Show simple item record

Molecular testing of soft tissue tumors

dc.contributor.authorRottmann, Douglas
dc.contributor.authorAbdulfatah, Eman
dc.contributor.authorPantanowitz, Liron
dc.date.accessioned2023-01-11T16:24:02Z
dc.date.available2024-02-11 11:24:00en
dc.date.available2023-01-11T16:24:02Z
dc.date.issued2023-01
dc.identifier.citationRottmann, Douglas; Abdulfatah, Eman; Pantanowitz, Liron (2023). "Molecular testing of soft tissue tumors." Diagnostic Cytopathology 51(1): 12-25.
dc.identifier.issn8755-1039
dc.identifier.issn1097-0339
dc.identifier.urihttps://hdl.handle.net/2027.42/175449
dc.description.abstractBackgroundThe diagnosis of soft tissue tumors is challenging, especially when the evaluable material procured is limited. As a result, diagnostic ancillary testing is frequently needed. Moreover, there is a trend in soft tissue pathology toward increasing use of molecular results for tumor classification and prognostication. Hence, diagnosing newer tumor entities such as CIC-rearranged sarcoma explicitly requires molecular testing. Molecular testing can be accomplished by in situ hybridization, polymerase chain reaction, as well as next generation sequencing, and more recently such testing can even be accomplished leveraging an immunohistochemical proxy.ConclusionThis review evaluates the role of different molecular tests in characterizing soft tissue tumors belonging to various cytomorphologic categories that have been sampled by small biopsy and cytologic techniques.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherfluorescent in situ hybridization
dc.subject.othermolecular
dc.subject.othernext-generation sequencing
dc.subject.otherpolymerase chain reaction
dc.subject.othersarcoma
dc.subject.othersoft tissue
dc.subject.othercytopathology
dc.titleMolecular testing of soft tissue tumors
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175449/1/dc25013_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175449/2/dc25013.pdf
dc.identifier.doi10.1002/dc.25013
dc.identifier.sourceDiagnostic Cytopathology
dc.identifier.citedreferenceHollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011; 35 ( 10 ): e47 - e63.
dc.identifier.citedreferenceTsuda Y, Matsuyama A, Makihara K, et al. Nuclear expression of MDM2 in hibernoma: a potential diagnostic pitfall. Virchows Arch. 2021; 478 ( 3 ): 527 - 534.
dc.identifier.citedreferenceWeaver J, Downs-Kelly E, Goldblum JR, et al. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol. 2008; 21 ( 8 ): 943 - 949.
dc.identifier.citedreferenceKashima T, Halai D, Ye H, et al. Sensitivity of MDM2 amplification and unexpected multiple faint alphoid 12 (alpha 12 satellite sequences) signals in atypical lipomatous tumor. Mod Pathol. 2012; 25 ( 10 ): 1384 - 1396.
dc.identifier.citedreferenceWeaver J, Rao P, Goldblum JR, et al. Can MDM2 analytical tests performed on core needle biopsy be relied upon to diagnose well-differentiated liposarcoma? Mod Pathol. 2010; 23 ( 10 ): 1301 - 1306.
dc.identifier.citedreferenceSugiyama K, Washimi K, Sato S, et al. Differential diagnosis of lipoma and atypical lipomatous tumor/well-differentiated liposarcoma by cytological analysis. Diagn Cytopathol. 2022; 50 ( 3 ): 112 - 122.
dc.identifier.citedreferenceZhang W, McElhinny A, Nielsen A, et al. Automated brightfield dual-color in situ hybridization for detection of mouse double minute 2 gene amplification in sarcomas. Appl Immunohistochem Mol Morphol. 2011; 19 ( 1 ): 54 - 61.
dc.identifier.citedreferenceSasaki T, Ogose A, Kawashima H, et al. Real-time polymerase chain reaction analysis of MDM2 and CDK4 expression using total RNA from core-needle biopsies is useful for diagnosing adipocytic tumors. BMC Cancer. 2014; 14: 468.
dc.identifier.citedreferenceCreytens D, van Gorp J, Ferdinande L, Speel EJ, Libbrecht L. Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH). Appl Immunohistochem Mol Morphol. 2015; 23 ( 2 ): 126 - 133.
dc.identifier.citedreferenceKimura H, Dobashi Y, Nojima T, et al. Utility of fluorescence in situ hybridization to detect MDM2 amplification in liposarcomas and their morphological mimics. Int J Clin Exp Pathol. 2013; 6 ( 7 ): 1306 - 1316.
dc.identifier.citedreferenceSciot R. MDM2 amplified sarcomas: a literature review. Diagnostics (Basel). 2021; 11 ( 3 ):496.
dc.identifier.citedreferenceBerg SH, Massoud CM, Jackson-Cook C, Boikos SA, Smith SC, Mochel MC. A reappraisal of superficial pleomorphic liposarcoma. Am J Clin Pathol. 2020; 154 ( 3 ): 353 - 361.
dc.identifier.citedreferenceAnderson WJ, Jo VY. Pleomorphic liposarcoma: updates and current differential diagnosis. Semin Diagn Pathol. 2019; 36 ( 2 ): 122 - 128.
dc.identifier.citedreferenceWest RB, Rubin BP, Miller MA, et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci U S A. 2006; 103 ( 3 ): 690 - 695.
dc.identifier.citedreferencePanagopoulos I, Brandal P, Gorunova L, Bjerkehagen B, Heim S. Novel CSF1-S100A10 fusion gene and CSF1 transcript identified by RNA sequencing in tenosynovial giant cell tumors. Int J Oncol. 2014; 44 ( 5 ): 1425 - 1432.
dc.identifier.citedreferenceTsuda Y, Hirata M, Katayama K, et al. Massively parallel sequencing of tenosynovial giant cell tumors reveals novel CSF1 fusion transcripts and novel somatic CBL mutations. Int J Cancer. 2019; 145 ( 12 ): 3276 - 3284.
dc.identifier.citedreferenceMejbel H, Siegal GP, Wei S. Intramuscular tenosynovial giant cell tumor harboring a novel CSF1-CD96 fusion. Int J Surg Pathol. 2022; 30 ( 3 ): 335 - 338.
dc.identifier.citedreferenceVougiouklakis T, Shen G, Feng X, Hoda ST, Jour G. Molecular profiling of atypical tenosynovial giant cell tumors reveals novel non-CSF1 fusions. Cancers (Basel). 2019; 12 ( 1 ):100.
dc.identifier.citedreferenceNakayama S, Nishio J, Nakatani K, Nabeshima K, Yamamoto T. Giant cell tumor of tendon sheath with a t(1;1)(p13;p34) chromosomal translocation. Anticancer Res. 2020; 40 ( 8 ): 4373 - 4377.
dc.identifier.citedreferenceBaldi GG, Gronchi A, Stacchiotti S. Pexidartinib for the treatment of adult symptomatic patients with tenosynovial giant cell tumors. Expert Rev Clin Pharmacol. 2020; 13 ( 6 ): 571 - 576.
dc.identifier.citedreferenceLee JC, Liang CW, Fletcher CD. Giant cell tumor of soft tissue is genetically distinct from its bone counterpart. Mod Pathol. 2017; 30 ( 5 ): 728 - 733.
dc.identifier.citedreferenceMancini I, Righi A, Gambarotti M, et al. Phenotypic and molecular differences between giant-cell tumour of soft tissue and its bone counterpart. Histopathology. 2017; 71 ( 3 ): 453 - 460.
dc.identifier.citedreferenceAgaimy A, Michal M, Stoehr R, et al. Recurrent novel HMGA2-NCOR2 fusions characterize a subset of keratin-positive giant cell-rich soft tissue tumors. Mod Pathol. 2021; 34 ( 8 ): 1507 - 1520.
dc.identifier.citedreferenceAnderson WJ, Hornick JL. Immunohistochemical correlates of recurrent genetic alterations in sarcomas. Genes Chromosomes Cancer. 2019; 58 ( 2 ): 111 - 123.
dc.identifier.citedreferenceKoelsche C, Schrimpf D, Stichel D, et al. Sarcoma classification by DNA methylation profiling. Nat Commun. 2021; 12 ( 1 ): 498.
dc.identifier.citedreferenceThe WHO. Classification of Tumours Editorial Board, ed. Soft Tissue and Bone Tumours. 5th ed. International Agency for Research on Cancer (IARC); 2020.
dc.identifier.citedreferenceSzurian K, Kashofer K, Liegl-Atzwanger B. Role of next-generation sequencing as a diagnostic tool for the evaluation of bone and soft-tissue tumors. Pathobiology. 2017; 84 ( 6 ): 323 - 338.
dc.identifier.citedreferenceRacanelli D, Brenca M, Baldazzi D, et al. Next-generation sequencing approaches for the identification of pathognomonic fusion transcripts in sarcomas: the experience of the Italian ACC sarcoma working group. Front Oncol. 2020; 10: 489.
dc.identifier.citedreferenceCorless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011; 11 ( 12 ): 865 - 878.
dc.identifier.citedreferenceKotiligam D, Lazar AJ, Pollock RE, Lev D. Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol. 2008; 23 ( 1 ): 117 - 126.
dc.identifier.citedreferenceDelaney D, Diss TC, Presneau N, et al. GNAS1 mutations occur more commonly than previously thought in intramuscular myxoma. Mod Pathol. 2009; 22 ( 5 ): 718 - 724.
dc.identifier.citedreferenceJackson EM, Sievert AJ, Gai X, et al. Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res. 2009; 15 ( 6 ): 1923 - 1930.
dc.identifier.citedreferenceFletcher CD, Akerman M, Dal Cin P, et al. Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the chromosomes and morphology (CHAMP) collaborative study group. Am J Pathol. 1996; 148 ( 2 ): 623 - 630.
dc.identifier.citedreferenceThway K. Well-differentiated liposarcoma and dedifferentiated liposarcoma: An updated review. Semin Diagn Pathol. 2019; 36 ( 2 ): 112 - 121.
dc.identifier.citedreferenceMertens F, Antonescu CR, Mitelman F. Gene fusions in soft tissue tumors: recurrent and overlapping pathogenetic themes. Genes Chromosomes Cancer. 2016; 55 ( 4 ): 291 - 310.
dc.identifier.citedreferenceBennicelli JL, Barr FG. Chromosomal translocations and sarcomas. Curr Opin Oncol. 2002; 14 ( 4 ): 412 - 419.
dc.identifier.citedreferenceGreco A, Roccato E, Miranda C, Cleris L, Formelli F, Pierotti MA. Growth-inhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement. Int J Cancer. 2001; 92 ( 3 ): 354 - 360.
dc.identifier.citedreferenceTejpar S, Nollet F, Li C, et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene. 1999; 18 ( 47 ): 6615 - 6620.
dc.identifier.citedreferenceTrautmann M, Rehkämper J, Gevensleben H, et al. Novel pathogenic alterations in pediatric and adult desmoid-type fibromatosis - a systematic analysis of 204 cases. Sci Rep. 2020; 10 ( 1 ): 3368.
dc.identifier.citedreferenceBhattacharya B, Dilworth HP, Iacobuzio-Donahue C, et al. Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol. 2005; 29 ( 5 ): 653 - 659.
dc.identifier.citedreferenceAn J, Woo HY, Lee Y, Kim HS, Jeong J, Kim SK. Clinicopathological features of 70 desmoid-type fibromatoses confirmed by β-catenin immunohistochemical staining and CTNNB1 mutation analysis. PLoS One. 2021; 16 ( 4 ): e0250619.
dc.identifier.citedreferenceSaito T, Oda Y, Tanaka K, et al. Beta-catenin nuclear expression correlates with cyclin D1 overexpression in sporadic desmoid tumours. J Pathol. 2001; 195 ( 2 ): 222 - 228.
dc.identifier.citedreferenceAndino L, Cagle PT, Murer B, et al. Pleuropulmonary desmoid tumors: immunohistochemical comparison with solitary fibrous tumors and assessment of beta-catenin and cyclin D1 expression. Arch Pathol Lab Med. 2006; 130 ( 10 ): 1503 - 1509.
dc.identifier.citedreferenceJilong Y, Jian W, Xiaoyan Z, Xiaoqiu L, Xiongzeng Z. Analysis of APC/beta-catenin genes mutations and Wnt signalling pathway in desmoid-type fibromatosis. Pathology. 2007; 39 ( 3 ): 319 - 325.
dc.identifier.citedreferenceColombo C, Foo WC, Whiting D, et al. FAP-related desmoid tumors: a series of 44 patients evaluated in a cancer referral center. Histol Histopathol. 2012; 27 ( 5 ): 641 - 649.
dc.identifier.citedreferenceTimbergen MJM, Colombo C, Renckens M, et al. The prognostic role of β-catenin mutations in desmoid-type fibromatosis undergoing resection only: a meta-analysis of individual patient data. Ann Surg. 2021; 273 ( 6 ): 1094 - 1101.
dc.identifier.citedreferenceGuo L, Wang X, Xu B, Lang R, Hu B. Prognostic significance of CTNNB1 mutation in recurrence of sporadic desmoid tumors. Future Oncol. 2021; 17 ( 4 ): 435 - 442.
dc.identifier.citedreferenceKoike H, Nishida Y, Kohno K, et al. Is immunohistochemical staining for β-catenin the definitive pathological diagnostic tool for desmoid-type fibromatosis? A multi-institutional study. Hum Pathol. 2019; 84: 155 - 163.
dc.identifier.citedreferenceYamada Y, Hirata M, Sakamoto A, et al. A comparison of the usefulness of nuclear beta-catenin in the diagnosis of desmoid-type fibromatosis among commonly used anti-beta-catenin antibodies. Pathol Int. 2021; 71 ( 6 ): 392 - 399.
dc.identifier.citedreferenceErickson-Johnson MR, Chou MM, Evers BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest. 2011; 91 ( 10 ): 1427 - 1433.
dc.identifier.citedreferenceShin C, Low I, Ng D, Oei P, Miles C, Symmans P. USP6 gene rearrangement in nodular fasciitis and histological mimics. Histopathology. 2016; 69 ( 5 ): 784 - 791.
dc.identifier.citedreferenceSápi Z, Lippai Z, Papp G, et al. Nodular fasciitis: a comprehensive, time-correlated investigation of 17 cases. Mod Pathol. 2021; 34 ( 12 ): 2192 - 2199.
dc.identifier.citedreferenceHiemcke-Jiwa LS, van Gorp JM, Fisher C, Creytens D, van Diest PJ, Flucke U. USP6-associated neoplasms: a rapidly expanding family of lesions. Int J Surg Pathol. 2020; 28 ( 8 ): 816 - 825.
dc.identifier.citedreferenceDemicco EG, Wagner MJ, Maki RG, et al. Risk assessment in solitary fibrous tumors: validation and refinement of a risk stratification model. Mod Pathol. 2017; 30 ( 10 ): 1433 - 1442.
dc.identifier.citedreferenceGuseva NV, Tanas MR, Stence AA, et al. The NAB2-STAT6 gene fusion in solitary fibrous tumor can be reliably detected by anchored multiplexed PCR for targeted next-generation sequencing. Cancer Genet. 2016; 209 ( 7–8 ): 303 - 312.
dc.identifier.citedreferenceKao YC, Lin PC, Yen SL, et al. Clinicopathological and genetic heterogeneity of the head and neck solitary fibrous tumours: a comparative histological, immunohistochemical and molecular study of 36 cases. Histopathology. 2016; 68 ( 4 ): 492 - 501.
dc.identifier.citedreferenceWakely PE, Rekhi B. Cytopathology of solitary fibrous tumor: a series of 34 cases. J Am Soc Cytopathol. 2021; 10 ( 4 ): 382 - 390.
dc.identifier.citedreferenceOlson NJ, Linos K. Dedifferentiated solitary fibrous tumor: a concise review. Arch Pathol Lab Med. 2018; 142 ( 6 ): 761 - 766.
dc.identifier.citedreferenceDagrada GP, Spagnuolo RD, Mauro V, et al. Solitary fibrous tumors: loss of chimeric protein expression and genomic instability mark dedifferentiation. Mod Pathol. 2015; 28 ( 8 ): 1074 - 1083.
dc.identifier.citedreferenceAkaike K, Kurisaki-Arakawa A, Hara K, et al. Distinct clinicopathological features of NAB2-STAT6 fusion gene variants in solitary fibrous tumor with emphasis on the acquisition of highly malignant potential. Hum Pathol. 2015; 46 ( 3 ): 347 - 356.
dc.identifier.citedreferenceTai HC, Chuang IC, Chen TC, et al. NAB2-STAT6 fusion types account for clinicopathological variations in solitary fibrous tumors. Mod Pathol. 2015; 28 ( 10 ): 1324 - 1335.
dc.identifier.citedreferenceHuang SC, Li CF, Kao YC, et al. The clinicopathological significance of NAB2-STAT6 gene fusions in 52 cases of intrathoracic solitary fibrous tumors. Cancer Med. 2016; 5 ( 2 ): 159 - 168.
dc.identifier.citedreferenceChuang IC, Liao KC, Huang HY, et al. NAB2-STAT6 gene fusion and STAT6 immunoexpression in extrathoracic solitary fibrous tumors: the association between fusion variants and locations. Pathol Int. 2016; 66 ( 5 ): 288 - 296.
dc.identifier.citedreferenceMachado I, Morales GN, Cruz J, et al. Solitary fibrous tumor: a case series identifying pathological adverse factors-implications for risk stratification and classification. Virchows Arch. 2020; 476 ( 4 ): 597 - 607.
dc.identifier.citedreferenceSalguero-Aranda C, Martínez-Reguera P, Marcilla D, de Álava E, Díaz-Martín J. Evaluation of NAB2-STAT6 fusion variants and other molecular alterations as prognostic biomarkers in a case series of 83 solitary fibrous tumors. Cancers (Basel). 2021; 13 ( 20 ):5237.
dc.identifier.citedreferenceSegura S, Salgado R, Toll A, et al. Identification of t(17;22)(q22;q13) (COL1A1/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. Hum Pathol. 2011; 42 ( 2 ): 176 - 184.
dc.identifier.citedreferenceZhang Z, Chen H, Chen M, He X, Wang Y, Zhang H. Application of COL1A1-PDGFB fusion gene detection by fluorescence in situ hybridization in biopsy tissue of dermatofibrosarcoma protuberans. J Dermatol. 2017; 44 ( 7 ): 798 - 802.
dc.identifier.citedreferenceCloutier JM, Allard G, Bean GR, Hornick JL, Charville GW. PDGFB RNA in situ hybridization for the diagnosis of dermatofibrosarcoma protuberans. Mod Pathol. 2021; 34 ( 8 ): 1521 - 1529.
dc.identifier.citedreferenceDadone-Montaudié B, Alberti L, Duc A, et al. Alternative PDGFD rearrangements in dermatofibrosarcomas protuberans without PDGFB fusions. Mod Pathol. 2018; 31 ( 11 ): 1683 - 1693.
dc.identifier.citedreferenceLiang CA, Jambusaria-Pahlajani A, Karia PS, Elenitsas R, Zhang PD, Schmults CD. A systematic review of outcome data for dermatofibrosarcoma protuberans with and without fibrosarcomatous change. J Am Acad Dermatol. 2014; 71 ( 4 ): 781 - 786.
dc.identifier.citedreferenceHisaoka M, Okamoto S, Morimitsu Y, Tsuji S, Hashimoto H. Dermatofibrosarcoma protuberans with fibrosarcomatous areas. Molecular abnormalities of the p53 pathway in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Virchows Arch. 1998; 433 ( 4 ): 323 - 329.
dc.identifier.citedreferenceTakahira T, Oda Y, Tamiya S, et al. Microsatellite instability and p53 mutation associated with tumor progression in dermatofibrosarcoma protuberans. Hum Pathol. 2004; 35 ( 2 ): 240 - 245.
dc.identifier.citedreferenceGriffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999; 59 ( 12 ): 2776 - 2780.
dc.identifier.citedreferenceCoffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007; 31 ( 4 ): 509 - 520.
dc.identifier.citedreferenceYamamoto H. Inflammatory myofibroblastic tumor. The WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours. 5th ed. International Agency for Research on Cancer (IARC); 2020: 109 - 111.
dc.identifier.citedreferenceSolomon JP, Linkov I, Rosado A, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020; 33 ( 1 ): 38 - 46.
dc.identifier.citedreferenceBrčić I, Godschachner TM, Bergovec M, et al. Broadening the spectrum of NTRK rearranged mesenchymal tumors and usefulness of pan-TRK immunohistochemistry for identification of NTRK fusions. Mod Pathol. 2021; 34 ( 2 ): 396 - 407.
dc.identifier.citedreferenceFederman N, McDermott R. Larotrectinib, a highly selective tropomyosin receptor kinase (TRK) inhibitor for the treatment of TRK fusion cancer. Expert Rev Clin Pharmacol. 2019; 12 ( 10 ): 931 - 939.
dc.identifier.citedreferenceBian LG, Sun QF, Tirakotai W, et al. Loss of heterozygosity on chromosome 22 in sporadic schwannoma and its relation to the proliferation of tumor cells. Chin Med J (Engl). 2005; 118 ( 18 ): 1517 - 1524.
dc.identifier.citedreferenceHilton DA, Hanemann CO. Schwannomas and their pathogenesis. Brain Pathol. 2014; 24 ( 3 ): 205 - 220.
dc.identifier.citedreferenceStorlazzi CT, Von Steyern FV, Domanski HA, Mandahl N, Mertens F. Biallelic somatic inactivation of the NF1 gene through chromosomal translocations in a sporadic neurofibroma. Int J Cancer. 2005; 117 ( 6 ): 1055 - 1057.
dc.identifier.citedreferenceDe Raedt T, Maertens O, Chmara M, et al. Somatic loss of wild type NF1 allele in neurofibromas: comparison of NF1 microdeletion and non-microdeletion patients. Genes Chromosomes Cancer. 2006; 45 ( 10 ): 893 - 904.
dc.identifier.citedreferenceCarter JM, Wu Y, Blessing MM, et al. Recurrent genomic alterations in soft tissue perineuriomas. Am J Surg Pathol. 2018; 42 ( 12 ): 1708 - 1714.
dc.identifier.citedreferenceKlein CJ, Wu Y, Jentoft ME, et al. Genomic analysis reveals frequent TRAF7 mutations in intraneural perineuriomas. Ann Neurol. 2017; 81 ( 2 ): 316 - 321.
dc.identifier.citedreferenceNihous H, Baud J, Azmani R, et al. Clinicopathologic and molecular study of hybrid nerve sheath tumors reveals their common association with fusions involving VGLL3. Am J Surg Pathol. 2022; 46 ( 5 ): 591 - 602.
dc.identifier.citedreferenceLee W, Teckie S, Wiesner T, et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 2014; 46 ( 11 ): 1227 - 1232.
dc.identifier.citedreferenceZhang X, Murray B, Mo G, Shern JF. The role of polycomb repressive complex in malignant peripheral nerve sheath tumor. Genes (Basel). 2020; 11 ( 3 ):287.
dc.identifier.citedreferenceOtsuka H, Kohashi K, Yoshimoto M, et al. Immunohistochemical evaluation of H3K27 trimethylation in malignant peripheral nerve sheath tumors. Pathol Res Pract. 2018; 214 ( 3 ): 417 - 425.
dc.identifier.citedreferenceMarchione DM, Lisby A, Viaene AN, et al. Histone H3K27 dimethyl loss is highly specific for malignant peripheral nerve sheath tumor and distinguishes true PRC2 loss from isolated H3K27 trimethyl loss. Mod Pathol. 2019; 32 ( 10 ): 1434 - 1446.
dc.identifier.citedreferenceRöhrich M, Koelsche C, Schrimpf D, et al. Methylation-based classification of benign and malignant peripheral nerve sheath tumors. Acta Neuropathol. 2016; 131 ( 6 ): 877 - 887.
dc.identifier.citedreferenceCrew AJ, Clark J, Fisher C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J. 1995; 14 ( 10 ): 2333 - 2340.
dc.identifier.citedreferenceSkytting B, Nilsson G, Brodin B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 1999; 91 ( 11 ): 974 - 975.
dc.identifier.citedreferenceSurace C, Panagopoulos I, Pålsson E, Rocchi M, Mandahl N, Mertens F. A novel FISH assay for SS18-SSX fusion type in synovial sarcoma. Lab Invest. 2004; 84 ( 9 ): 1185 - 1192.
dc.identifier.citedreferenceSrinivasan R, Gautam U, Gupta R, Rajwanshi A, Vasistha RK. Synovial sarcoma: diagnosis on fine-needle aspiration by morphology and molecular analysis. Cancer. 2009; 117 ( 2 ): 128 - 136.
dc.identifier.citedreferenceZhang Y, Wessman S, Wejde J, Tani E, Haglund F. Diagnosing synovial sarcoma by fine-needle aspiration cytology and molecular techniques. Cytopathology. 2019; 30 ( 5 ): 504 - 509.
dc.identifier.citedreferenceBaranov E, McBride MJ, Bellizzi AM, et al. A novel SS18-SSX fusion-specific antibody for the diagnosis of synovial sarcoma. Am J Surg Pathol. 2020; 44 ( 7 ): 922 - 933.
dc.identifier.citedreferenceZaborowski M, Vargas AC, Pulvers J, et al. When used together SS18-SSX fusion-specific and SSX C-terminus immunohistochemistry are highly specific and sensitive for the diagnosis of synovial sarcoma and can replace FISH or molecular testing in most cases. Histopathology. 2020; 77 ( 4 ): 588 - 600.
dc.identifier.citedreferenceTahara S, Kohara M, Honma K, Morii E. Detection of synovial sarcoma with an atypical fusion transcript by using SS18-SSX and SSX antibodies. Pathol Int. 2020; 70 ( 9 ): 689 - 691.
dc.identifier.citedreferenceTay TKY, Sukma NB, Lim TH, Kuick CH, Goh JY, Chang KTE. Correlating SS18-SSX immunohistochemistry (IHC) with SS18 fluorescent in situ hybridization (FISH) in synovial sarcomas: a study of 36 cases. Virchows Arch. 2021; 479 ( 4 ): 785 - 793.
dc.identifier.citedreferenceMiettinen M, Wang ZF, Lasota J. DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am J Surg Pathol. 2009; 33 ( 9 ): 1401 - 1408.
dc.identifier.citedreferenceFatima N, Cohen C, Siddiqui MT. DOG1 utility in diagnosing gastrointestinal stromal tumors on fine-needle aspiration. Cancer Cytopathol. 2011; 119 ( 3 ): 202 - 208.
dc.identifier.citedreferenceBrčić I, Argyropoulos A, Liegl-Atzwanger B. Update on molecular genetics of gastrointestinal stromal tumors. Diagnostics (Basel). 2021; 11 ( 2 ):194.
dc.identifier.citedreferenceMiranda C, Nucifora M, Molinari F, et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2012; 18 ( 6 ): 1769 - 1776.
dc.identifier.citedreferenceMiettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol. 2011; 35 ( 11 ): 1712 - 1721.
dc.identifier.citedreferenceAgaimy A, Otto C, Braun A, Geddert H, Schaefer IM, Haller F. Value of epithelioid morphology and PDGFRA immunostaining pattern for prediction of PDGFRA mutated genotype in gastrointestinal stromal tumors (GISTs). Int J Clin Exp Pathol. 2013; 6 ( 9 ): 1839 - 1846.
dc.identifier.citedreferencePapke DJ, Forgó E, Charville GW, Hornick JL. PDGFRA immunohistochemistry predicts PDGFRA mutations in gastrointestinal stromal tumors. Am J Surg Pathol. 2022; 46 ( 1 ): 3 - 10.
dc.identifier.citedreferenceRossi S, Sbaraglia M, Dell’Orto MC, et al. Concomitant KIT/BRAF and PDGFRA/BRAF mutations are rare events in gastrointestinal stromal tumors. Oncotarget. 2016; 7 ( 21 ): 30109 - 30118.
dc.identifier.citedreferenceCastillon M, Kammerer-Jacquet SF, Cariou M, et al. Fluorescent in situ hybridization must be preferred to pan-TRK immunohistochemistry to diagnose NTRK3-rearranged gastrointestinal stromal tumors (GIST). Appl Immunohistochem Mol Morphol. 2021; 29 ( 8 ): 626 - 634.
dc.identifier.citedreferenceBaranov E, Black MA, Fletcher CDM, Charville GW, Hornick JL. Nuclear expression of DDIT3 distinguishes high-grade myxoid liposarcoma from other round cell sarcomas. Mod Pathol. 2021; 34 ( 7 ): 1367 - 1372.
dc.identifier.citedreferenceScapa JV, Cloutier JM, Raghavan SS, Peters-Schulze G, Varma S, Charville GW. DDIT3 immunohistochemistry is a useful tool for the diagnosis of myxoid liposarcoma. Am J Surg Pathol. 2021; 45 ( 2 ): 230 - 239.
dc.identifier.citedreferenceDowns-Kelly E, Goldblum JR, Patel RM, et al. The utility of fluorescence in situ hybridization (FISH) in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol. 2008; 32 ( 1 ): 8 - 13.
dc.identifier.citedreferenceNarendra S, Valente A, Tull J, Zhang S. DDIT3 gene break-apart as a molecular marker for diagnosis of myxoid liposarcoma–assay validation and clinical experience. Diagn Mol Pathol. 2011; 20 ( 4 ): 218 - 224.
dc.identifier.citedreferenceWakely PE, Jin M. Myxoid liposarcoma: fine-needle aspiration cytopathology in the molecular era. A report of 24 cases. J Am Soc Cytopathol. 2016; 5 ( 3 ): 162 - 169.
dc.identifier.citedreferenceMantilla JG, Ricciotti RW, Chen EY, Liu YJ, Hoch BL. Amplification of DNA damage-inducible transcript 3 (DDIT3) is associated with myxoid liposarcoma-like morphology and homologous lipoblastic differentiation in dedifferentiated liposarcoma. Mod Pathol. 2019; 32 ( 4 ): 585 - 592.
dc.identifier.citedreferenceKuczkiewicz-Siemion O, Wiśniewski P, Dansonka-Mieszkowska A, et al. The utility of fluorescence in situ hybridization (FISH) in determining DNA damage-inducible transcript 3 (DDIT3) amplification in dedifferentiated liposarcomas - an important diagnostic pitfall. Pathol Res Pract. 2021; 225: 153555.
dc.identifier.citedreferencePowers MP, Wang WL, Hernandez VS, et al. Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol. 2010; 23 ( 10 ): 1307 - 1315.
dc.identifier.citedreferenceMoller E, Hornick JL, Magnusson L, Veerla S, Domanski HA, Mertens F. FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1. Clin Cancer Res. 2011; 17 ( 9 ): 2646 - 2656.
dc.identifier.citedreferencePatel RM, Downs-Kelly E, Dandekar MN, et al. FUS (16p11) gene rearrangement as detected by fluorescence in-situ hybridization in cutaneous low-grade fibromyxoid sarcoma: a potential diagnostic tool. Am J Dermatopathol. 2011; 33 ( 2 ): 140 - 143.
dc.identifier.citedreferenceAntonescu CR, Argani P, Erlandson RA, Healey JH, Ladanyi M, Huvos AG. Skeletal and extraskeletal myxoid chondrosarcoma: a comparative clinicopathologic, ultrastructural, and molecular study. Cancer. 1998; 83 ( 8 ): 1504 - 1521.
dc.identifier.citedreferenceHaller F, Skálová A, Ihrler S, et al. Nuclear NR4A3 immunostaining is a specific and sensitive novel marker for Acinic cell carcinoma of the salivary glands. Am J Surg Pathol. 2019; 43 ( 9 ): 1264 - 1272.
dc.identifier.citedreferenceSkaugen JM, Seethala RR, Chiosea SI, Landau MS. Evaluation of NR4A3 immunohistochemistry (IHC) and fluorescence in situ hybridization and comparison with DOG1 IHC for FNA diagnosis of acinic cell carcinoma. Cancer Cytopathol. 2021; 129 ( 2 ): 104 - 113.
dc.identifier.citedreferenceVargas AC, Maclean FM, Bonar F, Mahar A, Gill AJ. NR4A3 immunohistochemistry lacks sensitivity for the diagnosis of Extraskeletal Myxoid chondrosarcoma. Am J Surg Pathol. 2019; 43 ( 12 ): 1726 - 1728.
dc.identifier.citedreferenceWang WL, Mayordomo E, Czerniak BA, et al. Fluorescence in situ hybridization is a useful ancillary diagnostic tool for extraskeletal myxoid chondrosarcoma. Mod Pathol. 2008; 21 ( 11 ): 1303 - 1310.
dc.identifier.citedreferenceWakely PE. Extraskeletal myxoid chondrosarcoma: combining cytopathology with molecular testing to achieve diagnostic accuracy. J Am Soc Cytopathol. 2021; 10 ( 3 ): 293 - 299.
dc.identifier.citedreferenceNoguchi H, Mitsuhashi T, Seki K, et al. Fluorescence in situ hybridization analysis of extraskeletal myxoid chondrosarcomas using EWSR1 and NR4A3 probes. Hum Pathol. 2010; 41 ( 3 ): 336 - 342.
dc.identifier.citedreferencePaioli A, Stacchiotti S, Campanacci D, et al. Extraskeletal myxoid chondrosarcoma with molecularly confirmed diagnosis: a multicenter retrospective study within the Italian sarcoma group. Ann Surg Oncol. 2021; 28 ( 2 ): 1142 - 1150.
dc.identifier.citedreferenceFolpe AL, Hill CE, Parham DM, O’Shea PA, Weiss SW. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol. 2000; 24 ( 12 ): 1657 - 1662.
dc.identifier.citedreferenceWang WL, Patel NR, Caragea M, et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol. 2012; 25 ( 10 ): 1378 - 1383.
dc.identifier.citedreferenceTomlins SA, Palanisamy N, Brenner JC, et al. Usefulness of a monoclonal ERG/FLI1 antibody for immunohistochemical discrimination of Ewing family tumors. Am J Clin Pathol. 2013; 139 ( 6 ): 771 - 779.
dc.identifier.citedreferenceFolpe AL, Chand EM, Goldblum JR, Weiss SW. Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol. 2001; 25 ( 8 ): 1061 - 1066.
dc.identifier.citedreferenceMiettinen M, Wang ZF, Paetau A, et al. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol. 2011; 35 ( 3 ): 432 - 441.
dc.identifier.citedreferenceStockman DL, Hornick JL, Deavers MT, Lev DC, Lazar AJ, Wang WL. ERG and FLI1 protein expression in epithelioid sarcoma. Mod Pathol. 2014; 27 ( 4 ): 496 - 501.
dc.identifier.citedreferenceChen S, Deniz K, Sung YS, Zhang L, Dry S, Antonescu CR. Ewing sarcoma with ERG gene rearrangements: a molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer. 2016; 55 ( 4 ): 340 - 349.
dc.identifier.citedreferenceRodríguez-Martín C, Alonso J. Molecular approaches to diagnosis in Ewing sarcoma: RT-PCR. Methods Mol Biol. 2021; 2226: 85 - 103.
dc.identifier.citedreferenceUeno-Yokohata H, Okita H, Nakasato K, et al. Establishment of multiplex RT-PCR to detect fusion genes for the diagnosis of Ewing sarcoma. Diagn Pathol. 2021; 16 ( 1 ): 102.
dc.identifier.citedreferenceLe Loarer F, Szuhai K, Tirode F. Round cell sarcoma with EWSR1–non-ETS fusions. Soft Tissue and Bone Tumours. 5th ed. International Agency for Research on Cancer (IARC); 2020: 326 - 329.
dc.identifier.citedreferenceKoelsche C, Kriegsmann M, Kommoss FKF, et al. DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1-NFATc2 fusion from Ewing sarcoma. J Cancer Res Clin Oncol. 2019; 145 ( 5 ): 1273 - 1281.
dc.identifier.citedreferenceAntonescu CR, Owosho AA, Zhang L, et al. Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am J Surg Pathol. 2017; 41 ( 7 ): 941 - 949.
dc.identifier.citedreferenceSiegele B, Roberts J, Black JO, Rudzinski E, Vargas SO, Galambos C. DUX4 immunohistochemistry is a highly sensitive and specific marker for CIC-DUX4 fusion-positive round cell tumor. Am J Surg Pathol. 2017; 41 ( 3 ): 423 - 429.
dc.identifier.citedreferenceLe Guellec S, Velasco V, Pérot G, Watson S, Tirode F, Coindre JM. ETV4 is a useful marker for the diagnosis of CIC-rearranged undifferentiated round-cell sarcomas: a study of 127 cases including mimicking lesions. Mod Pathol. 2016; 29 ( 12 ): 1523 - 1531.
dc.identifier.citedreferenceCocchi S, Gamberi G, Magagnoli G, et al. CIC rearranged sarcomas: a single institution experience of the potential pitfalls in interpreting CIC FISH results. Pathol Res Pract. 2022; 231: 153773.
dc.identifier.citedreferenceKao YC, Owosho AA, Sung YS, et al. BCOR-CCNB3 fusion positive sarcomas: a clinicopathologic and molecular analysis of 36 cases with comparison to morphologic spectrum and clinical behavior of other round cell sarcomas. Am J Surg Pathol. 2018; 42 ( 5 ): 604 - 615.
dc.identifier.citedreferenceLi L, Zhang M, Chen S, et al. Detection of BCOR gene rearrangement in Ewing-like sarcoma: an important diagnostic tool. Diagn Pathol. 2021; 16 ( 1 ): 50.
dc.identifier.citedreferenceAzorsa DO, Bode PK, Wachtel M, et al. Immunohistochemical detection of PAX-FOXO1 fusion proteins in alveolar rhabdomyosarcoma using breakpoint specific monoclonal antibodies. Mod Pathol. 2021; 34 ( 4 ): 748 - 757.
dc.identifier.citedreferenceMissiaglia E, Williamson D, Chisholm J, et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol. 2012; 30 ( 14 ): 1670 - 1677.
dc.identifier.citedreferenceKubo T, Shimose S, Fujimori J, Furuta T, Ochi M. Prognostic value of PAX3/7-FOXO1 fusion status in alveolar rhabdomyosarcoma: systematic review and meta-analysis. Crit Rev Oncol Hematol. 2015; 96 ( 1 ): 46 - 53.
dc.identifier.citedreferenceHill DA, Pfeifer JD, Marley EF, et al. WT1 staining reliably differentiates desmoplastic small round cell tumor from Ewing sarcoma/primitive neuroectodermal tumor. An immunohistochemical and molecular diagnostic study. Am J Clin Pathol. 2000; 114 ( 3 ): 345 - 353.
dc.identifier.citedreferenceBarnoud R, Sabourin JC, Pasquier D, et al. Immunohistochemical expression of WT1 by desmoplastic small round cell tumor: a comparative study with other small round cell tumors. Am J Surg Pathol. 2000; 24 ( 6 ): 830 - 836.
dc.identifier.citedreferenceSchoolmeester JK, Folpe AL, Nair AA, et al. EWSR1-WT1 gene fusions in neoplasms other than desmoplastic small round cell tumor: a report of three unusual tumors involving the female genital tract and review of the literature. Mod Pathol. 2021; 34 ( 10 ): 1912 - 1920.
dc.identifier.citedreferenceWang L, Motoi T, Khanin R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer. 2012; 51 ( 2 ): 127 - 139.
dc.identifier.citedreferenceNyquist KB, Panagopoulos I, Thorsen J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One. 2012; 7 ( 11 ): e49705.
dc.identifier.citedreferenceNakayama R, Miura Y, Ogino J, et al. Detection of HEY1-NCOA2 fusion by fluorescence in-situ hybridization in formalin-fixed paraffin-embedded tissues as a possible diagnostic tool for mesenchymal chondrosarcoma. Pathol Int. 2012; 62 ( 12 ): 823 - 826.
dc.identifier.citedreferenceHornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009; 33 ( 4 ): 542 - 550.
dc.identifier.citedreferencePawel BR. SMARCB1-deficient tumors of childhood: a practical guide. Pediatr Dev Pathol. 2018; 21 ( 1 ): 6 - 28.
dc.identifier.citedreferenceSullivan LM, Folpe AL, Pawel BR, Judkins AR, Biegel JA. Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions. Mod Pathol. 2013; 26 ( 3 ): 385 - 392.
dc.identifier.citedreferenceRousseau-Merck MF, Versteege I, Legrand I, et al. hSNF5/INI1 inactivation is mainly associated with homozygous deletions and mitotic recombinations in rhabdoid tumors. Cancer Res. 1999; 59 ( 13 ): 3152 - 3156.
dc.identifier.citedreferenceKohashi K, Yamada Y, Hotokebuchi Y, et al. ERG and SALL4 expressions in SMARCB1/INI1-deficient tumors: a useful tool for distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol. 2015; 46 ( 2 ): 225 - 230.
dc.identifier.citedreferenceShibuya R, Matsuyama A, Shiba E, Harada H, Yabuki K, Hisaoka M. CAMTA1 is a useful immunohistochemical marker for diagnosing epithelioid haemangioendothelioma. Histopathology. 2015; 67 ( 6 ): 827 - 835.
dc.identifier.citedreferenceDoyle LA, Fletcher CD, Hornick JL. Nuclear expression of CAMTA1 distinguishes epithelioid hemangioendothelioma from histologic mimics. Am J Surg Pathol. 2016; 40 ( 1 ): 94 - 102.
dc.identifier.citedreferenceYusıflı Z, Kösemehmetoğlu K. CAMTA1 immunostaining is not useful in differentiating epithelioid hemangioendothelioma from its potential mimickers. Turk Patoloji Derg. 2014; 30 ( 3 ): 159 - 165.
dc.identifier.citedreferenceYang P, Zhang S, Yu C, et al. Fluorescence in situ hybridization for WWTR1-CAMTA1 has higher sensitivity and specificity for epithelioid hemangioendothelioma diagnosis. Am J Transl Res. 2020; 12 ( 8 ): 4561 - 4568.
dc.identifier.citedreferenceAntonescu CR, Le Loarer F, Mosquera JM, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer. 2013; 52 ( 8 ): 775 - 784.
dc.identifier.citedreferenceAnderson WJ, Fletcher CDM, Hornick JL. Loss of expression of YAP1 C-terminus as an ancillary marker for epithelioid hemangioendothelioma variant with YAP1-TFE3 fusion and other YAP1-related vascular neoplasms. Mod Pathol. 2021; 34 ( 11 ): 2036 - 2042.
dc.identifier.citedreferenceRosenbaum E, Jadeja B, Xu B, et al. Prognostic stratification of clinical and molecular epithelioid hemangioendothelioma subsets. Mod Pathol. 2020; 33 ( 4 ): 591 - 602.
dc.identifier.citedreferenceChung EB, Enzinger FM. Malignant melanoma of soft parts. A reassessment of clear cell sarcoma. Am J Surg Pathol. 1983; 7 ( 5 ): 405 - 413.
dc.identifier.citedreferenceWang WL, Mayordomo E, Zhang W, et al. Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol. 2009; 22 ( 9 ): 1201 - 1209.
dc.identifier.citedreferenceThway K, Fisher C. Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status. Am J Surg Pathol. 2012; 36 ( 7 ): e1 - e11.
dc.identifier.citedreferenceHocar O, Le Cesne A, Berissi S, et al. Clear cell sarcoma (malignant melanoma) of soft parts: a clinicopathologic study of 52 cases. Dermatol Res Pract. 2012; 2012: 984096.
dc.identifier.citedreferenceRekhi B, Ingle A, Agarwal M, Puri A, Laskar S, Jambhekar NA. Alveolar soft part sarcoma ’revisited’: clinicopathological review of 47 cases from a tertiary cancer referral centre, including immunohistochemical expression of TFE3 in 22 cases and 21 other tumours. Pathology. 2012; 44 ( 1 ): 11 - 17.
dc.identifier.citedreferenceRekhi B, Rao V, Ramadwar M. Revisiting cytomorphology, including unusual features and clinical scenarios of 8 cases of alveolar soft part sarcoma with TFE3 immunohistochemical staining in 7 cases. Cytopathology. 2021; 32 ( 1 ): 20 - 28.
dc.identifier.citedreferenceTretiakova MS, Wang W, Wu Y, Tykodi SS, True L, Liu YJ. Gene fusion analysis in renal cell carcinoma by FusionPlex RNA-sequencing and correlations of molecular findings with clinicopathological features. Genes Chromosomes Cancer. 2020; 59 ( 1 ): 40 - 49.
dc.identifier.citedreferenceSchaefer IM, Dong F, Garcia EP, Fletcher CDM, Jo VY. Recurrent SMARCB1 inactivation in epithelioid malignant peripheral nerve sheath tumors. Am J Surg Pathol. 2019; 43 ( 6 ): 835 - 843.
dc.identifier.citedreferenceJo VY, Fletcher CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol. 2015; 39 ( 5 ): 673 - 682.
dc.identifier.citedreferenceDodd LG. Update on liposarcoma: a review for cytopathologists. Diagn Cytopathol. 2012; 40 ( 12 ): 1122 - 1131.
dc.identifier.citedreferenceChen BJ, Mariño-Enríquez A, Fletcher CD, Hornick JL. Loss of retinoblastoma protein expression in spindle cell/pleomorphic lipomas and cytogenetically related tumors: an immunohistochemical study with diagnostic implications. Am J Surg Pathol. 2012; 36 ( 8 ): 1119 - 1128.
dc.identifier.citedreferenceCreytens D, Mentzel T, Ferdinande L, et al. "atypical" pleomorphic lipomatous tumor: a clinicopathologic, Immunohistochemical and molecular study of 21 cases, emphasizing its relationship to atypical spindle cell lipomatous tumor and suggesting a morphologic spectrum (atypical spindle cell/pleomorphic lipomatous tumor). Am J Surg Pathol. 2017; 41 ( 11 ): 1443 - 1455.
dc.identifier.citedreferenceDei Tos AP, Doglioni C, Piccinin S, et al. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol. 2000; 190 ( 5 ): 531 - 536.
dc.identifier.citedreferenceSirvent N, Coindre JM, Maire G, et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007; 31 ( 10 ): 1476 - 1489.
dc.identifier.citedreferenceClay MR, Martinez AP, Weiss SW, Edgar MA. MDM2 and CDK4 immunohistochemistry: should it be used in problematic differentiated lipomatous tumors?: a new perspective. Am J Surg Pathol. 2016; 40 ( 12 ): 1647 - 1652.
dc.identifier.citedreferenceMachado I, Vargas AC, Maclean F, Llombart-Bosch A. Negative MDM2/CDK4 immunoreactivity does not fully exclude MDM2/CDK4 amplification in a subset of atypical lipomatous tumor/well differentiated liposarcoma. Pathol Res Pract. 2022; 232: 153839.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.