Show simple item record

Theoretical and Experimental Investigation of Functionalized Cyanopyridines Yield an Anolyte with an Extremely Low Reduction Potential for Nonaqueous Redox Flow Batteries

dc.contributor.authorVaid, Thomas P.
dc.contributor.authorCook, Monique E.
dc.contributor.authorScott, Jessica D.
dc.contributor.authorBorjesson Carazo, Marino
dc.contributor.authorRuchti, Jonathan
dc.contributor.authorMinteer, Shelley D.
dc.contributor.authorSigman, Matthew S.
dc.contributor.authorMcNeil, Anne J.
dc.contributor.authorSanford, Melanie S.
dc.date.accessioned2023-01-11T16:23:50Z
dc.date.available2024-01-11 11:23:48en
dc.date.available2023-01-11T16:23:50Z
dc.date.issued2022-12-15
dc.identifier.citationVaid, Thomas P.; Cook, Monique E.; Scott, Jessica D.; Borjesson Carazo, Marino; Ruchti, Jonathan; Minteer, Shelley D.; Sigman, Matthew S.; McNeil, Anne J.; Sanford, Melanie S. (2022). "Theoretical and Experimental Investigation of Functionalized Cyanopyridines Yield an Anolyte with an Extremely Low Reduction Potential for Nonaqueous Redox Flow Batteries." Chemistry – A European Journal 28(70): n/a-n/a.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/175446
dc.description.abstractCyanopyridines and cyanophenylpyridines were investigated as anolytes for nonaqueous redox flow batteries (RFBs). The three isomers of cyanopyridine are reduced at potentials of −2.2 V or lower vs. ferrocene+/0 (Fc+/0), but the 3-CNPy⋅− radical anion forms a sigma-dimer that is re-oxidized at E≈−1.1 V, which would lead to poor voltaic efficiency in a RFB. Bulk electrochemical charge-discharge cycling of the cyanopyridines in acetonitrile and 0.50 M [NBu4][PF6] shows that 2-CNPy and 4-CNPy lose capacity quickly under these conditions, due to irreversible chemical reaction/decomposition of the radical anions. Density-functional theory (DFT) calculations indicated that adding a phenyl group to the cyanopyridines would, for some isomers, limit dimerization and improve the stability of the radical anions, while shifting their E1/2 only about +0.10 V relative to the parent cyanopyridines. Among the cyanophenylpyridines, 3-CN-6-PhPy and 3-CN-4-PhPy are the most promising as anolytes. They exhibit reversible reductions at E1/2=−2.19 and −2.22 V vs. ferrocene+/0, respectively, and retain about half of their capacity after 30 bulk charge-discharge cycles. An improved version of 3-CN-6-PhPy with three methyl groups (3-cyano-4-methyl-6-(3,5-dimethylphenyl)pyridine) has an extremely low reduction potential of −2.50 V vs. Fc+/0 (the lowest reported for a nonaqueous RFB anolyte) and loses only 0.21 % of capacity per cycle during charge-discharge cycling in acetonitrile.Cyanopyridines are reduced at low potentials in organic solvents and are therefore a promising class of molecules for anolytes for nonaqueous redox-flow batteries (RFBs). Quantum computations suggest that properly placed phenyl and methyl substituents shift the reduction potentials even lower than those of the parent cyanopyridines and prevent dimerization of the radical anions. The optimal molecule has a reduction potential in CH3CN of −2.50 V vs. Fc+/0, the lowest reported for a RFB anolyte.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercyanopyridines
dc.subject.otherreduction potential
dc.subject.otherredox-flow battery
dc.subject.otherreduction potential calculation
dc.subject.otherreversible dimerization
dc.titleTheoretical and Experimental Investigation of Functionalized Cyanopyridines Yield an Anolyte with an Extremely Low Reduction Potential for Nonaqueous Redox Flow Batteries
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175446/1/chem202202147.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175446/2/chem202202147_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175446/3/chem202202147-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.202202147
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceP. H. Rieger, I. Bernal, W. H. Reinmuth, G. K. Fraenkel, J. Am. Chem. Soc. 1963, 85, 683 – 693.
dc.identifier.citedreferenceG. L. Soloveichik, Chem. Rev. 2015, 115, 11533 – 11558.
dc.identifier.citedreferenceJ. Winsberg, T. Hagemann, T. Janoschka, M. D. Hager, U. S. Schubert, Angew. Chem. Int. Ed. 2017, 56, 686 – 711; Angew. Chem. 2017, 129, 702 – 729.
dc.identifier.citedreferenceJ. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 2015, 54, 9776 – 9809; Angew. Chem. 2015, 127, 9912 – 9947.
dc.identifier.citedreferenceR. F. Service, Science 2018, 362, 508.
dc.identifier.citedreferenceP. Leung, A. A. Shah, L. Sanz, C. Flox, J. R. Morante, Q. Xu, M. R. Mohamed, C. Ponce de León, F. C. Walsh, J. Power Sources 2017, 360, 243 – 283.
dc.identifier.citedreferenceJ. A. Kowalski, L. Su, J. D. Milshtein, F. R. Brushett, Curr. Opin. Chem. Eng. 2016, 13, 45 – 52.
dc.identifier.citedreferenceY. Yan, S. G. Robinson, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2019, 141, 15301 – 15306.
dc.identifier.citedreferenceC. S. Sevov, D. P. Hickey, M. E. Cook, S. G. Robinson, S. Barnett, S. D. Minteer, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2017, 139, 2924 – 2927.
dc.identifier.citedreferenceS. G. Robinson, Y. Yan, K. H. Hendriks, M. S. Sanford, M. S. Sigman, J. Am. Chem. Soc. 2019, 141, 10171 – 10176.
dc.identifier.citedreferenceK. H. Hendriks, S. G. Robinson, M. N. Braten, C. S. Sevov, B. A. Helms, M. S. Sigman, S. D. Minteer, M. S. Sanford, ACS Cent. Sci. 2018, 4, 189 – 196.
dc.identifier.citedreferenceR. M. Darling, K. G. Gallagher, J. A. Kowalski, S. Ha, F. R. Brushett, Energy Environ. Sci. 2014, 7, 3459 – 3477.
dc.identifier.citedreferenceM. Ue, K. Ida, S. Mori, J. Electrochem. Soc. 1994, 141, 2989.
dc.identifier.citedreferenceJ. Volke, V. Skála, J. Electroanal. Chem. 1972, 36, 383 – 388.
dc.identifier.citedreferenceO. R. Brown, R. J. Butterfield, Electrochim. Acta 1982, 27, 1647 – 1653.
dc.identifier.citedreferenceR. A. Petersen, D. H. Evans, J. Electroanal. Chem. 1987, 222, 129 – 150.
dc.identifier.citedreferenceR. B. Morris, K. F. Fischer, H. S. White, J. Phys. Chem. 1988, 92, 5306 – 5313.
dc.identifier.citedreferenceN. A. Macías-Ruvalcaba, D. H. Evans, J. Electroanal. Chem. 2011, 660, 243 – 246.
dc.identifier.citedreferenceX. Xing, Q. Liu, W. Xu, W. Liang, J. Liu, B. Wang, J. P. Lemmon, ACS Appl. Energ. Mater. 2019, 2, 2364 – 2369.
dc.identifier.citedreferenceV. V. Pavlishchuk, A. W. Addison, Inorg. Chim. Acta 2000, 298, 97 – 102.
dc.identifier.citedreferenceA. L. Speelman, J. G. Gillmore, J. Phys. Chem. A 2008, 112, 5684 – 5690.
dc.identifier.citedreferenceE. J. Lynch, A. L. Speelman, B. A. Curry, C. S. Murillo, J. G. Gillmore, J. Org. Chem. 2012, 77, 6423 – 6430.
dc.identifier.citedreferenceL. G. Gagliardi, C. B. Castells, C. Ràfols, M. Rosés, E. Bosch, J. Chem. Eng. Data 2007, 52, 1103 – 1107.
dc.identifier.citedreferenceN. H. Attanayake, J. A. Kowalski, K. V. Greco, M. D. Casselman, J. D. Milshtein, S. J. Chapman, S. R. Parkin, F. R. Brushett, S. A. Odom, Chem. Mater. 2019, 31, 4353 – 4363.
dc.identifier.citedreferenceC. Zhang, Z. Niu, Y. Ding, L. Zhang, Y. Zhou, X. Guo, X. Zhang, Y. Zhao, G. Yu, Chem 2018, 4, 2814 – 2825.
dc.identifier.citedreferenceX. Wei, W. Xu, J. Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W. A. Henderson, T. Liu, L. Cosimbescu, B. Li, V. Sprenkle, W. Wang, Angew. Chem. Int. Ed. 2015, 54, 8684 – 8687; Angew. Chem. 2015, 127, 8808 – 8811.
dc.identifier.citedreferenceW. Duan, J. Huang, J. A. Kowalski, I. A. Shkrob, M. Vijayakumar, E. Walter, B. Pan, Z. Yang, J. D. Milshtein, B. Li, C. Liao, Z. Zhang, W. Wang, J. Liu, J. S. Moore, F. R. Brushett, L. Zhang, X. Wei, ACS Energy Lett. 2017, 2, 1156 – 1161.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.