. Ghosh, F. Marchesoni, Y. Li, F. Nori, Phys. Chem. Chem. Phys. 2021, 23, 11944 – 11953.
dc.identifier.citedreferenceR. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport phenomena (New York, John Wiley&Sons, 2007).
dc.identifier.citedreferenceY. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, Nat. Mater. 2008, 7, 527.
dc.identifier.citedreferenceM. A. Boles, M. Engel, D. V. Talapin, Chem. Rev. 2016, 116, 11220.
dc.identifier.citedreferenceJ. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 2012, 108, 168301.
dc.identifier.citedreferenceY. Fily, M. C. Marchetti, Phys. Rev. Lett. 2012, 108, 235702.
dc.identifier.citedreferenceG. S. Redner, M. F. Hagan, A. Baskaran, Phys. Rev. Lett. 2013, 110, 055701.
dc.identifier.citedreferenceY. Li, Y. Zhou, F. Marchesoni, P. K. Ghosh, Soft Matter 2022, 18, 4778– 4785.
dc.identifier.citedreferenceP. Tabeling, Phys. Rep. 2002, 362, 1.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.