Show simple item record

Diverse Deformation Mechanisms and Lithologic Controls in an Active Orogenic Wedge: Structural Geology and Thermochronometry of the Eastern Greater Caucasus

dc.contributor.authorTye, A. R.
dc.contributor.authorNiemi, N. A.
dc.contributor.authorCowgill, E.
dc.contributor.authorKadirov, F. A.
dc.contributor.authorBabayev, G. R.
dc.date.accessioned2023-01-11T16:26:03Z
dc.date.available2024-01-11 11:25:54en
dc.date.available2023-01-11T16:26:03Z
dc.date.issued2022-12
dc.identifier.citationTye, A. R.; Niemi, N. A.; Cowgill, E.; Kadirov, F. A.; Babayev, G. R. (2022). "Diverse Deformation Mechanisms and Lithologic Controls in an Active Orogenic Wedge: Structural Geology and Thermochronometry of the Eastern Greater Caucasus." Tectonics 41(12): n/a-n/a.
dc.identifier.issn0278-7407
dc.identifier.issn1944-9194
dc.identifier.urihttps://hdl.handle.net/2027.42/175491
dc.description.abstractOrogenic wedges are common at convergent plate margins and deform internally to maintain a self-similar geometry during growth. New structural mapping and thermochronometry data illustrate that the eastern Greater Caucasus mountain range of western Asia undergoes deformation via distinct mechanisms that correspond with contrasting lithologies of two sedimentary rock packages within the orogen. The orogen interior comprises a package of Mesozoic thin-bedded (<10 cm) sandstones and shales. These strata are deformed throughout by short-wavelength (<1 km) folds that are not fault-bend or fault-propagation folds. In contrast, a coeval package of thick-bedded (up to 5 m) volcaniclastic sandstone and carbonate, known as the Vandam Zone, has been accreted and is deformed via imbrication of coherent thrust sheets forming fault-related folds of 5–10 km wavelength. Structural reconstructions and thermochronometric data indicate that the Vandam Zone package was accreted between ca. 13  and 3 Ma. Following Vandam Zone accretion, thermal modeling of thermochronometric data indicates rapid exhumation (∼0.3–1 mm/yr) in the wedge interior beginning between ca. 6 and 3 Ma, and a novel thermochronometric paleo-rotation analysis suggests out-of-sequence folding of wedge-interior strata after ca. 3 Ma. Field relationships suggest that the Vandam Zone underwent syn-convergent extension following accretion. Together, the data record spatially and temporally variable deformation, dependent on both the mechanical properties of deforming lithologies and perturbations such as accretion of material from the down-going to the overriding plate. The diverse modes of deformation are consistent with the maintenance of critical taper.Plain Language SummaryIn tectonically active mountain belts, the crust deforms internally to maintain a characteristic wedge geometry during growth. Such deformation is accommodated by a variety of mechanisms including faulting, folding, and dissolution of rock. New structural and thermochronometric data from the eastern Greater Caucasus of Azerbaijan characterize the influence of mechanical properties of deforming rock on the modes of active deformation. The eastern Greater Caucasus contains two major sedimentary rock packages with distinct lithologic properties that have been deformed via different mechanisms. The orogen interior consists of thin sandstone and shale beds deformed primarily by short-wavelength folding. A package of thick-bedded volcaniclastic sediment known as the Vandam Zone is deformed via slip of coherent thrust sheets. The contrasting modes of deformation that have affected these rock packages confirm the influence of lithologic properties on deformation processes and mountain belt structure. Thermochronometric data record the propagation of deformation into the Vandam Zone strata as well as subsequent deformation and accelerated exhumation within the mountain belt interior. The spatiotemporal distribution of deformation functioned to maintain the tapering wedge geometry of the deforming crust.Key PointsPervasive folding in shale-rich orogen interior differs from typical fold-thrust system in thick-bedded accreted strata of the Vandam ZoneAtypical negative thermochronometric age-elevation relationships explained as a product of fold limb rotation using novel modeling methodThermochronometric evidence for out-of-sequence deformation in orogen interior after Vandam Zone accretion, maintaining critical taper
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othergeologic mapping
dc.subject.otherCaucasus
dc.subject.otheraccretionary prism
dc.subject.otherorogenic wedge
dc.subject.otherthermochronometry
dc.titleDiverse Deformation Mechanisms and Lithologic Controls in an Active Orogenic Wedge: Structural Geology and Thermochronometry of the Eastern Greater Caucasus
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175491/1/tect21809.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175491/2/tect21809_am.pdf
dc.identifier.doi10.1029/2022TC007349
dc.identifier.sourceTectonics
dc.identifier.citedreferenceSaintot, A., Stephenson, R. A., Stovba, S., Brunet, M. F., Yegorova, T., & Starostenko, V. ( 2006 ). The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the latest Precambrian-Early Paleozoic to the Early Cretaceous. Geological Society, London, Memoirs, 32 ( 1 ), 481 – 505. https://doi.org/10.1144/gsl.mem.2006.032.01.30
dc.identifier.citedreferenceTrexler, C. C. ( 2018 ). Structural investigations of the tectonic history of the western Greater Caucasus mountains, Republic of Georgia (Ph.D. dissertation). University of California.
dc.identifier.citedreferenceTrexler, C. C., Cowgill, E., Niemi, N. A., Vasey, D. A., & Godoladze, T. ( 2022 ). Tectonostratigraphy and major structures of the Georgian Greater Caucasus: Implications for structural architecture, along-strike continuity, and orogen evolution. Geosphere, 18 ( 1 ), 211 – 240. https://doi.org/10.1130/ges02385.1
dc.identifier.citedreferenceTye, A. R., & Niemi, N. ( 2022 ). Eastern Greater Caucasus thermochronometry. Mendeley Data. https://doi.org/10.17632/54p84dj5jj.1
dc.identifier.citedreferenceTye, A. R., Niemi, N., Cowgill, E., Kadirov, F., & Babayev, G. ( 2022 ). Geological swath maps of the eastern Greater Caucasus, Azerbaijan, with GIS data. Figshare. https://doi.org/10.6084/m9.figshare.19469873.v2
dc.identifier.citedreferenceTye, A. R., Niemi, N. A., Safarov, R. T., Kadirov, F. A., & Babayev, G. R. ( 2021 ). Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments. Basin Research, 33 ( 2 ), 933 – 967. https://doi.org/10.1111/bre.12499
dc.identifier.citedreferenceUba, C. E., Kley, J., Strecker, M. R., & Schmitt, A. K. ( 2009 ). Unsteady evolution of the Bolivian Subandean thrust belt: The role of enhanced erosion and clastic wedge progradation. Earth and Planetary Science Letters, 281 ( 3–4 ), 134 – 146. https://doi.org/10.1016/j.epsl.2009.02.010
dc.identifier.citedreferenceVan der Boon, A., van Hinsbergen, D. J. J., Rezaeian, M., Gürer, D., Honarmand, M., Pastor-Galán, D., et al. ( 2018 ). Quantifying Arabia-Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction. Earth and Planetary Science Letters, 482, 454 – 469. https://doi.org/10.1016/j.epsl.2017.11.025
dc.identifier.citedreferenceVan Hinsbergen, D. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vissers, R. L., et al. ( 2020 ). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79 – 229. https://doi.org/10.1016/j.gr.2019.07.009
dc.identifier.citedreferenceVasey, D. A., Cowgill, E., & Cooper, K. M. ( 2021 ). A preliminary framework for magmatism in modern continental back-arc basins and its application to the Triassic-Jurassic tectonic evolution of the Caucasus. Geochemistry, Geophysics, Geosystems, 22 ( 6 ), e2020GC009490. https://doi.org/10.1029/2020gc009490
dc.identifier.citedreferenceVasey, D. A., Cowgill, E., Roeske, S. M., Niemi, N. A., Godoladze, T., Skhirtladze, I., & Gogoladze, S. ( 2020 ). Evolution of the Greater Caucasus basement and formation of the Main Caucasus Thrust, Georgia. Tectonics, 39 ( 3 ), e2019TC005828. https://doi.org/10.1029/2019tc005828
dc.identifier.citedreferenceVermeesch, P. ( 2009 ). RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiation Measurements, 44 ( 4 ), 409 – 410. https://doi.org/10.1016/j.radmeas.2009.05.003
dc.identifier.citedreferenceVincent, S. J., Braham, W., Lavrishchev, V. A., Maynard, J. R., & Harland, M. ( 2016 ). The formation and inversion of the western Greater Caucasus Basin and the uplift of the western Greater Caucasus: Implications for the wider Black Sea region. Tectonics, 35 ( 12 ), 2948 – 2962. https://doi.org/10.1002/2016tc004204
dc.identifier.citedreferenceVincent, S. J., Morton, A. C., Carter, A., Gibbs, S., & Barabadze, T. G. ( 2007 ). Oligocene uplift of the western Greater Caucasus: An effect of initial Arabia-Eurasia collision. Terra Nova, 19 ( 2 ), 160 – 166. https://doi.org/10.1111/j.1365-3121.2007.00731.x
dc.identifier.citedreferenceVincent, S. J., Somin, M. L., Carter, A., Vezzoli, G., Fox, M., & Vautravers, B. ( 2020 ). Testing models of Cenozoic exhumation in the western Greater Caucasus. Tectonics, 39 ( 2 ), e2018TC005451. https://doi.org/10.1029/2018tc005451
dc.identifier.citedreferenceVoronin, M. P., Gavrilov, M. D., & Khain, V. E. ( 1959 ). Geological map of the USSR, Caucasus series sheet K-39-XXXI, scale 1:200,000. Ministry of Geology and Mineral Protection USSR.
dc.identifier.citedreferenceWestbrook, G. K., & Smith, M. J. ( 1983 ). Long decollements and mud volcanoes: Evidence from the Barbados Ridge Complex for the role of high pore-fluid pressure in the development of an accretionary complex. Geology, 11 ( 5 ), 279 – 283. https://doi.org/10.1130/0091-7613(1983)11<279:ldamve>2.0.co;2
dc.identifier.citedreferenceWillett, S. D. ( 1999 ). Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research: Solid Earth, 104 ( B12 ), 28957 – 28981. https://doi.org/10.1029/1999jb900248
dc.identifier.citedreferenceWillett, S. D., & Brandon, M. T. ( 2002 ). On steady states in mountain belts. Geology, 30 ( 2 ), 175 – 178. https://doi.org/10.1130/0091-7613(2002)030<0175:ossimb>2.0.co;2
dc.identifier.citedreferenceWolf, R. A., Farley, K. A., & Kass, D. M. ( 1998 ). Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148 ( 1–2 ), 105 – 114. https://doi.org/10.1016/s0009-2541(98)00024-2
dc.identifier.citedreferenceYamada, Y., Yamashita, Y., & Yamamoto, Y. ( 2010 ). Submarine landslides at subduction margins: Insights from physical models. Tectonophysics, 484 ( 1–4 ), 156 – 167. https://doi.org/10.1016/j.tecto.2009.09.007
dc.identifier.citedreferenceZonenshain, L. P., & Pichon, X. ( 1986 ). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123 ( 1–4 ), 181 – 211. https://doi.org/10.1016/0040-1951(86)90197-6
dc.identifier.citedreferenceGalbraith, R. F., & Laslett, G. M. ( 1993 ). Statistical models for mixed fission track ages. Nuclear Tracks, 21, 459 – 470. https://doi.org/10.1016/1359-0189(93)90185-c
dc.identifier.citedreferenceGleadow, A. J. W. ( 1981 ). Fission track dating methods: What are the real alternatives? Nuclear tracks (Vol. 5, pp. 3 – 14 ).
dc.identifier.citedreferenceHurford, A. J. ( 1990 ). Standardization of fission track dating calibration: Recommended by the Fission Track Working Group of the I.U.G.S. Subcommission on geochronology. Chemical Geology, 80, 171 – 178. https://doi.org/10.1016/0168-9622(90)90025-8
dc.identifier.citedreferenceHurford, A. J., & Green, P. F. ( 1983 ). The Zeta-age calibration of fission track dating. Isotope Geoscience, 1, 285 – 317. https://doi.org/10.1016/s0009-2541(83)80026-6
dc.identifier.citedreferenceAdamia, S., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A., & Gventsadze, A. ( 2011 ). Geology of the Caucasus: A review. Turkish Journal of Earth Sciences, 20 ( 5 ), 489 – 544. https://doi.org/10.3906/yer-1005-11
dc.identifier.citedreferenceMorley, C. K. ( 1988 ). Out-of-sequence thrusts. Tectonics, 7 ( 3 ), 539 – 561. https://doi.org/10.1029/tc007i003p00539
dc.identifier.citedreferenceAgabekov, M. G., & Moshashvili, A. B. ( 1978 ). Kyurdamir-Saatly buried uplift of the Kura basin, an integral part of the Lesser Caucasus geosyncline in Cretaceous time. Doklady of the National Academy of Sciences of the USSR, 232, 120 – 122.
dc.identifier.citedreferenceAlizadeh, A. A., Guliyev, I. S., Kadirov, F. A., & Eppelbaum, L. V. ( 2016 ). Geosciences of Azerbaijan. Springer.
dc.identifier.citedreferenceAlizadeh, A. A., Khain, V. E., & Ismailzadeh, A. D. ( 2000 ). Saatly superdeep. Analysis of deep structure of the Kur intermontane depression by the data of Saatly superdeep Borehole SG-1 drilling. Nafta-Press. (in Russian).
dc.identifier.citedreferenceAllen, M. B., & Armstrong, H. A. ( 2008 ). Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Paleogeography, Paleoclimatology, Paleoecology, 265 ( 1–2 ), 52 – 58. https://doi.org/10.1016/j.palaeo.2008.04.021
dc.identifier.citedreferenceAllen, M. B., Morton, A. C., Fanning, C. M., Ismail-Zadeh, A. J., & Kroonenberg, S. B. ( 2006 ). Zircon age constraints on sediment provenance in the Caspian region. Journal of the Geological Society, 163 ( 4 ), 647 – 655. https://doi.org/10.1144/0016-764920-068
dc.identifier.citedreferenceAvdeev, B. ( 2011 ). Tectonics of the Greater Caucasus and the Arabia-Eurasia orogen (Doctoral dissertation). University of Michigan.
dc.identifier.citedreferenceAvdeev, B., & Niemi, N. A. ( 2011 ). Rapid Pliocene exhumation of the central Greater Caucasus constrained by low-temperature thermochronometry. Tectonics, 30 ( 2 ). https://doi.org/10.1029/2010tc002808
dc.identifier.citedreferenceAzizbekov, S. A. ( 1968 ). Tectonic structure of Azerbaijan and the Caspian depression. In International Geophysical Congress, Tectonic Maps of Europe and the World (p. 4 ). Baku: Academy of Sciences of the Azerbaijan SSR, Department of Earth Sciences.
dc.identifier.citedreferenceBairamov, A. A., Aliyev, G. I., Hasanov, G. M., Hasanov, H. Y., Hasanov, T. A., Ismail-Zadeh, A. J., et al. ( 2008 ). Geological Map of Azerbaijan Republic. National Academy of Sciences of Azerbaijan Republic, Geology Institute.
dc.identifier.citedreferenceBanks, C. J., Robinson, A. G., & Williams, M. P. ( 1997 ). AAPG Memoir 68: Regional and petroleum geology of the Black Sea and surrounding region. In Chapter 17: Structure and regional tectonics of the Achara-Trialet Fold Belt and the Adjacent Rioni and Kartli Foreland Basins.
dc.identifier.citedreferenceBarber, D. E., Stockli, D. F., Horton, B. K., & Koshnaw, R. I. ( 2018 ). Cenozoic exhumation and foreland basin evolution of the Zagros orogen during the Arabia-Eurasia collision, western Iran. Tectonics, 37 ( 12 ), 4396 – 4420. https://doi.org/10.1029/2018tc005328
dc.identifier.citedreferenceBochud, M. ( 2011 ). Tectonics of the eastern Greater Caucasus in Azerbaijan (Ph.D. dissertation). University of Fribourg.
dc.identifier.citedreferenceBonnet, C., Malavieille, J., & Mosar, J. ( 2007 ). Interactions between tectonics, erosion, and sedimentation during the recent evolution of the Alpine orogen: Analog modeling insights. Tectonics, 26 ( 6 ). https://doi.org/10.1029/2006tc002048
dc.identifier.citedreferenceBoyer, S. E., & Elliott, D. ( 1982 ). Thrust systems. AAPG Bulletin, 66 ( 9 ), 1196 – 1230. https://doi.org/10.1306/03B5A77D-16D1-11D7-8645000102C1865D
dc.identifier.citedreferenceBrandon, M. T., Roden-Tice, M. K., & Garver, J. I. ( 1998 ). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. The Geological Society of America Bulletin, 110 ( 8 ), 985 – 1009. https://doi.org/10.1130/0016-7606(1998)110<0985:lceotc>2.3.co;2
dc.identifier.citedreferenceBurkhard, M., & Sommaruga, A. ( 1998 ). Evolution of the Swiss Molasse basin: Structural relations with the Alps and the Jura belt: London (Vol. 134, pp. 279 – 298 ). Geological Society Special Publication.
dc.identifier.citedreferenceBurmin, V. Y., Shemeleva, I. B., Avetisyan, A. M., & Kazaryan, K. S. ( 2019 ). Deep earthquakes in the Caucasus: Recalculation results. Seismic Instruments, 55 ( 6 ), 650 – 660. https://doi.org/10.3103/s074792391906001x
dc.identifier.citedreferenceButler, R. W. H. ( 1987 ). Thrust sequences. Journal of the Geological Society, 144 ( 4 ), 619 – 634.
dc.identifier.citedreferenceButler, R. W. H., Bond, C. E., Cooper, M. A., & Watkins, H. ( 2019 ). Fold-thrust structures-where have all the buckles gone? (Vol. 487 ). Geological Society, London, Special Publications. SP487-7.
dc.identifier.citedreferenceCardozo, N., & Allmendinger, R. W. ( 2013 ). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193 – 205. https://doi.org/10.1016/j.cageo.2012.07.021
dc.identifier.citedreferenceCasciello, E., Vergés, J., Saura, E., Casini, G., Fernández, N., Blanc, E., et al. ( 2009 ). Fold patterns and multilayer rheology of the Lurestan Province, Zagros simply folded belt (Iran). Journal of the Geological Society, 166 ( 5 ), 947 – 959. https://doi.org/10.1144/0016-76492008-138
dc.identifier.citedreferenceChapple, W. M. ( 1978 ). Mechanics of thin-skinned fold-and-thrust belts. The Geological Society of America Bulletin, 89 ( 8 ), 1189 – 1198. https://doi.org/10.1130/0016-7606(1978)89<1189:motfb>2.0.co;2
dc.identifier.citedreferenceCowgill, E., Forte, A. M., Niemi, N., Avdeev, B., Tye, A., Trexler, C., et al. ( 2016 ). Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance. Tectonics, 35 ( 12 ), 2918 – 2947. https://doi.org/10.1002/2016tc004295
dc.identifier.citedreferenceCumberpatch, Z. A., Soutter, E. L., Kane, I. A., Casson, M., & Vincent, S. J. ( 2021 ). Evolution of a mixed siliciclastic-carbonate deep-marine system on an unstable margin: The Cretaceous of the Eastern Greater Caucasus, Azerbaijan. Basin Research, 33 ( 1 ), 612 – 647. https://doi.org/10.1111/bre.12488
dc.identifier.citedreferenceCurrie, J. B., Patnode, H. W., & Trump, R. P. ( 1962 ). Development of folds in sedimentary strata. The Geological Society of America Bulletin, 73 ( 6 ), 655 – 673. https://doi.org/10.1130/0016-7606(1962)73[655:dofiss]2.0.co;2
dc.identifier.citedreferenceDahlen, F. A. ( 1990 ). Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18 ( 1 ), 55 – 99. https://doi.org/10.1146/annurev.ea.18.050190.000415
dc.identifier.citedreferenceDahlen, F. A., Suppe, J., & Davis, D. ( 1984 ). Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. Journal of Geophysical Research: Solid Earth, 89 ( B12 ), 10087 – 10101. https://doi.org/10.1029/jb089ib12p10087
dc.identifier.citedreferenceDahlstrom, C. D. ( 1970 ). Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 18 ( 3 ), 332 – 406.
dc.identifier.citedreferenceDahlstrom, C. D. A. ( 1969 ). Balanced cross-sections. Canadian Journal of Earth Sciences, 6 ( 4 ), 743 – 757. https://doi.org/10.1139/e69-069
dc.identifier.citedreferenceDavis, D., Suppe, J., & Dahlen, F. A. ( 1983 ). Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 88 ( B2 ), 1153 – 1172. https://doi.org/10.1029/jb088ib02p01153
dc.identifier.citedreferenceDeCelles, P. G., & Mitra, G. ( 1995 ). History of the Sevier orogenic wedge in terms of critical taper models, northeast Utah and southwest Wyoming. The Geological Society of America Bulletin, 107 ( 4 ), 454 – 462. https://doi.org/10.1130/0016-7606(1995)107<0454:hotsow>2.3.co;2
dc.identifier.citedreferenceDitullio, L., & Byrne, T. ( 1990 ). Deformation paths in the shallow levels of an accretionary prism: The Eocene Shimanto belt of southwest Japan. The Geological Society of America Bulletin, 102 ( 10 ), 1420 – 1438. https://doi.org/10.1130/0016-7606(1990)102<1420:dpitsl>2.3.co;2
dc.identifier.citedreferenceDonelick, R. A., O’Sullivan, P. B., & Ketcham, R. A. ( 2005 ). Apatite fission track analysis. Reviews in Mineralogy and Geochemistry, 58 ( 1 ), 49 – 94. https://doi.org/10.2138/rmg.2005.58.3
dc.identifier.citedreferenceEhlers, T. A., & Farley, K. A. ( 2003 ). Apatite (U-Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206 ( 1–2 ), 1 – 14. https://doi.org/10.1016/s0012-821x(02)01069-5
dc.identifier.citedreferenceEmerman, S. H., & Turcotte, D. L. ( 1983 ). A fluid model for the shape of accretionary wedges. Earth and Planetary Science Letters, 63 ( 3 ), 379 – 384. https://doi.org/10.1016/0012-821x(83)90111-5
dc.identifier.citedreferenceErslev, E. A. ( 1991 ). Trishear fault-propagation folding. Geology, 19 ( 6 ), 617 – 620. https://doi.org/10.1130/0091-7613(1991)019<0617:tfpf>2.3.co;2
dc.identifier.citedreferenceEspina, R. G., Alonso, J. L., & Pulgar, J. A. ( 1996 ). Growth and propagation of buckle folds determined from syntectonic sediments (the Ubierna Fold Belt, Cantabrian Mountains, N Spain). Journal of Structural Geology, 18 ( 4 ), 431 – 441. https://doi.org/10.1016/0191-8141(95)00103-k
dc.identifier.citedreferenceFarley, K. A. ( 2002 ). (U-Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47 ( 1 ), 819 – 844. https://doi.org/10.2138/rmg.2002.47.18
dc.identifier.citedreferenceFarley, K. A., Rusmore, M. E., & Bogue, S. W. ( 2001 ). Post-10 Ma uplift and exhumation of the northern Coast Mountains, British Columbia. Geology, 29 ( 2 ), 99 – 102. https://doi.org/10.1130/0091-7613(2001)029<0099:pmuaeo>2.0.co;2
dc.identifier.citedreferenceFitz-Díaz, E., Tolson, G., Hudleston, P., Bolaños-Rodríguez, D., Ortega-Flores, B., & Serrano, A. V. ( 2012 ). The role of folding in the development of the Mexican fold-and-thrust belt. Geosphere, 8 ( 4 ), 931 – 949.
dc.identifier.citedreferenceFlowers, R. M., & Kelley, S. A. ( 2011 ). Interpreting data dispersion and “inverted” dates in apatite (U-Th)/He and fission track data sets: An example from the US midcontinent. Geochimica et Cosmochimica Acta, 75 ( 18 ), 5169 – 5186. https://doi.org/10.1016/j.gca.2011.06.016
dc.identifier.citedreferenceFlowers, R. M., Ketcham, R. A., Enkelmann, E., Gautheron, C., Reiners, P. W., Metcalf, J. R., et al. ( 2022 ). (U-Th)/He chronology: Part 2. Considerations for evaluating, integrating, and interpreting conventional individual aliquot data. GSA Bulletin. https://doi.org/10.1130/B36268.1
dc.identifier.citedreferenceFlowers, R. M., Ketcham, R. A., Shuster, D. L., & Farley, K. A. ( 2009 ). Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73 ( 8 ), 2347 – 2365. https://doi.org/10.1016/j.gca.2009.01.015
dc.identifier.citedreferenceForte, A. M., Cowgill, E., Bernardin, T., Kreylos, O., & Hamann, B. ( 2010 ). Late Cenozoic deformation of the Kura fold-thrust belt, southern Greater Caucasus. Bulletin, 122 ( 3–4 ), 465 – 486. https://doi.org/10.1130/b26464.1
dc.identifier.citedreferenceForte, A. M., Cowgill, E., Murtuzayev, I., Kangarli, T., & Stoica, M. ( 2013 ). Structural geometries and magnitude of shortening in the eastern Kura fold-thrust belt, Azerbaijan: Implications for the development of the Greater Caucasus mountains. Tectonics, 32 ( 3 ), 688 – 717. https://doi.org/10.1002/tect.20032
dc.identifier.citedreferenceForte, A. M., Cowgill, E., & Whipple, K. X. ( 2014 ). Transition from a singly vergent to doubly vergent wedge in a young orogen: The Greater Caucasus. Tectonics, 33 ( 11 ), 2077 – 2101. https://doi.org/10.1002/2014tc003651
dc.identifier.citedreferenceForte, A. M., Gutterman, K. R., Van Soest, M. C., & Gallagher, K. ( 2022 ). Building a Young Mountain Range: Insight into the growth of the Greater Caucasus mountains from detrital zircon (U-Th)/He thermochronology and 10 Be erosion rates. Tectonics, 41 ( 5 ), e2021TC006900. https://doi.org/10.1029/2021tc006900
dc.identifier.citedreferenceForte, A. M., Whipple, K. X., & Cowgill, E. ( 2015 ). Drainage network reveals patterns and history of active deformation in the eastern Greater Caucasus. Geosphere, 11 ( 5 ), 1343 – 1364. https://doi.org/10.1130/ges01121.1
dc.identifier.citedreferenceFrançois, T., Burov, E., Agard, P., & Meyer, B. ( 2014 ). Buildup of a dynamically supported orogenic plateau: Numerical modeling of the Zagros/Central Iran case study. Geochemistry, Geophysics, Geosystems, 15 ( 6 ), 2632 – 2654. https://doi.org/10.1002/2013GC005223
dc.identifier.citedreferenceGalbraith, R. F. ( 1988 ). Graphical display of estimates having differing standard errors. Technometrics, 30 ( 3 ), 271 – 281.
dc.identifier.citedreferenceGalbraith, R. F. ( 2005 ). Statistics for fission track analysis. Chapman and Hall/CRC.
dc.identifier.citedreferenceGalbraith, R. F., & Green, P. F. ( 1990 ). Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation—Part D: Nuclear Tracks and Radiation Measurements, 17 ( 3 ), 197 – 206. https://doi.org/10.1016/1359-0189(90)90035-v
dc.identifier.citedreferenceGallagher, K. ( 2012 ). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117 ( B2 ). https://doi.org/10.1029/2011jb008825
dc.identifier.citedreferenceGavrilov, Y. O. ( 2018 ). Architecture of the Southern Marginal Zone of the Upper Jurassic-Valanginian carbonate platform of the northeastern Caucasus (Dagestan, Shakhdag Massif). Lithology and Mineral Resources, 53 ( 6 ), 460 – 472. https://doi.org/10.1134/s0024490218060032
dc.identifier.citedreferenceGhisetti, F. C., Barnes, P. M., Ellis, S., Plaza-Faverola, A. A., & Barker, D. H. ( 2016 ). The last 2 Myr of accretionary wedge construction in the central Hikurangi margin (North Island, New Zealand): Insights from structural modeling. Geochemistry, Geophysics, Geosystems, 17 ( 7 ), 2661 – 2686. https://doi.org/10.1002/2016gc006341
dc.identifier.citedreferenceGleadow, A. J., Duddy, I. R., Green, P. F., & Hegarty, K. A. ( 1986 ). Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78 ( 2–3 ), 245 – 254. https://doi.org/10.1016/0012-821x(86)90065-8
dc.identifier.citedreferenceGolubjatnikov, V. D., & Dubogryzova, A. G. ( 1959 ). Geological map of the USSR, Caucasus series sheet K-39-XIX, scale 1:200,000. Ministry of Geology and Mineral Protection USSR.
dc.identifier.citedreferenceGradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (Eds.) ( 2012 ). A geologic time scale 2012 (p. 1144 ). Elsevier.
dc.identifier.citedreferenceGrando, G., & McClay, K. ( 2007 ). Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sedimentary Geology, 196 ( 1–4 ), 157 – 179. https://doi.org/10.1016/j.sedgeo.2006.05.030
dc.identifier.citedreferenceGraveleau, F., Malavieille, J., & Dominguez, S. ( 2012 ). Experimental modeling of orogenic wedges: A review. Tectonophysics, 538, 1 – 66. https://doi.org/10.1016/j.tecto.2012.01.027
dc.identifier.citedreferenceGreen, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R., & Laslett, G. M. ( 1986 ). Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience section, 59, 237 – 253. https://doi.org/10.1016/0168-9622(86)90074-6
dc.identifier.citedreferenceGreen, T., Abdullayev, N., Hossack, J., Riley, G., & Roberts, A. M. ( 2009 ). Sedimentation and subsidence in the South Caspian Basin, Azerbaijan. Geological Society, London, Special Publications, 312 ( 1 ), 241 – 260. https://doi.org/10.1144/sp312.12
dc.identifier.citedreferenceGuenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., & Giester, G. ( 2013 ). Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. American Journal of Science, 313 ( 3 ), 145 – 198. https://doi.org/10.2475/03.2013.01
dc.identifier.citedreferenceGuest, B., Axen, G. J., Lam, P. S., & Hassanzadeh, J. ( 2006 ). Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere, 2 ( 1 ), 35 – 52. https://doi.org/10.1130/ges00019.1
dc.identifier.citedreferenceGuest, B., Horton, B. K., Axen, G. J., Hassanzadeh, J., & McIntosh, W. C. ( 2007 ). Middle to late Cenozoic basin evolution in the western Alborz Mountains: Implications for the onset of collisional deformation in northern Iran. Tectonics, 26 ( 6 ). https://doi.org/10.1029/2006tc002091
dc.identifier.citedreferenceGulick, S. P., Meltzer, A. M., & Clarke, S. H., Jr. ( 1998 ). Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction. Journal of Geophysical Research: Solid Earth, 103 ( B11 ), 27207 – 27222. https://doi.org/10.1029/98jb02526
dc.identifier.citedreferenceGunnels, M., Yetrimishli, G., Kazimova, S., & Sandvol, E. ( 2021 ). Seismotectonic evidence for subduction beneath the eastern Greater Caucasus. Geophysical Journal International, 224 ( 3 ), 1825 – 1834.
dc.identifier.citedreferenceGusmeo, T., Cavazza, W., Alania, V. M., Enukidze, O. V., Zattin, M., & Corrado, S. ( 2021 ). Structural inversion of back-arc basins—The Neogene Adjara-Trialeti fold-and-thrust belt (SW Georgia) as a far-field effect of the Arabia-Eurasia collision. Tectonophysics, 803, 228702. https://doi.org/10.1016/j.tecto.2020.228702
dc.identifier.citedreferenceGutscher, M. A., Kukowski, N., Malavieille, J., & Lallemand, S. ( 1998 ). Episodic imbricate thrusting and underthrusting: Analog experiments and mechanical analysis applied to the Alaskan accretionary wedge. Journal of Geophysical Research: Solid Earth, 103 ( B5 ), 10161 – 10176. https://doi.org/10.1029/97jb03541
dc.identifier.citedreferenceHatzfeld, D., & Molnar, P. ( 2010 ). Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48 ( 2 ). https://doi.org/10.1029/2009rg000304
dc.identifier.citedreferenceHollingsworth, J., Jackson, J., Walker, R., & Nazari, H. ( 2008 ). Extrusion tectonics and subduction in the eastern South Caspian region since 10 Ma. Geology, 36 ( 10 ), 763 – 766. https://doi.org/10.1130/g25008a.1
dc.identifier.citedreferenceHosseini-Barzi, M., & Talbot, C. J. ( 2003 ). A tectonic pulse in the Makran accretionary prism recorded in Iranian coastal sediments. Journal of the Geological Society, 160 ( 6 ), 903 – 910. https://doi.org/10.1144/0016-764903-005
dc.identifier.citedreferenceHouse, M. A., Wernicke, B. P., & Farley, K. A. ( 1998 ). Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature, 396 ( 6706 ), 66 – 69. https://doi.org/10.1038/23926
dc.identifier.citedreferenceHubbard, J., Barbot, S., Hill, E. M., & Tapponnier, P. ( 2015 ). Coseismic slip on shallow décollement megathrusts: Implications for seismic and tsunami hazard. Earth-Science Reviews, 141, 45 – 55. https://doi.org/10.1016/j.earscirev.2014.11.003
dc.identifier.citedreferenceHuntington, K. W., Ehlers, T. A., Hodges, K. V., & Whipp, D. M., Jr. ( 2007 ). Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data. Tectonics, 26 ( 4 ). https://doi.org/10.1029/2007tc002108
dc.identifier.citedreferenceKadirov, F. A., Floyd, M., Alizadeh, A., Guliev, I., Reilinger, R., Kuleli, S., et al. ( 2012 ). Kinematics of the eastern Caucasus near Baku, Azerbaijan. Natural Hazards, 63 ( 2 ), 997 – 1006. https://doi.org/10.1007/s11069-012-0199-0
dc.identifier.citedreferenceKadirov, F. A., Floyd, M., Reilinger, R., Alizadeh, A. A., Guliyev, I. S., Mammadov, S. G., & Safarov, R. T. ( 2015 ). Active geodynamics of the Caucasus region: Implications for earthquake hazards in Azerbaijan. Proceedings of Azerbaijan National Academy of Sciences, the Sciences of Earth, 3, 3 – 17.
dc.identifier.citedreferenceKamb, W. B. ( 1959 ). Ice petrofabric observations from Blue Glacier, Washington in relation to theory and experiment. Journal of Geophysical Research, 64, 1891 – 1909. https://doi.org/10.1029/jz064i011p01891
dc.identifier.citedreferenceKetcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., & Hurford, A. J. ( 2007 ). Improved modeling of fission-track annealing in apatite. American Mineralogist, 92 ( 5–6 ), 799 – 810. https://doi.org/10.2138/am.2007.2281
dc.identifier.citedreferenceKetcham, R. A., Gautheron, C., & Tassan-Got, L. ( 2011 ). Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: Refinement of the baseline case. Geochimica et Cosmochimica Acta, 75 ( 24 ), 7779 – 7791. https://doi.org/10.1016/j.gca.2011.10.011
dc.identifier.citedreferenceKhain, V. E. ( 1975 ). Structure and main stages in the tectono-magmatic development of the Caucasus: An attempt at geodynamic interpretation. American Journal of Science, 275, 131 – 156.
dc.identifier.citedreferenceKhain, V. E. ( 2007 ). Mesozoic-Cenozoic accretionary complexes of the Greater Caucasus. In Doklady Earth Sciences (Vol. 413, No. 2, pp. 376 – 379 ). MAIK Nauka/Interperiodica.
dc.identifier.citedreferenceKhain, V. E., & Shardanov, A. ( 1960 ). Geological map of the USSR, Caucasus series sheet K-39-XXV, scale 1:200,000. Ministry of Geology and Mineral Protection USSR.
dc.identifier.citedreferenceKopp, M. L. ( 1985 ). Age and nature of deformations of sediments comprising the Lagich Syncline. Moscow University Geology Bulletin, 40 ( 1 ), 23 – 32.
dc.identifier.citedreferenceKopp, M. L., & Shcherba, I. G. ( 1985 ). Late Alpine development of the east Caucasus. Geotectonics, 19 ( 6 ), 497 – 507.
dc.identifier.citedreferenceLavé, J., & Avouac, J. P. ( 2000 ). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth, 105 ( B3 ), 5735 – 5770.
dc.identifier.citedreferenceMadanipour, S., Ehlers, T. A., Yassaghi, A., & Enkelmann, E. ( 2017 ). Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U-Th/He thermochronometry: Evidence for the Arabia-Eurasia collision in the NW Iranian Plateau. Tectonics, 36 ( 8 ), 1538 – 1561. https://doi.org/10.1002/2016tc004291
dc.identifier.citedreferenceMalavieille, J. ( 2010 ). Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: Analog models and case studies. Geological Society of America Today, 20 ( 1 ), 4 – 10. https://doi.org/10.1130/gsatg48a.1
dc.identifier.citedreferenceMalavieille, J., Dominguez, S., Lu, C. Y., Chen, C. T., & Konstantinovskaya, E. ( 2021 ). Deformation partitioning in mountain belts: Insights from analog modeling experiments and the Taiwan collisional orogen. Geological Magazine, 158 ( 1 ), 84 – 103. https://doi.org/10.1017/s0016756819000645
dc.identifier.citedreferenceMcQuarrie, N. ( 2004 ). Crustal scale geometry of the Zagros fold-thrust belt, Iran. Journal of Structural Geology, 26 ( 3 ), 519 – 535. https://doi.org/10.1016/j.jsg.2003.08.009
dc.identifier.citedreferenceMcQuarrie, N., & van Hinsbergen, D. J. ( 2013 ). Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41 ( 3 ), 315 – 318. https://doi.org/10.1130/g33591.1
dc.identifier.citedreferenceMellors, R. J., Jackson, J., Myers, S., Gok, R., Priestley, K., Yetirmishli, G., et al. ( 2012 ). Deep earthquakes beneath the northern Caucasus: Evidence of active or recent subduction in western Asia. Bulletin of the Seismological Society of America, 102 ( 2 ), 862 – 866. https://doi.org/10.1785/0120110184
dc.identifier.citedreferenceMoore, G. F., Park, J. O., Bangs, N. L., Gulick, S. P., Tobin, H. J., Nakamura, Y., et al. ( 2009 ). Structural and seismic stratigraphic framework of the NanTroSEIZE Stage 1 transect. NanTroSEIZE Stage 1: Investigations of seismogenesis, Nankai Trough, Japan. Proceedings of the Integrated Ocean Drilling Program. https://doi.org/10.2204/iodp.proc.314315316.102.2009
dc.identifier.citedreferenceMorley, C. K., Kongwung, B., Julapour, A. A., Abdolghafourian, M., Hajian, M., Waples, D., et al. ( 2009 ). Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area. Geosphere, 5 ( 4 ), 325 – 362. https://doi.org/10.1130/ges00223.1
dc.identifier.citedreferenceMosar, J., Kangarli, T., Bochud, M., Glasmacher, U. A., Rast, A., Brunet, M. F., & Sosson, M. ( 2010 ). Cenozoic-recent tectonics and uplift in the Greater Caucasus: A perspective from Azerbaijan. Geological Society, London, Special Publications, 340 ( 1 ), 261 – 280. https://doi.org/10.1144/sp340.12
dc.identifier.citedreferenceMosar, J., Mauvilly, J., Koiava, K., Gamkrelidze, I., Enna, N., Lavrishev, V., & Kalberguenova, V. ( 2022 ). Tectonics in the Greater Caucasus (Georgia-Russia): From an intracontinental rifted basin to a doubly verging fold-and-thrust belt. Marine and Petroleum Geology, 140, 105630. https://doi.org/10.1016/j.marpetgeo.2022.105630
dc.identifier.citedreferenceMouthereau, F. ( 2011 ). Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia-Eurasia convergence. Geological Magazine, 148 ( 5–6 ), 726 – 738. https://doi.org/10.1017/s0016756811000306
dc.identifier.citedreferenceMulugeta, G., & Koyi, H. ( 1992 ). Episodic accretion and strain partitioning in a model sand wedge. Tectonophysics, 202 ( 2–4 ), 319 – 333. https://doi.org/10.1016/0040-1951(92)90117-o
dc.identifier.citedreferenceMumladze, T., Forte, A. M., Cowgill, E. S., Trexler, C. C., Niemi, N. A., Yıkılmaz, M. B., & Kellogg, L. H. ( 2015 ). Subducted, detached, and torn slabs beneath the Greater Caucasus. GeoResJ, 5, 36 – 46. https://doi.org/10.1016/j.grj.2014.09.004
dc.identifier.citedreferenceNalivkin, D. V. ( 1976 ). Geologic map of the Caucasus. Ministry of Geology.
dc.identifier.citedreferenceNiemi, N. A., & Clark, M. K. ( 2018 ). Long-term exhumation rates exceed paleoseismic slip rates in the central Santa Monica Mountains, Los Angeles County, California. Geology, 46 ( 1 ), 63 – 66. https://doi.org/10.1130/g39388.1
dc.identifier.citedreferenceNikishin, A. M., Cloetingh, S. A. P. L., Brunet, M. F., Stephenson, R. A., Bolotov, S. N., & Ershov, A. V. ( 1998 ). Scythian platform, Caucasus and Black Sea region: Mesozoic-Cenozoic tectonic history and dynamics. Peri-Tethys Memoir, 3, 163 – 176.
dc.identifier.citedreferenceNikishin, A. M., Ziegler, P., Panov, D. I., Nazarevich, B. P., Brunet, M.-F., Stephenson, R. A., et al. ( 2001 ). Mesozoic and Cainozoic evolution of the Scythian Platform—Black Sea—Caucasus domain. In P. Ziegler, W. Cavazza, A. H. F. Robertson, & S. Crasquin-Soleau (Eds.), Peri-Tethys Memoir 6—Peri-Tethyan rift/wrench basins and passive margins. Mémoires du Muséum national d’Histoire naturelle, Paris (Vol. 186, pp. 295 – 346 ).
dc.identifier.citedreferencePhilip, H., Cisternas, A., Gvishiani, A., & Gorshkov, A. ( 1989 ). The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161 ( 1–2 ), 1 – 21. https://doi.org/10.1016/0040-1951(89)90297-7
dc.identifier.citedreferencePlatt, J. P. ( 1986 ). Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. The Geological Society of America Bulletin, 97 ( 9 ), 1037 – 1053. https://doi.org/10.1130/0016-7606(1986)97<1037:doowat>2.0.co;2
dc.identifier.citedreferencePlatt, J. P., Leggett, J. K., Young, J., Raza, H., & Alam, S. ( 1985 ). Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology, 13 ( 7 ), 507 – 511. https://doi.org/10.1130/0091-7613(1985)13<507:lsuitm>2.0.co;2
dc.identifier.citedreferenceRamsay, J. G., & Wood, D. S. ( 1973 ). The geometric effects of volume change during deformation processes. Tectonophysics, 16 ( 3–4 ), 263 – 277. https://doi.org/10.1016/0040-1951(73)90015-2
dc.identifier.citedreferenceReilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., et al. ( 2006 ). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111 ( B5 ). https://doi.org/10.1029/2005jb004051
dc.identifier.citedreferenceReiners, P. W. ( 2005 ). Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58 ( 1 ), 151 – 179. https://doi.org/10.2138/rmg.2005.58.6
dc.identifier.citedreferenceReiners, P. W. ( 2007 ). Thermochronologic approaches to paleotopography. Reviews in Mineralogy and Geochemistry, 66 ( 1 ), 243 – 267. https://doi.org/10.2138/rmg.2007.66.10
dc.identifier.citedreferenceReiners, P. W., & Brandon, M. T. ( 2006 ). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34 ( 1 ), 419 – 466. https://doi.org/10.1146/annurev.earth.34.031405.125202
dc.identifier.citedreferenceReiners, P. W., & Nicolescu, S. ( 2006 ). Measurement of parent nuclides for (U-Th)/He chronometry by solution sector ICP-MS, ARHDL Report 1. Retrieved from http://www.geo.arizona.edu/∼reiners/arhdl/arhdl.htm
dc.identifier.citedreferenceReiners, P. W., Spell, T. L., Nicolescu, S., & Zanetti, K. A. ( 2004 ). Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40 Ar/ 39 Ar dating. Geochimica et Cosmochimica Acta, 68 ( 8 ), 1857 – 1887. https://doi.org/10.1016/j.gca.2003.10.021
dc.identifier.citedreferenceRolland, Y., Sosson, M., Adamia, S., & Sadradze, N. ( 2011 ). Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40 Ar/ 39 Ar dating. Gondwana Research, 20, 798 – 815. https://doi.org/10.1016/j.gr.2011.05.007
dc.identifier.citedreferenceSaintot, A., Brunet, M. F., Yakovlev, F., Sébrier, M., Stephenson, R., Ershov, A., et al. ( 2006 ). The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus. Geological Society, London, Memoirs, 32 ( 1 ), 277 – 289. https://doi.org/10.1144/gsl.mem.2006.032.01.16
dc.identifier.citedreferenceMoore, J. C., & Vrolijk, P. ( 1992 ). Fluids in accretionary prisms. Reviews of Geophysics, 30 ( 2 ), 113 – 135. https://doi.org/10.1029/92rg00201
dc.identifier.citedreferenceSample, J. C., & Fisher, D. M. ( 1986 ). Duplex accretion and underplating in an ancient accretionary complex, Kodiak Islands, Alaska. Geology, 14 ( 2 ), 160 – 163. https://doi.org/10.1130/0091-7613(1986)14<160:daauia>2.0.co;2
dc.identifier.citedreferenceŞengör, A. C. ( 1984 ). The Cimmeride orogenic system and the tectonics of Eurasia.
dc.identifier.citedreferenceSingh, S. C., Carton, H., Tapponnier, P., Hananto, N. D., Chauhan, A. P., Hartoyo, D., et al. ( 2008 ). Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nature Geoscience, 1 ( 11 ), 777 – 781. https://doi.org/10.1038/ngeo336
dc.identifier.citedreferenceSingh, S. C., Hananto, N., Mukti, M., Permana, H., Djajadihardja, Y., & Harjono, H. ( 2011 ). Seismic images of the megathrust rupture during the 25 October 2010 Pagai earthquake, SW Sumatra: Frontal rupture and large tsunami. Geophysical Research Letters, 38 ( 16 ). https://doi.org/10.1029/2011gl048935
dc.identifier.citedreferenceSkobeltsyn, G., Mellors, R., Gök, R., Türkelli, N., Yetirmishli, G., & Sandvol, E. ( 2014 ). Upper mantle S wave velocity structure of the East Anatolian-Caucasus region. Tectonics, 33 ( 3 ), 207 – 221. https://doi.org/10.1002/2013tc003334
dc.identifier.citedreferenceSobornov, K. O. ( 1994 ). Structure and petroleum potential of the Dagestan thrust belt, northeastern Caucasus, Russia. Bulletin of Canadian Petroleum Geology, 42 ( 3 ), 352 – 364.
dc.identifier.citedreferenceSobornov, K. O. ( 2021 ). Structure and evolution of the Terek-Caspian fold-and-thrust belt: New insights from regional seismic data. Journal of Petroleum Geology, 44 ( 3 ), 259 – 286. https://doi.org/10.1111/jpg.12793
dc.identifier.citedreferenceSokhadze, G., Floyd, M., Godoladze, T., King, R., Cowgill, E. S., Javakhishvili, Z., et al. ( 2018 ). Active convergence between the lesser and Greater Caucasus in Georgia: Constraints on the tectonic evolution of the Lesser-Greater Caucasus continental collision. Earth and Planetary Science Letters, 481, 154 – 161. https://doi.org/10.1016/j.epsl.2017.10.007
dc.identifier.citedreferenceSorby, H. C. ( 1908 ). On the application of quantitative methods to the study of the structure and history of rocks. Quarterly Journal of the Geological Society, 64 ( 1–4 ), 171 – 233. https://doi.org/10.1144/gsl.jgs.1908.064.01-04.12
dc.identifier.citedreferenceSosson, M., Rolland, Y., Müller, C., Danelian, T., Melkonyan, R., Kekelia, S., et al. ( 2010 ). Subductions, obduction, and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geological Society, London, Special Publications, 340, 329 – 352. https://doi.org/10.1144/sp340.14
dc.identifier.citedreferenceStampfli, G. M. ( 2013 ). Response to the comments on “The formation of Pangea” by DA Ruban. Tectonophysics, 608, 1445 – 1447. https://doi.org/10.1016/j.tecto.2013.09.004
dc.identifier.citedreferenceStüwe, K., White, L., & Brown, R. ( 1994 ). The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth and Planetary Science Letters, 124 ( 1–4 ), 63 – 74.
dc.identifier.citedreferenceSuppe, J. ( 1981 ). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4 ( 6 ), 67 – 89.
dc.identifier.citedreferenceSuppe, J., & Medwedeff, D. A. ( 1990 ). Geometry and Kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 87, 33 – 46.
dc.identifier.citedreferenceThomson, S. N., Reiners, P. W., Hemming, S. R., & Gehrels, G. E. ( 2013 ). The contribution of glacial erosion to shaping the hidden landscape of East Antarctica. Nature Geoscience, 6 ( 3 ), 203 – 207. https://doi.org/10.1038/ngeo1722
dc.identifier.citedreferenceTibaldi, A., Tsereteli, N., Varazanashvili, O., Babayev, G., Barth, A., Mumladze, T., et al. ( 2020 ). Active stress field and fault kinematics of the Greater Caucasus. Journal of Asian Earth Sciences, 188, 104108. https://doi.org/10.1016/j.jseaes.2019.104108
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.