Show simple item record

Superior Metal-Organic Framework Activation with Dimethyl Ether

dc.contributor.authorWright, Keenan R.
dc.contributor.authorNath, Karabi
dc.contributor.authorMatzger, Adam J.
dc.date.accessioned2023-01-11T16:24:31Z
dc.date.available2024-01-11 11:24:29en
dc.date.available2023-01-11T16:24:31Z
dc.date.issued2022-12-23
dc.identifier.citationWright, Keenan R.; Nath, Karabi; Matzger, Adam J. (2022). "Superior Metal-Organic Framework Activation with Dimethyl Ether." Angewandte Chemie 134(52): n/a-n/a.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/175461
dc.description.abstractMetal–organic frameworks (MOFs) are demonstrated to be readily activated by treatment with the low surface tension, low boiling point solvent dimethyl ether (DME). The mildness of the method enables access to high surface areas by avoiding structural changes in the framework that often plague thermal activation methods. A distinction from previous methods is that DME activation succeeds for materials with coordinatively unsaturated sites (CUS) and non-CUS MOFs as well. DME displaces solvent molecules occupying the pores of the MOF as well as those coordinated to metal centers; reducing evacuation temperature by using a coordinating, yet highly volatile guest enables low temperature activation with structural retention as demonstrated surface area measurements that match or exceed existing activation protocols.Liquid dimethyl ether is shown to be a potent activating solvent for MOFs. The combination of low surface tension, high volatility, and coordinating ability allows efficient activation of even MOFs with coordinatively unsaturated sites. The broad applicability of the technique is demonstrated, and the level of activation achievable compares very favorably against existing activation protocols.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCoordination Chemistry
dc.subject.otherSurface Area
dc.subject.otherStructural Collapse
dc.subject.otherMicroporous Materials
dc.subject.otherMetal–Organic Frameworks
dc.titleSuperior Metal-Organic Framework Activation with Dimethyl Ether
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175461/1/ange202213190_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175461/2/ange202213190.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175461/3/ange202213190-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/ange.202213190
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceJ. A. Boissonnault, A. G. Wong-Foy, A. J. Matzger, Langmuir 2016, 32, 9743 – 9747.
dc.identifier.citedreferenceQ. Wang, D. Astruc, Chem. Rev. 2020, 120, 1438 – 1511.
dc.identifier.citedreferenceH. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 8571 – 8572.
dc.identifier.citedreferenceO. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166 – 1175.
dc.identifier.citedreferenceJ. E. Mondloch, O. Karagiaridi, O. K. Farha, J. T. Hupp, CrystEngComm 2013, 15, 9258 – 9264.
dc.identifier.citedreferenceJ. E. Mondloch, M. J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J. T. Hupp, O. K. Farha, Chem. Commun. 2014, 50, 8944 – 8946.
dc.identifier.citedreferenceG. Ayoub, T. Islamoglu, S. Goswami, T. Friščić, O. K. Farha, ACS Appl. Mater. Interfaces 2019, 11, 15788 – 15794.
dc.identifier.citedreferenceR. A. Dodson, A. J. Matzger, ACS Mater. Lett. 2019, 1, 344 – 349.
dc.identifier.citedreferenceA. P. Nelson, O. K. Farha, K. L. Mulfort, J. T. Hupp, J. Am. Chem. Soc. 2009, 131, 458 – 460.
dc.identifier.citedreferenceB. Liu, A. G. Wong-Foy, A. J. Matzger, Chem. Commun. 2013, 49, 1419 – 1421.
dc.identifier.citedreferenceR. M. Kennedy, M. Sagenkahn, J. G. Aston, J. Am. Chem. Soc. 1941, 63, 2267 – 2272.
dc.identifier.citedreferenceJ. Wu, Z. Liu, J. Pan, X. Zhao, J. Chem. Eng. Data 2004, 49, 32 – 34.
dc.identifier.citedreferenceJ. Wu, J. Yin, J. Chem. Eng. Data 2008, 53, 2247 – 2249.
dc.identifier.citedreferenceJ. Wu, J. W. Magee, J. Chem. Eng. Data 2018, 63, 1713 – 1723.
dc.identifier.citedreferenceN. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, O. M. Yaghi, Science 2003, 300, 1127 – 1129.
dc.identifier.citedreferenceS. Moosavi, A. Chidambaram, L. Talirz, M. Haranczyk, K. Stylianou, B. Smit, Nat. Commun. 2019, 10, 539.
dc.identifier.citedreferenceS. Elsaidi, D. Ongari, W. Xu, M. Mohamed, M. Haranczyk, P. Thallapally, Chem. Eur. J. 2017, 23, 10758.
dc.identifier.citedreferenceC. Hendon, A. Walsh, R. Soc. Chem. 2015, 6, 3674 – 3683.
dc.identifier.citedreferenceJ. K. Schnobrich, O. Lebel, K. A. Cychosz, A. Dailly, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2010, 132, 13941 – 13948.
dc.identifier.citedreferenceJ. Bae, C. Y. Lee, N. C. Jeong, Bull. Korean Chem. Soc. 2021, 42, 658 – 666.
dc.identifier.citedreferenceS. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870 – 10871.
dc.identifier.citedreferenceA. C. Kizzie, A. G. Wong-Foy, A. J. Matzger, Langmuir 2011, 27, 6368 – 6373.
dc.identifier.citedreferenceT. Düren, F. Millange, G. Férey, K. S. Walton, R. Q. Snurr, J. Phys. Chem. C 2007, 111, 15350 – 15356.
dc.identifier.citedreferenceJ. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 1304 – 1315.
dc.identifier.citedreferenceA. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998 – 17999.
dc.identifier.citedreferenceP. Dietzel, R. Johnsen, R. Blom, H. Fjellvag, Chem. Eur. J. 2008, 14, 2389 – 2397.
dc.identifier.citedreferenceN. Klein, I. Senkovska, I. A. Baburin, R. Grünker, U. Stoeck, M. Schlichtenmayer, B. Streppel, U. Mueller, S. Leoni, M. Hirscher, S. Kaskel, Chem. Eur. J. 2011, 17, 13007 – 13016.
dc.identifier.citedreferenceS. Chui, S. Lo, J. Charmant, A. Orpen, I. Williams, Science 1999, 283, 1148 – 1150.
dc.identifier.citedreferenceJ. Ma, A. P. Kalenak, A. G. Wong-Foy, A. J. Matzger, Angew. Chem. Int. Ed. 2017, 56, 14618 – 14621; Angew. Chem. 2017, 129, 14810 – 14813.
dc.identifier.citedreferenceA. J. Howarth, A. W. Peters, N. A. Vermeulen, T. C. Wang, J. T. Hupp, O. K. Farha, Chem. Mater. 2017, 29, 26 – 39.
dc.identifier.citedreferenceR. A. Dodson, A. G. Wong-Foy, A. J. Matzger, Chem. Mater. 2018, 30, 6559 – 6565.
dc.identifier.citedreferenceL. Feng, K.-Y. Wang, G. S. Day, M. R. Ryder, H.-C. Zhou, Chem. Rev. 2020, 120, 13087 – 13133.
dc.identifier.citedreferenceJ. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670 – 4679; Angew. Chem. 2005, 117, 4748 – 4758.
dc.identifier.citedreferenceS. Horike, M. Dincǎ, K. Tamaki, J. R. Long, J. Am. Chem. Soc. 2008, 130, 5854 – 5855.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.