Show simple item record

Bone regeneration using titanium plate stabilization for the treatment of peri-implant bone defects: A retrospective radiologic pilot study

dc.contributor.authorDuan, Deng-Hui
dc.contributor.authorWang, Hom-Lay
dc.contributor.authorXiao, Wu-Cai
dc.contributor.authorLiu, Zheng
dc.contributor.authorWang, En-Bo
dc.date.accessioned2023-01-11T16:25:52Z
dc.date.available2024-01-11 11:25:48en
dc.date.available2023-01-11T16:25:52Z
dc.date.issued2022-12
dc.identifier.citationDuan, Deng-Hui ; Wang, Hom-Lay ; Xiao, Wu-Cai ; Liu, Zheng; Wang, En-Bo (2022). "Bone regeneration using titanium plate stabilization for the treatment of peri- implant bone defects: A retrospective radiologic pilot study." Clinical Implant Dentistry and Related Research 24(6): 792-800.
dc.identifier.issn1523-0899
dc.identifier.issn1708-8208
dc.identifier.urihttps://hdl.handle.net/2027.42/175490
dc.description.abstractAimTo 3-dimensional radiographically assess the effect of titanium plate in guided bone regeneration (GBR) for the treatment of peri-implant ridge defects in esthetic zone.Material and MethodsNineteen patients with buccal peri-implant defects in the maxillary esthetic zone were treated with GBR using xenograft, autogenous bone, and collagen membrane. Subjects were divided into two groups: control (conventional GBR, 10 patients with 16 implants) and test (GBR with an adjunctive titanium plate; nine patients with 15 implants). Cone-beam computed tomography (CBCT) images obtained immediately after and 5–7 months following GBR were used to assess buccal crestal bone level (BBL) and buccal bone thickness (BBT) at different implant levels.ResultsThirty-one implants in 19 patients were evaluated. Titanium plate exposure occurred in three cases (33.33%) of the test group. After 5–7 months, the mean BBL was located 1.48 ± 0.71 mm coronal to the platform in the test group and 0.90 ± 3.03 mm coronal to the platform in the control group (p = 0.03). The mean over all BBT (BBT-M) was 4.16 ± 0.48 mm in the test group and 2.38 ± 0.97 mm in the control group (p < 0.01). More resorption occurred in the control group than in the test group regarding mean BBL (3.00 ± 3.11 mm vs. 0.78 ± 0.79 mm, respectively; p = 0.04), BBT-M change (1.87 ± 1.59 mm vs. 0.56 ± 0.33 mm, respectively; p = 0.02), and percentage change in BBT-M (40.69 ± 24.01% vs. 11.53 ± 5.86%, respectively; p < 0.01).ConclusionIn the short-term, titanium plate-enhanced GBR maintained ridge dimensions better than conventional GBR did.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherbone regeneration
dc.subject.otherdental implants
dc.subject.otheralveolar ridge augmentation
dc.subject.othercone-beam computed tomography
dc.titleBone regeneration using titanium plate stabilization for the treatment of peri-implant bone defects: A retrospective radiologic pilot study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175490/1/cid13139.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175490/2/cid13139_am.pdf
dc.identifier.doi10.1111/cid.13139
dc.identifier.sourceClinical Implant Dentistry and Related Research
dc.identifier.citedreferenceMerli M, Nieri M, Mariotti G, Franchi L, Quiroga SB. The fence technique: autogenous bone graft versus 50% deproteinized bovine bone matrix/50% autogenous bone graft-a clinical double-blind randomized controlled trial. Clin Oral Implants Res. 2020; 31 ( 12 ): 1223 - 1231.
dc.identifier.citedreferenceCucchi A, Vignudelli E, Napolitano A, Marchetti C, Corinaldesi G. Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial. Clin Implant Dent Relat Res. 2017; 19 ( 5 ): 821 - 832.
dc.identifier.citedreferenceMoses O, Pitaru S, Artzi Z, Nemcovsky CE. Healing of dehiscence-type defects in implants placed together with different barrier membranes: a comparative clinical study. Clin Oral Implants Res. 2005; 16 ( 2 ): 210 - 219.
dc.identifier.citedreferenceCiocca L, Lizio G, Baldissara P, Sambuco A, Scotti R, Corinaldesi G. Prosthetically CAD-CAM-guided bone augmentation of atrophic jaws using customized titanium mesh: preliminary results of an open prospective study. J Oral Implantol. 2018; 44 ( 2 ): 131 - 137.
dc.identifier.citedreferenceZhou L, Su Y, Wang J, Wang J, Wang X, Liu Q. Effect of exposure rates with customized versus conventional titanium mesh on guided bone regeneration: a systematic review and meta-analysis. J Oral Implantol. 2022; 48 ( 4 ): 339 – 346. doi: 10.1563/aaid-joi-D-20-00200.
dc.identifier.citedreferenceGu C, Xu L, Shi A, Guo L, Chen H, Qin H. Titanium mesh exposure in guided bone regeneration procedures: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2022; 37 ( 1 ): e29 - e40.
dc.identifier.citedreferenceHer S, Kang T, Fien MJ. Titanium mesh as an alternative to a membrane for ridge augmentation. J Oral Maxillofac Surg. 2012; 70 ( 4 ): 803 - 810.
dc.identifier.citedreferenceRoccuzzo M, Ramieri G, Bunino M, Berrone S. Autogenous bone graft alone or associated with titanium mesh for vertical alveolar ridge augmentation: a controlled clinical trial. Clin Oral Implants Res. 2007; 18 ( 3 ): 286 - 294.
dc.identifier.citedreferenceTorres J, Tamimi F, Alkhraisat MH, et al. Platelet-rich plasma may prevent titanium-mesh exposure in alveolar ridge augmentation with anorganic bovine bone. J Clin Periodontol. 2010; 37 ( 10 ): 943 - 951.
dc.identifier.citedreferenceMerli M, Mariotti G, Moscatelli M, et al. Fence technique for localized three-dimensional bone augmentation: a technical description and case reports. Int J Periodontics Restorative Dent. 2015; 35 ( 1 ): 57 - 64.
dc.identifier.citedreferenceMerli M, Migani M, Bernardelli F, Esposito M. Vertical bone augmentation with dental implant placement: efficacy and complications associated with 2 different techniques. A retrospective cohort study. Int J Oral Maxillofac Implants. 2006; 21 ( 4 ): 600 - 606.
dc.identifier.citedreferenceMerli M, Migani M, Esposito M. Vertical ridge augmentation with autogenous bone grafts: resorbable barriers supported by ostheosynthesis plates versus titanium-reinforced barriers. A preliminary report of a blinded, randomized controlled clinical trial. Int J Oral Maxillofac Implants. 2007; 22 ( 3 ): 373 - 382.
dc.identifier.citedreferenceMerli M, Moscatelli M, Mariotti G, Rotundo R, Bernardelli F, Nieri M. Bone level variation after vertical ridge augmentation: resorbable barriers versus titanium-reinforced barriers. A 6-year double-blind randomized clinical trial. Int J Oral Maxillofac Implants. 2014; 29 ( 4 ): 905 - 913.
dc.identifier.citedreferenceMerli M, Moscatelli M, Mazzoni A, et al. Fence technique: guided bone regeneration for extensive three-dimensional augmentation. Int J Periodontics Restorative Dent. 2013; 33 ( 2 ): 129 - 136.
dc.identifier.citedreferenceCordaro LTH. Preoperative assessment and treatment plan. In: Chen SBD, Wismeijer D, eds. ITI Treatment Guide: Ridge Augmentation Procedures in Implant Patients: A Staged Approach 7. Quintessence; 2013: 48 - 49.
dc.identifier.citedreferenceShrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979; 86 ( 2 ): 420 - 428.
dc.identifier.citedreferenceHarring DMMJR. Clustered data with small sample sizes: comparing the performance of model-based and design-based approaches. Commun Stat Simul Comput. 2017; 46 ( 2 ): 855 - 869.
dc.identifier.citedreferenceWang HL, Boyapati L. "PASS" principles for predictable bone regeneration. Implant Dent. 2006; 15 ( 1 ): 8 - 17.
dc.identifier.citedreferenceStrietzel FP, Khongkhunthian P, Khattiya R, Patchanee P, Reichart PA. Healing pattern of bone defects covered by different membrane types--a histologic study in the porcine mandible. J Biomed Mater Res B Appl Biomater. 2006; 78 ( 1 ): 35 - 46.
dc.identifier.citedreferenceSchwarz F, Herten M, Ferrari D, et al. Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (bone ceramic) or a collagen-coated natural bone mineral (BioOss collagen): an immunohistochemical study in dogs. Int J Oral Maxillofac Surg. 2007; 36 ( 12 ): 1198 - 1206.
dc.identifier.citedreferenceZhang T, Zhang T, Cai X. The application of a newly designed L-shaped titanium mesh for GBR with simultaneous implant placement in the esthetic zone: a retrospective case series study. Clin Implant Dent Relat Res. 2019; 21 ( 5 ): 862 - 872.
dc.identifier.citedreferenceLi S, Zhang T, Zhou M, Zhang X, Gao Y, Cai X. A novel digital and visualized guided bone regeneration procedure and digital precise bone augmentation: a case series. Clin Implant Dent Relat Res. 2021; 23 ( 1 ): 19 - 30.
dc.identifier.citedreferenceWang X, Wang G, Zhao X, Feng Y, Liu H, Li F. Short-term evaluation of guided bone reconstruction with titanium mesh membranes and CGF membranes in immediate implantation of anterior maxillary tooth. Biomed Res Int. 2021; 2021: 4754078 - 4754079.
dc.identifier.citedreferenceLi L, Wang C, Li X, Fu G, Chen D, Huang Y. Research on the dimensional accuracy of customized bone augmentation combined with 3D-printing individualized titanium mesh: a retrospective case series study. Clin Implant Dent Relat Res. 2021; 23 ( 1 ): 5 - 18.
dc.identifier.citedreferenceJung RE, Fenner N, Hämmerle CH, Zitzmann NU. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12-14 years. Clin Oral Implants Res. 2013; 24 ( 10 ): 1065 - 1073.
dc.identifier.citedreferenceThoma DS, Bienz SP, Figuero E, Jung RE, Sanz-Martin I. Efficacy of lateral bone augmentation performed simultaneously with dental implant placement: a systematic review and meta-analysis. J Clin Periodontol. 2019; 46 ( Suppl 21 ): 257 - 276.
dc.identifier.citedreferenceHammerle CH, Jung RE, Feloutzis A. A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol. 2002; 29 ( Suppl 3 ): 226; discussion 32–3- 231.
dc.identifier.citedreferenceFu JH, Oh TJ, Benavides E, Rudek I, Wang HL. A randomized clinical trial evaluating the efficacy of the sandwich bone augmentation technique in increasing buccal bone thickness during implant placement surgery: I. Clinical and radiographic parameters. Clin Oral Implants Res. 2014; 25 ( 4 ): 458 - 467.
dc.identifier.citedreferenceBenic GI, Thoma DS, Jung RE, et al. Guided bone regeneration with particulate vs. block xenogenic bone substitutes: a pilot cone beam computed tomographic investigation. Clin Oral Implants Res. 2017; 28 ( 11 ): e262 - e270.
dc.identifier.citedreferenceJung EH, Jeong SN, Lee JH. Augmentation stability and early wound healing outcomes of guided bone regeneration in peri-implant dehiscence defects with L- and I-shaped soft block bone substitutes: a clinical and radiographic study. Clin Oral Implants Res. 2021; 32 ( 11 ): 1308 - 1317.
dc.identifier.citedreferenceYe GH, Duan DH, Wang EB. Ridge volume stability of maxillary anterior implants placed with simultaneous lateral guided bone regeneration during healing: a radiographic analysis. Chin J Dent Res. 2021; 24 ( 4 ): 251 - 256.
dc.identifier.citedreferenceMir-Mari J, Wui H, Jung RE, Hammerle CH, Benic GI. Influence of blinded wound closure on the volume stability of different GBR materials: an in vitro cone-beam computed tomographic examination. Clin Oral Implants Res. 2016; 27 ( 2 ): 258 - 265.
dc.identifier.citedreferenceNagy P, Molnar B, Nemes B, Schupbach P, Windisch P. Histologic evaluation of human intrabony periodontal defects treated with deproteinized bovine bone mineral in combination with orthodontic tooth movement: a case series. Int J Periodontics Restorative Dent. 2019; 40 ( 3 ): 321 - 330.
dc.identifier.citedreferenceAraújo MG, Carmagnola D, Berglundh T, Thilander B, Lindhe J. Orthodontic movement in bone defects augmented with bio-Oss. An experimental study in dogs. J Clin Periodontol. 2001; 28 ( 1 ): 73 - 80.
dc.identifier.citedreferenceFarias D, Caceres F, Sanz A, Olate S. Horizontal bone augmentation in the posterior atrophic mandible and dental implant stability using the tenting screw technique. Int J Periodontics Restorative Dent. 2021; 41 ( 4 ): e147 - e155.
dc.identifier.citedreferenceCésar Neto JB, Cavalcanti MC, Sapata VM, et al. The positive effect of tenting screws for primary horizontal guided bone regeneration: a retrospective study based on cone-beam computed tomography data. Clin Oral Implants Res. 2020; 31 ( 9 ): 846 - 855.
dc.identifier.citedreferenceNaenni N, Schneider D, Jung RE, Hüsler J, Hämmerle CHF, Thoma DS. Randomized clinical study assessing two membranes for guided bone regeneration of peri-implant bone defects: clinical and histological outcomes at 6 months. Clin Oral Implants Res. 2017; 28 ( 10 ): 1309 - 1317.
dc.identifier.citedreferenceMiyamoto Y, Obama T. Dental cone beam computed tomography analyses of postoperative labial bone thickness in maxillary anterior implants: comparing immediate and delayed implant placement. Int J Periodontics Restorative Dent. 2011; 31 ( 3 ): 215 - 225.
dc.identifier.citedreferenceKonstantinidis I, Kumar T, Kher U, Stanitsas PD, Hinrichs JE, Kotsakis GA. Clinical results of implant placement in resorbed ridges using simultaneous guided bone regeneration: a multicenter case series. Clin Oral Investig. 2015; 19 ( 2 ): 553 - 559.
dc.identifier.citedreferenceAtef M, Tarek A, Shaheen M, Alarawi RM, Askar N. Horizontal ridge augmentation using native collagen membrane vs titanium mesh in atrophic maxillary ridges: randomized clinical trial. Clin Implant Dent Relat Res. 2020; 22 ( 2 ): 156 - 166.
dc.identifier.citedreferenceDeeb GR, Tran D, Carrico CK, Block E, Laskin DM, Deeb JG. How effective is the tent screw pole technique compared to other forms of horizontal ridge augmentation? J Oral Maxillofac Surg. 2017; 75 ( 10 ): 2093 - 2098.
dc.identifier.citedreferenceSumida T, Otawa N, Kamata YU, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh. J Craniomaxillofac Surg. 2015; 43 ( 10 ): 2183 - 2188.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.