Show simple item record

Osseous topography in biologically driven flap design in minimally invasive regenerative therapy: A classification proposal

dc.contributor.authorVelasquez-Plata, Diego
dc.date.accessioned2023-01-11T16:25:28Z
dc.date.available2024-01-11 11:25:27en
dc.date.available2023-01-11T16:25:28Z
dc.date.issued2022-12
dc.identifier.citationVelasquez-Plata, Diego (2022). "Osseous topography in biologically driven flap design in minimally invasive regenerative therapy: A classification proposal." Clinical Advances in Periodontics 12(4): 251-255.
dc.identifier.issn2573-8046
dc.identifier.issn2163-0097
dc.identifier.urihttps://hdl.handle.net/2027.42/175482
dc.description.abstractMinimally invasive periodontal regenerative surgical procedures are a paradigm shift that demands a unique approach encompassing specialized armamentarium, magnification tools, knowledge of handling properties of biomaterials, and specific flap designs. Biologically driven flap design is dictated by optimal soft and hard tissue handling, flap perfusion, and wound stability, all in the pursuit of primary intention healing. The unique architecture of the infrabony defect is a determining factor on incision tracing, boundaries of flap extension, and biomaterial selection. The purpose of this article is to propose a flap design classification based on the osseous topography of infrabony defects during biologically driven minimally invasive surgical periodontal regenerative therapy.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiocompatible materials
dc.subject.otherguided tissue regeneration
dc.subject.otherregeneration
dc.titleOsseous topography in biologically driven flap design in minimally invasive regenerative therapy: A classification proposal
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175482/1/cap10209_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175482/2/cap10209.pdf
dc.identifier.doi10.1002/cap.10209
dc.identifier.sourceClinical Advances in Periodontics
dc.identifier.citedreferenceCortellini P, Tonetti MS. Microsurgical approach to periodontal regeneration. Initial evaluation in a case cohort. J Periodontol. 2001; 72: 559 – 569.
dc.identifier.citedreferenceMurphy KG. Interproximal tissue maintenance in GTR procedures: description of a surgical technique and 1-year reentry results. Int J Periodontics Restorative Dent. 1996; 16: 463 – 477.
dc.identifier.citedreferenceTrombelli L, Farina R, Franceschetti G, Calura G. Single-flap approach with buccal access in periodontal reconstructive procedures. J Periodontol. 2009; 80: 353 – 360.
dc.identifier.citedreferenceBianchi AE, Bassetti A. Flap design for guided tissue regeneration surgery in the esthetic zone: the “whale’s tail” technique. Int J Periodontics Restorative Dent. 2009; 29: 153 – 159.
dc.identifier.citedreferenceRibeiro FV, Nociti Júnior FH, Sallum EA, Sallum AW, Casati MZ. Use of enamel matrix protein derivative with minimally invasive surgical approach in intra-bony periodontal defects: clinical and patient-centered outcomes. Braz Dent J. 2010; 21: 60 – 67.
dc.identifier.citedreferenceMoreno Rodriguez JA, Caffesse RG. Non incised papillae surgical approach (NIPSA) in periodontal regeneration: preliminary results of a case series. Int J Periodontics Restorative Dent. 2018; 38 (suppl): s105 – s111.
dc.identifier.citedreferenceSchincaglia GP, Hebert E, Farina R, Simonelli A, Trombelli L. Single versus double flap approach in periodontal regenerative treatment. J Clin Periodontol. 2015; 42: 557 – 566.
dc.identifier.citedreferenceClementini M, Ambrosi A, Cicciarelli V, De Risi V, de Sanctis M. Clinical performance of minimally invasive periodontal surgery in the treatment of infrabony defects: systematic review and meta-analysis. J Clin Periodontol. 2019; 46: 1236 – 1253.
dc.identifier.citedreferenceMikecs B, Vág J, Gerber G, Molnár B, Feigl G, Shahbazi A. Revisiting the vascularity of the keratinized gingiva in the maxillary esthetic zone. BMC Oral Health. 2021; 21: 160.
dc.identifier.citedreferenceFazekas R, Molnár E, Lohinai Z, et al. Functional characterization of collaterals in the human gingiva by laser speckle contrast imaging. Microcirculation. 2018; 25: e12446.
dc.identifier.citedreferenceNational Institutes of Health Consensus. Development conference statement on the clinical applications of biomaterials. November 1–3, 1982. Artif Organs. 1983; 7: 260 – 265.
dc.identifier.citedreferenceBowers GM, Chadroff B, Carnevale R, et al. Histologic evaluation of new attachment apparatus formation in humans. Part III. J Periodontol. 1989; 60: 683 – 693.
dc.identifier.citedreferenceMellonig JT. Human histologic evaluation of a bovine-derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent. 2000; 20: 19 – 29.
dc.identifier.citedreferenceYukna RA, Mellonig JT. Histologic evaluation of periodontal healing in humans following regenerative therapy with enamel matrix derivative. A 10-case series. J Periodontol. 2000; 71: 752 – 759.
dc.identifier.citedreferenceNevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE. Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J Periodontol. 2003; 74: 1282 – 1292.
dc.identifier.citedreferenceStavropoulos A, Windisch P, Gera I, Capsius B, Sculean A, Wikesjö UM. A phase IIa randomized controlled clinical and histological pilot study evaluating rhGDF-5/β-TCP for periodontal regeneration. J Clin Periodontol. 2011; 38: 1044 – 1054.
dc.identifier.citedreferenceSanz M, Dahlin C, Apatzidou D, et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol. 2019; 46 (suppl 21 ): 82 – 91.
dc.identifier.citedreferenceStavropoulos A, Wikesjö UM. Influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a bovine bone biomaterial and provisions for guided tissue regeneration: an experimental study in the dog. J Clin Periodontol. 2010; 37: 534 – 543.
dc.identifier.citedreferenceFitzpatrick JM, Wickham JE. Minimally invasive surgery. Br J Surg. 1990; 77: 721 – 722.
dc.identifier.citedreferenceHarrel SK, Rees TD. Granulation tissue removal in routine and minimally invasive procedures. Compend Contin Educ Dent. 1995; 16: 960 – 962. 964 passim.
dc.identifier.citedreferenceHarrel SK. A minimally invasive surgical approach for periodontal bone grafting. Int J Periodontics Restorative Dent. 1998; 18: 161 – 169.
dc.identifier.citedreferenceHarrel SK. A minimally invasive surgical approach for periodontal regeneration: surgical technique and observations. J Periodontol. 1999; 70: 1547 – 1557.
dc.identifier.citedreferenceHarrel SK, Nunn ME, Belling CM. Long-term results of a minimally invasive surgical approach for bone grafting. J Periodontol. 1999; 70: 1558 – 1563.
dc.identifier.citedreferenceTakei HH, Han TJ, Carranza FA Jr, Kenney EB, Lekovic V. Flap technique for periodontal bone implants. Papilla preservation technique. J Periodontol. 1985; 56: 204 – 210.
dc.identifier.citedreferenceCortellini P, Prato GP, Tonetti MS. The modified papilla preservation technique. A new surgical approach for interproximal regenerative procedures. J Periodontol. 1995; 66: 261 – 266.
dc.identifier.citedreferenceCortellini P, Prato GP, Tonetti MS. The simplified papilla preservation flap. A novel surgical approach for the management of soft tissues in regenerative procedures. Int J Periodontics Restorative Dent. 1999; 19: 589 – 599.
dc.identifier.citedreferenceCortellini P, Tonetti MS. A minimally invasive surgical technique with an enamel matrix derivative in the regenerative treatment of intra-bony defects: a novel approach to limit morbidity. J Clin Periodontol. 2007; 34: 87 – 93.
dc.identifier.citedreferenceCortellini P, Tonetti MS. Improved wound stability with a modified minimally invasive surgical technique in the regenerative treatment of isolated interdental intrabony defects. J Clin Periodontol. 2009; 36: 157 – 163.
dc.identifier.citedreferenceAslan S, Buduneli N, Cortellini P. Entire papilla preservation technique: a novel surgical approach for regenerative treatment of deep and wide intrabony defects. Int J Periodontics Restorative Dent. 2017; 37: 227 – 233.
dc.identifier.citedreferencePrichard J. A technique for treating intrabony pockets based on alveolar process morphology. Dent Clin North Am. 1960; 4: 85 – 105.
dc.identifier.citedreferenceGoldman HM, Cohen DW. The intrabony pocket: classification and treatment. J Periodontol. 1958; 29: 272 – 291.
dc.identifier.citedreferenceKim DM, Bassir SH. When is cone-beam computed tomography imaging appropriate for diagnostic inquiry in the management of inflammatory periodontitis? An American Academy of Periodontology best evidence review. J Periodontol. 2017; 88: 978 – 998.
dc.identifier.citedreferenceNibali L, Sultan D, Arena C, Pelekos G, Lin GH, Tonetti M. Periodontal infrabony defects: systematic review of healing by defect morphology following regenerative surgery. J Clin Periodontol. 2021; 48: 100 – 113.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.