Show simple item record

Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra

dc.contributor.authorRomanowicz, Karl J.
dc.contributor.authorKling, George W.
dc.date.accessioned2023-01-11T16:25:05Z
dc.date.available2024-01-11 11:25:02en
dc.date.available2023-01-11T16:25:05Z
dc.date.issued2022-12
dc.identifier.citationRomanowicz, Karl J.; Kling, George W. (2022). "Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra." Environmental Microbiology 24(12): 6220-6237.
dc.identifier.issn1462-2912
dc.identifier.issn1462-2920
dc.identifier.urihttps://hdl.handle.net/2027.42/175474
dc.description.abstractClimate warming has increased permafrost thaw in arctic tundra and extended the duration of annual thaw (number of thaw days in summer) along soil profiles. Predicting the microbial response to permafrost thaw depends largely on knowing how increased thaw duration affects the composition of the soil microbiome. Here, we determined soil microbiome composition from the annually thawed surface active layer down through permafrost from two tundra types at each of three sites on the North Slope of Alaska, USA. Variations in soil microbial taxa were found between sites up to ~90 km apart, between tundra types, and between soil depths. Microbiome differences at a site were greatest across transitions from thawed to permafrost depths. Results from correlation analysis based on multi-decadal thaw surveys show that differences in thaw duration by depth were significantly, positively correlated with the abundance of dominant taxa in the active layer and negatively correlated with dominant taxa in the permafrost. Microbiome composition within the transition zone was statistically similar to that in the permafrost, indicating that recent decades of intermittent thaw have not yet induced a shift from permafrost to active-layer microbes. We suggest that thaw duration rather than thaw frequency has a greater impact on the composition of microbial taxa within arctic soils.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleSummer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175474/1/emi16218_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175474/2/emi16218.pdf
dc.identifier.doi10.1111/1462-2920.16218
dc.identifier.sourceEnvironmental Microbiology
dc.identifier.citedreferenceSiciliano, S.D., Palmer, A.S., Winsley, T., Lamb, E., Bissett, A., Brown, M.V. et al. ( 2014 ) Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biology and Biochemistry, 78, 10 – 20.
dc.identifier.citedreferenceTaş, N., Prestat, E., Wang, S., Wu, Y., Ulrich, C., Kneafsey, T. et al. ( 2018 ) Landscape topography structures the soil microbiome in arctic polygonal tundra. Nature Communications, 9 ( 777 ), 1 – 13.
dc.identifier.citedreferenceTeam, R.C. ( 2013 ) R: a language and environment for statistical computing.
dc.identifier.citedreferenceTripathi, B.M., Kim, H.M., Jung, J.Y., Nam, S., Ju, H.T., Kim, M. et al. ( 2019 ) Distinct taxonomic and functional profiles of the microbiome associated with different soil horizons of a moist tussock tundra in Alaska. Frontiers in Microbiology, 10 ( 1442 ), 1 – 14.
dc.identifier.citedreferenceTripathi, B.M., Kim, M., Kim, Y., Byun, E., Yang, J.W., Ahn, J. et al. ( 2018 ) Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Scientific Reports, 8 ( 1 ), 1 – 11.
dc.identifier.citedreferenceTveit, A.T., Urich, T., Frenzei, P. & Svenning, M.M. ( 2015 ) Metabolic and trophic interactions modulate methane production by arctic peat microbiota in response to warming. Proceedings of the National Academy of Sciences of the United States of America, 112, E2507 – E2516.
dc.identifier.citedreferenceVarsadiya, M., Urich, T., Hugelius, G. & Barta, J. ( 2021 ) Microbiome structure and functional potential in permafrost soils of the Western Canadian Arctic. FEMS Micobiology Ecology, 97 ( 3 ), fiab008.
dc.identifier.citedreferenceWaldrop, M.P., Wickland, K.P., White, R., III, Berhe, A.A., Harden, J.W. & Romanovsky, V.E. ( 2010 ) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Global Change Biology, 16 ( 9 ), 2543 – 2554.
dc.identifier.citedreferenceWalker, D.A., Hamilton, T.D., Maier, H.A., Munger, C.A. & Raynolds, M.K. ( 2014 ) Glacial history and long-term ecology in the Toolik Lake region. In: Hobbie, J.E. & Kling, G.W. (Eds.) Alaska’s changing Arctic: ecological consequences for tundra, streams and lakes. New York: Oxford University Press, pp. 61 – 80.
dc.identifier.citedreferenceWalker, M.A., Daniëls, F.J. & van der Maarel, E. ( 1994 ) Circumpolar arctic vegetation: Introduction and perspectives. Journal of Vegetation Science, 5 ( 6 ), 757 – 764.
dc.identifier.citedreferenceWallenstein, M.D., McMahon, S. & Schimel, J. ( 2007 ) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology, 59 ( 2 ), 428 – 435.
dc.identifier.citedreferenceWilhelm, R.C., Niederberger, T.D., Greer, C. & Whyte, L.G. ( 2011 ) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian high Arctic. Canadian Journal of Microbiology, 57, 303 – 315.
dc.identifier.citedreferenceWillerslev, E., Hansen, A.J., Rønn, R., Brand, T.B., Barnes, I., Wiuf, C. et al. ( 2004 ) Long-term persistence of bacterial DNA. Current Biology, 14, R9 – R10.
dc.identifier.citedreferenceWilliams, P.J. & Smith, M.W. ( 1989 ) The frozen earth: fundamentals of geocryology. New York: Cambridge University Press.
dc.identifier.citedreferenceWunderlin, T., Junier, T., Roussel-Delif, L., Jeanneret, N. & Junier, P. ( 2014 ) Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. Environmental Microbiology Reports, 6, 631 – 639.
dc.identifier.citedreferenceYergeau, E., Hogues, H., Whyte, L.G. & Greer, C.W. ( 2010 ) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. The ISME Journal, 4, 1206 – 1214.
dc.identifier.citedreferenceZak, D.R. & Kling, G.W. ( 2006 ) Microbial community composition and function across an arctic tundra landscape. Ecology, 87 ( 7 ), 1659 – 1670.
dc.identifier.citedreferenceApprill, A., McNally, S., Parsons, R. & Weber, L. ( 2015 ) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75 ( 2 ), 129 – 137.
dc.identifier.citedreferenceBarichivich, J., Briffa, K.R., Osborn, T.J., Melvin, T.M. & Caesar, J. ( 2012 ) Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Global Biogeochemical Cycles, 26, GB4015.
dc.identifier.citedreferenceBiasi, C., Meyer, H., Rusalimova, O., Hämmerle, R., Kaiser, C., Baranyi, C. et al. ( 2008 ) Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. Plant and Soil, 307, 191 – 205.
dc.identifier.citedreferenceBisanz, J.E. ( 2018 ) qiime2R: importing QIIME2 artifacts and associated data into R sessions. Version 0.99, 13.
dc.identifier.citedreferenceBolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., al-Ghalith, G.A. et al. ( 2019 ) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37 ( 8 ), 852 – 857.
dc.identifier.citedreferenceBottos, E.M., Kennedy, D.W., Romero, E.B., Fansler, S.J., Brown, J.M., Bramer, L.M. et al. ( 2018 ) Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiology Ecology, 94, fiy110.
dc.identifier.citedreferenceBurkert, A., Douglas, T.A., Waldrop, M.P. & Mackelprang, R. ( 2019 ) Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence. Applied and Environmental Microbiology, 85 ( 7 ), e02646 – e02618.
dc.identifier.citedreferenceCallahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. ( 2016 ) DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods, 13 ( 7 ), 581 – 583.
dc.identifier.citedreferenceCampbell, B.J., Polson, S.W., Hanson, T.E., Mack, M.C. & Schuur, E.A. ( 2010 ) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environmental Microbiology, 12, 1842 – 1854.
dc.identifier.citedreferenceCastro, H.F., Classen, A.T., Austin, E.E., Norby, R.J. & Schadt, C.W. ( 2010 ) Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology, 76, 999 – 1007.
dc.identifier.citedreferenceChen, Y., Liu, F., Kang, L., Zhang, D., Kou, D., Mao, C. et al. ( 2021 ) Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biology, 27 ( 14 ), 3218 – 3229.
dc.identifier.citedreferenceChiarello, M., McCauley, M., Villéger, S. & Jackson, C.R. ( 2022 ). Ranking the biases: The choice of OTUs vs. ASVs in 16S rRNA amplicon data analysis has stronger effects on diversity measures than rarefaction and OTU identity threshold. PLoS One, 17 ( 2 ), p. e0264443.
dc.identifier.citedreferenceChu, H., Fierer, N., Lauber, C.L., Caporaso, J.G., Knight, R. & Grogan, P. ( 2010 ) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12, 2998 – 3006.
dc.identifier.citedreferenceChu, H., Neufeld, J.D., Walker, K. & Grogan, P. ( 2011 ) The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Science Society of America Journal, 75 ( 5 ), 1756 – 1765.
dc.identifier.citedreferenceConrad, R., Schutz, H. & Babbel, M. ( 1987 ) Temperature limitation on hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiology Ecology, 3, 281 – 289.
dc.identifier.citedreferenceCoolen, M.J. & Orsi, W.D. ( 2015 ) The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Frontiers in Microbiology, 6, 197.
dc.identifier.citedreferenceDe Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A. et al. ( 2009 ) Bergey’s manual of systematic bacteriology. In: The Firmicutes, Vol. 3, 2nd edition. Dordrecht, Netherlands: Springer.
dc.identifier.citedreferenceDeng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M. et al. ( 2015 ) Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Molecular Ecology, 24, 222 – 234.
dc.identifier.citedreferenceEmerson, D., Scott, J.J., Benes, J. & Bowden, W.B. ( 2015 ) Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling. Applied and Environmental Microbiology, 81, 8066 – 8075.
dc.identifier.citedreferenceEuskirchen, E.S., McGuire, A.D., Kicklighter, D.W., Zhuang, Q., Clein, J.S., Dargaville, R.J. et al. ( 2006 ) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biology, 12, 731 – 750.
dc.identifier.citedreferenceFrank-Fahle, B.A., Yergeau, E., Greer, C.W., Lantuit, H. & Wagner, D. ( 2014 ) Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS One, 9, e84761.
dc.identifier.citedreferenceGanzert, L., Bajerski, F. & Wagner, D. ( 2014 ) Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiology Ecology, 89, 426 – 441.
dc.identifier.citedreferenceGittel, A., Bárta, J., Kohoutová, I., Mikutta, R., Owens, S., Gilbert, J. et al. ( 2014 ) Distinct microbial communities associated with buried soils in the Siberian tundra. The ISME Journal, 8, 841 – 853.
dc.identifier.citedreferenceHinzman, L.D., Bettez, N.D., Bolton, W.R., Chapin, F.S., Dyurgerov, M.B., Fastie, C.L. et al. ( 2005 ) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72, 251 – 298.
dc.identifier.citedreferenceHugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.L. et al. ( 2014 ) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573 – 6593.
dc.identifier.citedreferenceHultman, J., Waldrop, M.P., Mackelprang, R., David, M.M., McFarland, J., Blazewicz, S.J. et al. ( 2015 ) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 521 ( 7551 ), 208 – 212.
dc.identifier.citedreferenceJansson, J.K. & Tas, N. ( 2014 ) The microbial ecology of permafrost. Nature Reviews Microbiology, 12, 414 – 425.
dc.identifier.citedreferenceJohnson, S.S., Hebsgaard, M.B., Christensen, T.R., Mastepanov, M., Nielsen, R., Munch, K. et al. ( 2007 ) Ancient bacteria show evidence of DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 104, 14401 – 14405.
dc.identifier.citedreferenceJorgenson, M.T., Shur, Y.L. & Pullman, E.R. ( 2006 ) Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters, 33 ( 2 ), L02503.
dc.identifier.citedreferenceJudd, K.E., Crump, B.C. & Kling, G.W. ( 2006 ) Environmental drivers control eco- system function in bacteria through changes in community composition. Ecology, 87, 2068 – 2079.
dc.identifier.citedreferenceJudd, K.E. & Kling, G.W. ( 2002 ) Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow. Biogeochemistry, 60, 213 – 234.
dc.identifier.citedreferenceKim, H.M., Lee, M.J., Jung, J.Y., Hwang, C.Y., Kim, M., Ro, H.M. et al. ( 2016 ) Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. Journal of Microbiology, 54 ( 11 ), 713 – 723.
dc.identifier.citedreferenceKolde, R. & Kolde, M.R. ( 2015 ) Pheatmap: pretty Heatmaps.
dc.identifier.citedreferenceKoyama, A., Wallenstein, M.D., Simpson, R.T. & Moore, J.C. ( 2014 ) Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Frontiers in Microbiology, 5, 516.
dc.identifier.citedreferenceKraft, N.J., Adler, P.B., Godoy, O., James, E.C., Fuller, S. & Levine, J.M. ( 2015 ) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592 – 599.
dc.identifier.citedreferenceLamb, E.G., Han, S., Lanoil, B.D., Henry, G.H.R., Brummell, M.E., Banerjee, S. et al. ( 2011 ) A high arctic soil ecosystem resists long-term environmental manipulations. Global Change Biology, 17 ( 10 ), 3187 – 3194.
dc.identifier.citedreferenceLiang, R., Lau, M., Vishnivetskaya, T., Lloyd, K.G., Wang, W., Wiggins, J. et al. ( 2019 ) Predominance of anaerobic, spore-forming bacteria in metabolically active microbial communities from ancient Siberian permafrost. Applied and Environmental Microbiology, 85, e00560 – e00519.
dc.identifier.citedreferenceLipson, D.A., Haggerty, J.M., Srinivas, A., Raab, T.K., Sathe, S. & Dinsdale, E.A. ( 2013 ) Metagenomic insights into anaerobic metabolism along an arctic peat soil profile. PLoS One, 8, e64659.
dc.identifier.citedreferenceLiu, C., Cui, Y., Li, X. & Yao, M. ( 2021 ) microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97 ( 2 ), fiaa255.
dc.identifier.citedreferenceMackelprang, R., Burkert, A., Haw, M., Mahendrarajah, T., Conaway, C.H., Douglas, T.A. et al. ( 2017 ) Microbial survival strategies in ancient permafrost: insights from metagenomics. The ISME Journal, 11, 2305 – 2318.
dc.identifier.citedreferenceMackelprang, R., Waldrop, M.P., DeAngelis, K.M., David, M.M., Chavarria, K.L., Blazewicz, S.J. et al. ( 2011 ) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 480 ( 7377 ), 368 – 371.
dc.identifier.citedreferenceMalard, L.A., Anwar, M.Z., Jacobsen, C.S. & Pearce, D.A. ( 2019 ) Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiology Ecology, 95 ( 9 ), fiz128.
dc.identifier.citedreferenceMalard, L.A. & Pearce, D.A. ( 2018 ) Microbial diversity and biogeography in Arctic soils. Environmental Microbiology Reports, 10 ( 6 ), 611 – 625.
dc.identifier.citedreferenceMartinez, M.A., Woodcroft, B.J., Ignacio Espinoza, J.C., Zayed, A.A., Singleton, C.M., Boyd, J.A. et al. ( 2019 ) Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Systematic and Applied Microbiology, 42, 54 – 66.
dc.identifier.citedreferenceMetje, M. & Frenzel, P. ( 2007 ) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environmental Microbiology, 9, 954 – 964.
dc.identifier.citedreferenceMonteux, S., Weedon, J.T., Blume-Werry, G., Gavazov, K., Jassey, V.E.J., Johansson, M. et al. ( 2018 ) Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. The ISME Journal, 12, 2129 – 2141.
dc.identifier.citedreferenceMüller, O., Bang-Andreasen, T., White, R.A., Elberling, B., Taş, N., Kneafsey, T. et al. ( 2018 ) Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environmental Microbiology, 20, 4328 – 4342.
dc.identifier.citedreferenceNeufeld, J.D. & Mohn, W.W. ( 2005 ) Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Applied and Environmental Microbiology, 71, 5710 – 5718.
dc.identifier.citedreferenceNielsen, U.N. & Ball, B.A. ( 2015 ) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21, 1407 – 1421.
dc.identifier.citedreferenceOksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., et al. ( 2019 ) Vegan: community ecology package. R Package, Version 2.5–5.
dc.identifier.citedreferenceOsterkamp, T.E. & Romanovsky, V.E. ( 1999 ) Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost and Periglacial Processes, 10 ( 1 ), 17 – 37.
dc.identifier.citedreferenceParada, A.E., Needham, D.M. & Fuhrman, J.A. ( 2016 ) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18 ( 5 ), 1403 – 1414.
dc.identifier.citedreferencePedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. ( 2011 ) Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825 – 2830.
dc.identifier.citedreferenceQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. ( 2012 ) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41 ( D1 ), D590 – D596.
dc.identifier.citedreferenceRicketts, M.P., Matamala, R., Jastrow, J.D., Antonopoulos, D.A., Koval, J., Ping, C.L. et al. ( 2020 ) The effects of warming and soil chemistry on bacterial community structure in Arctic tundra soils. Soil Biology and Biochemistry, 148, 107882.
dc.identifier.citedreferenceRinnan, R., Michelsen, A., Bååth, E. & Jonasson, S. ( 2007 ) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13 ( 1 ), 28 – 39.
dc.identifier.citedreferenceRomanowicz, K.J., Crump, B.C. & Kling, G.W. ( 2021 ) Rainfall alters permafrost soil redox conditions, but meta-omics show divergent microbial community responses by tundra type in the Arctic. Soil Systems, 5, 1 – 17.
dc.identifier.citedreferenceSaidi-Mehrabad, A., Neuberger, P., Hajihosseini, M., Froese, D. & Lanoil, B.D. ( 2020 ) Permafrost microbial community structure changes across the Pleistocene-Holocene boundary. Frontiers in Environmental Science, 8 ( 133 ), 1 – 11.
dc.identifier.citedreferenceSchostag, M., Priemé, A., Jacquiod, S., Russel, J., Ekelund, F. & Jacobsen, C.S. ( 2019 ) Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. The ISME Journal, 13 ( 5 ), 1345 – 1359.
dc.identifier.citedreferenceSchuur, E.A.G., Bockheim, J., Canadell, J.G., Euskirchen, E., Field, C.B., Goryachkin, S.V. et al. ( 2008 ) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience, 58 ( 8 ), 701 – 714.
dc.identifier.citedreferenceSerreze, M.C., Walsh, J.E., Chapin, F.S., Osterkamp, T., Dyurgerov, M., Romanovsky, V. et al. ( 2000 ) Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159 – 207.
dc.identifier.citedreferenceSingh, P., Singh, S.M., Singh, R.N., Naik, S., Roy, U., Srivastava, A. et al. ( 2017 ) Bacterial communities in ancient permafrost profiles of Svalbard, Arctic. Journal of Basic Microbiology, 57, 1018 – 1036.
dc.identifier.citedreferenceTarnocai, C. ( 1993 ) Sampling frozen soils. In: Carter, M.R. (Ed.) Soil sampling and methods of analysis. Boca Raton, FL: Taylor & Francis, pp. 755 – 767.
dc.identifier.citedreferenceTarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G. & Zimov, S. ( 2009 ) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23 ( 2 ), GB2023.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.