Show simple item record

The DOE E3SM Model Version 2: Overview of the Physical Model and Initial Model Evaluation

dc.contributor.authorGolaz, Jean-Christophe
dc.contributor.authorVan Roekel, Luke P.
dc.contributor.authorZheng, Xue
dc.contributor.authorRoberts, Andrew F.
dc.contributor.authorWolfe, Jonathan D.
dc.contributor.authorLin, Wuyin
dc.contributor.authorBradley, Andrew M.
dc.contributor.authorTang, Qi
dc.contributor.authorMaltrud, Mathew E.
dc.contributor.authorForsyth, Ryan M.
dc.contributor.authorZhang, Chengzhu
dc.contributor.authorZhou, Tian
dc.contributor.authorZhang, Kai
dc.contributor.authorZender, Charles S.
dc.contributor.authorWu, Mingxuan
dc.contributor.authorWang, Hailong
dc.contributor.authorTurner, Adrian K.
dc.contributor.authorSingh, Balwinder
dc.contributor.authorRichter, Jadwiga H.
dc.contributor.authorQin, Yi
dc.contributor.authorPetersen, Mark R.
dc.contributor.authorMametjanov, Azamat
dc.contributor.authorMa, Po-Lun
dc.contributor.authorLarson, Vincent E.
dc.contributor.authorKrishna, Jayesh
dc.contributor.authorKeen, Noel D.
dc.contributor.authorJeffery, Nicole
dc.contributor.authorHunke, Elizabeth C.
dc.contributor.authorHannah, Walter M.
dc.contributor.authorGuba, Oksana
dc.contributor.authorGriffin, Brian M.
dc.contributor.authorFeng, Yan
dc.contributor.authorEngwirda, Darren
dc.contributor.authorDi Vittorio, Alan V.
dc.contributor.authorDang, Cheng
dc.contributor.authorConlon, LeAnn M.
dc.contributor.authorChen, Chih-chieh-Jack
dc.contributor.authorBrunke, Michael A.
dc.contributor.authorBisht, Gautam
dc.contributor.authorBenedict, James J.
dc.contributor.authorAsay-Davis, Xylar S.
dc.contributor.authorZhang, Yuying
dc.contributor.authorZhang, Meng
dc.contributor.authorZeng, Xubin
dc.contributor.authorXie, Shaocheng
dc.contributor.authorWolfram, Phillip J.
dc.contributor.authorVo, Tom
dc.contributor.authorVeneziani, Milena
dc.contributor.authorTesfa, Teklu K.
dc.contributor.authorSreepathi, Sarat
dc.contributor.authorSalinger, Andrew G.
dc.contributor.authorReeves Eyre, J. E. Jack
dc.contributor.authorPrather, Michael J.
dc.contributor.authorMahajan, Salil
dc.contributor.authorLi, Qing
dc.contributor.authorJones, Philip W.
dc.contributor.authorJacob, Robert L.
dc.contributor.authorHuebler, Gunther W.
dc.contributor.authorHuang, Xianglei
dc.contributor.authorHillman, Benjamin R.
dc.contributor.authorHarrop, Bryce E.
dc.contributor.authorFoucar, James G.
dc.contributor.authorFang, Yilin
dc.contributor.authorComeau, Darin S.
dc.contributor.authorCaldwell, Peter M.
dc.contributor.authorBartoletti, Tony
dc.contributor.authorBalaguru, Karthik
dc.contributor.authorTaylor, Mark A.
dc.contributor.authorMcCoy, Renata B.
dc.contributor.authorLeung, L. Ruby
dc.contributor.authorBader, David C.
dc.date.accessioned2023-01-11T16:26:18Z
dc.date.available2024-01-11 11:26:06en
dc.date.available2023-01-11T16:26:18Z
dc.date.issued2022-12
dc.identifier.citationGolaz, Jean-Christophe ; Van Roekel, Luke P.; Zheng, Xue; Roberts, Andrew F.; Wolfe, Jonathan D.; Lin, Wuyin; Bradley, Andrew M.; Tang, Qi; Maltrud, Mathew E.; Forsyth, Ryan M.; Zhang, Chengzhu; Zhou, Tian; Zhang, Kai; Zender, Charles S.; Wu, Mingxuan; Wang, Hailong; Turner, Adrian K.; Singh, Balwinder; Richter, Jadwiga H.; Qin, Yi; Petersen, Mark R.; Mametjanov, Azamat; Ma, Po-Lun ; Larson, Vincent E.; Krishna, Jayesh; Keen, Noel D.; Jeffery, Nicole; Hunke, Elizabeth C.; Hannah, Walter M.; Guba, Oksana; Griffin, Brian M.; Feng, Yan; Engwirda, Darren; Di Vittorio, Alan V.; Dang, Cheng; Conlon, LeAnn M.; Chen, Chih-chieh-Jack ; Brunke, Michael A.; Bisht, Gautam; Benedict, James J.; Asay-Davis, Xylar S. ; Zhang, Yuying; Zhang, Meng; Zeng, Xubin; Xie, Shaocheng; Wolfram, Phillip J.; Vo, Tom; Veneziani, Milena; Tesfa, Teklu K.; Sreepathi, Sarat; Salinger, Andrew G.; Reeves Eyre, J. E. Jack; Prather, Michael J.; Mahajan, Salil; Li, Qing; Jones, Philip W.; Jacob, Robert L.; Huebler, Gunther W.; Huang, Xianglei; Hillman, Benjamin R.; Harrop, Bryce E.; Foucar, James G.; Fang, Yilin; Comeau, Darin S.; Caldwell, Peter M.; Bartoletti, Tony; Balaguru, Karthik; Taylor, Mark A.; McCoy, Renata B.; Leung, L. Ruby; Bader, David C. (2022). "The DOE E3SM Model Version 2: Overview of the Physical Model and Initial Model Evaluation." Journal of Advances in Modeling Earth Systems 14(12): n/a-n/a.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/175492
dc.description.abstractThis work documents version two of the Department of Energy’s Energy Exascale Earth System Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated with Coupled Model Intercomparison Project Phase 6 Diagnosis, Evaluation, and Characterization of Klima simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate has many realistic features of the climate system, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Program assessment. However, a number of important biases remain including a weak Atlantic Meridional Overturning Circulation, deficiencies in the characteristics and spectral distribution of tropical atmospheric variability, and a significant underestimation of the observed warming in the second half of the historical period. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.Plain Language SummaryThe U.S. Department of Energy recently released version two of its Energy Exascale Earth System Model (E3SM). E3SMv2 experienced a significant evolution in many of its model components (most notably the atmosphere and sea ice models), and its supporting software infrastructure. In this work, we document the computational performance of E3SMv2 and analyze its ability to reproduce the observed climate. To accomplish this, we utilize the standard Diagnosis and Evaluation and Characterization of Klima experiments augmented with historical simulations for the period 1850–2015. We find that E3SMv2 is nearly twice as fast as its predecessor and more accurately reproduces the observed climate in a number of metrics, most notably clouds and precipitation. We also find that the model’s simulated response to increasing carbon dioxide (the equilibrium climate sensitivity) is much more realistic. Unfortunately, E3SMv2 underestimates the global mean surface temperature compared to observations during the second half of historical period. Using sensitivity experiments, where forcing agents (carbon dioxide, aerosols) are selectively disabled in the model, we determine that correcting this problem would require a strong reduction in the impact of aerosols.Key PointsE3SMv2 is nearly twice as fast as E3SMv1 with a simulated climate that is improved in many metrics (e.g., precipitation and clouds)Climate sensitivity is substantially lower with a more plausible equilibrium climate sensitivity of 4.0 K (compared to an unlikely value of 5.3 K in E3SMv1)E3SMv2 underestimates the warming in the late historical period due to excessive aerosol-related forcing
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Center of Atmospheric Research
dc.subject.otherclimate modeling
dc.subject.otherDOE E3SM
dc.titleThe DOE E3SM Model Version 2: Overview of the Physical Model and Initial Model Evaluation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175492/1/2022MS003156-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175492/2/jame21730_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175492/3/jame21730.pdf
dc.identifier.doi10.1029/2022MS003156
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferencePetersen, M., Jacobsen, D., Ringler, T. D., Hecht, M. W., & Maltrud, M. E. ( 2015 ). Evaluation of the arbitrary Lagrangian-Eulerian vertical coordinate method in the MPAS-Ocean model. Ocean Modeling, 86, 93 – 113. https://doi.org/10.1016/j.ocemod.2014.12.004
dc.identifier.citedreferenceLarson, J., Jacob, R., & Ong, E. ( 2005 ). The model coupling Toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. International Journal of High Performance Computing Applications, 19 ( 3 ), 277 – 292. https://doi.org/10.1177/1094342005056115
dc.identifier.citedreferenceLarson, V. E. ( 2017 ). CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere. arXiv. https://doi.org/10.48550/ARXIV.1711.03675
dc.identifier.citedreferenceLauritzen, P. H., Mirin, A. A., Truesdale, J., Raeder, K., Anderson, J. L., Bacmeister, J., & Neale, R. B. ( 2011 ). Implementation of new diffusion/filtering operators in the CAM-FV dynamical core. International Journal of High Performance Computing Applications, 26 ( 1 ), 63 – 73. https://doi.org/10.1177/1094342011410088
dc.identifier.citedreferenceLauritzen, P. H., & Williamson, D. L. ( 2019 ). A total energy error analysis of dynamical cores and physics-dynamics coupling in the Community Atmosphere Model (CAM). Journal of Advances in Modeling Earth Systems, 11 ( 5 ), 1309 – 1328. https://doi.org/10.1029/2018MS001549
dc.identifier.citedreferenceLeung, L. R., Bader, D. C., Taylor, M. A., & McCoy, R. B. ( 2020 ). An introduction to the E3SM special collection: Goals, science drivers, development, and analysis. Journal of Advances in Modeling Earth Systems, 12 ( 11 ), e2019MS001821. https://doi.org/10.1029/2019MS001821
dc.identifier.citedreferenceLevitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., et al. ( 2012 ). World ocean heat content and thermosteric sea level change (0–2,000 m), 1955–2010. Geophysical Research Letters, 39 ( 10 ). https://doi.org/10.1029/2012gl051106
dc.identifier.citedreferenceLi, H. Y., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., & Leung, L. R. ( 2013 ). A physically based runoff routing model for land surface and Earth system models. Journal of Hydrometeorology, 14, 808 – 828. https://doi.org/10.1175/JHM-D-12-015.1
dc.identifier.citedreferenceLin, S.-J. ( 2004 ). A vertically Lagrangian finite-volume dynamical core for global models. Monthly Weather Review, 132, 2293 – 2397. https://doi.org/10.1175/1520-0493(2004)132<2293:avlfdc>2.0.co;2
dc.identifier.citedreferenceLiu, W., Huang, B., Thorne, P. W., Banzon, V. F., Zhang, H.-M., Freeman, E., et al. ( 2015 ). Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. Journal of Climate, 28 ( 3 ), 931 – 951. https://doi.org/10.1175/JCLI-D-14-00007.1
dc.identifier.citedreferenceLiu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al. ( 2016 ). Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the community atmosphere model. Geoscientific Model Development, 9 ( 2 ), 505 – 522. https://doi.org/10.5194/gmd-9-505-2016
dc.identifier.citedreferenceLoeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., et al. ( 2018 ). Clouds and the Earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. Journal of Climate, 31 ( 2 ), 895 – 918. https://doi.org/10.1175/jcli-d-17-0208.1
dc.identifier.citedreferenceMa, P.-L., Harrop, B. E., Larson, V. E., Neale, R., Gettelman, A., Morrison, H., et al. ( 2021 ). Better calibration of cloud parameterizations and subgrid effects increases the fidelity of E3SM Atmosphere Model version 1. Geoscientific Model Development Discussions, 1 – 57. https://doi.org/10.5194/gmd-2021-298
dc.identifier.citedreferenceMa, P.-L., Harrop, B. E., Larson, V. E., Neale, R. B., Gettelman, A., Morrison, H., et al. ( 2022 ). Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geoscientific Model Development, 15 ( 7 ), 2881 – 2916. https://doi.org/10.5194/gmd-15-2881-2022
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1971 ). Detection of a 40–50 days oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28 ( 5 ), 702 – 708. https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2
dc.identifier.citedreferenceMaloney, E. D., & Hartmann, D. L. ( 2000 ). Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Nature, 287 ( 5460 ), 2002 – 2004. https://doi.org/10.1126/science.287.5460.2002
dc.identifier.citedreferenceMatsueda, S., & Takaya, Y. ( 2015 ). The global influence of the Madden-Julian oscillation on extreme temperature events. Journal of Climate, 28 ( 10 ), 4141 – 4151. https://doi.org/10.1175/jcli-d-14-00625.1
dc.identifier.citedreferenceMcCoy, D. T., Tan, I., Hartmann, D. L., Zelinka, M. D., & Storelvmo, T. ( 2016 ). On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs. Journal of Advances in Modeling Earth Systems, 8 ( 2 ), 650 – 668. https://doi.org/10.1002/2015MS000589
dc.identifier.citedreferenceMcFarlane, N. A. ( 1987 ). The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. Journal of the Atmospheric Sciences, 44 ( 14 ), 1775 – 1800. https://doi.org/10.1175/1520-0469(1987)044<1775:teooeg>2.0.co;2
dc.identifier.citedreferenceMeehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., et al. ( 2020 ). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6 ( 26 ). https://doi.org/10.1126/sciadv.aba1981
dc.identifier.citedreferenceMeier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., & Stroeve, J. ( 2017 ). NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3. Electron. Media. https://doi.org/10.7265/N59P2ZTG
dc.identifier.citedreferenceMignot, J., Hourdin, F., Deshayes, J., Boucher, O., Gastineau, G., Musat, I., et al. ( 2021 ). The tuning strategy of IPSL-CM6a-LR. Journal of Advances in Modeling Earth Systems, 13 ( 5 ), e2020MS002340. https://doi.org/10.1029/2020ms002340
dc.identifier.citedreferenceMolina, M., & Rowland, F. ( 1974 ). Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810 – 812. https://doi.org/10.1038/249810a0
dc.identifier.citedreferenceMorice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., et al. ( 2021 ). An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. Journal of Geophysical Research: Atmospheres, 126 ( 3 ). https://doi.org/10.1029/2019jd032361
dc.identifier.citedreferenceMundhenk, B. D., Barnes, E. A., & Maloney, E. D. ( 2016 ). All-season climatology and variability of atmospheric river frequencies over the North Pacific. Journal of Climate, 29 ( 13 ), 4885 – 4903. https://doi.org/10.1175/JCLI-D-15-0655.1
dc.identifier.citedreferenceNeale, R. B., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., et al. ( 2012 ). Description of the NCAR Community Atmosphere Model (CAM 5.0) (NCAR Technical Note Nos. NCAR/TN-486+STR). National Center of Atmospheric Research. https://doi.org/10.5065/wgtk-4g06
dc.identifier.citedreferenceNeelin, J. D., Bracco, A., Luo, H., McWilliams, J. C., & Meyerson, J. E. ( 2010 ). Considerations for parameter optimization and sensitivity in climate models. Proceedings of the National Academy of Sciences, 107 ( 50 ), 21349 – 21354. https://doi.org/10.1073/pnas.1015473107
dc.identifier.citedreferenceOrbe, C., Roekel, L. V., Adames, Á. F., Dezfuli, A., Fasullo, J., Gleckler, P. J., et al. ( 2020 ). Representation of modes of variability in six U.S. climate models. Journal of Climate, 33 ( 17 ), 7591 – 7617. https://doi.org/10.1175/jcli-d-19-0956.1
dc.identifier.citedreferencePetersen, M., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., et al. ( 2019 ). An evaluation of the ocean and sea ice climate of E3SM using MPAS and interannual CORE-II forcing. Journal of Advances in Modeling Earth Systems, 11 ( 5 ), 1438 – 1458. https://doi.org/10.1029/2018MS001373
dc.identifier.citedreferencePetersen, M., Asay-Davis, X. S., Jacobsen, D., Maltrud, M., Ringler, T., Van Roekel, L., & Wolfram, P. ( 2018 ). MPAS ocean user’s guide V6. Zenodo. https://doi.org/10.5281/zenodo.1246893
dc.identifier.citedreferencePincus, R., Forster, P. M., & Stevens, B. ( 2016 ). The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental protocol for CMIP6. Geoscientific Model Development, 9 ( 9 ), 3447 – 3460. https://doi.org/10.5194/gmd-9-3447-2016
dc.identifier.citedreferenceQin, Y. ( 2022 ). qinyia/diag_feedback_E3SM: First release. Zenodo. https://doi.org/10.5281/zenodo.6354226
dc.identifier.citedreferenceRasch, P. J., Xie, S., Ma, P.-L., Lin, W., Wang, H., Tang, Q., et al. ( 2019 ). An overview of the atmospheric component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 11 ( 8 ), 2377 – 2411. https://doi.org/10.1029/2019ms001629
dc.identifier.citedreferenceReckinger, S. M., Petersen, M. R., & Reckinger, S. J. ( 2015 ). A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity. Ocean Modeling, 96, 291 – 313. https://doi.org/10.1016/j.ocemod.2015.09.006
dc.identifier.citedreferenceRedelsperger, J.-L., Guichard, F., & Mondon, S. ( 2000 ). A parameterization of mesoscale enhancement of surface fluxes for large-scale models. Journal of Climate, 13 ( 2 ), 402 – 421. https://doi.org/10.1175/1520-0442(2000)013<0402:apomeo>2.0.co;2
dc.identifier.citedreferenceRichter, J. H., Chen, C.-C., Tang, Q., Xie, S., & Rasch, P. J. ( 2019 ). Improved simulation of the QBO in E3SMv1. Journal of Advances in Modeling Earth Systems, 11 ( 11 ), 3403 – 3418. https://doi.org/10.1029/2019MS001763
dc.identifier.citedreferenceRichter, J. H., Sassi, F., & Garcia, R. R. ( 2010 ). Toward a physically based gravity wave source parameterization in a general circulation model. Journal of the Atmospheric Sciences, 67 ( 1 ), 136 – 156. https://doi.org/10.1175/2009JAS3112.1
dc.identifier.citedreferenceRidley, D. A., Heald, C. L., Kok, J. F., & Zhao, C. ( 2016 ). An observationally constrained estimate of global dust aerosol optical depth. Atmospheric Chemistry and Physics, 15097 – 15117. https://doi.org/10.5194/acp-16-15097-2016
dc.identifier.citedreferenceRinger, M. A., Andrews, T., & Webb, M. J. ( 2014 ). Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere-ocean climate change experiments. Geophysical Research Letters, 41 ( 11 ), 4035 – 4042. https://doi.org/10.1002/2014GL060347
dc.identifier.citedreferenceRingler, T., Ju, L., & Gunzburger, M. ( 2008 ). A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dynamics, 58 ( 5–6 ), 475 – 498. https://doi.org/10.1007/s10236-008-0157-2
dc.identifier.citedreferenceRingler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. ( 2013 ). A multi-resolution approach to global ocean modeling. Ocean Modeling, 69, 211 – 232. https://doi.org/10.1016/j.ocemod.2013.04.010
dc.identifier.citedreferenceRotstayn, L. D., Collier, M. A., Shindell, D. T., & Boucher, O. ( 2015 ). Why does aerosol forcing control historical global-mean surface temperature change in CMIP5 models? Journal of Climate, 28 ( 17 ), 6608 – 6625. https://doi.org/10.1175/JCLI-D-14-00712.1
dc.identifier.citedreferenceZhang, S., Zhang, K., Wan, H., & Sun, J. ( 2022 ). Further improvement and evaluation of nudging in the E3SM atmosphere model version 1 (EAMV1). Geoscientific Model Development Discussions, 1 – 37. https://doi.org/10.5194/gmd-2022-10
dc.identifier.citedreferenceSalzmann, M., Ferrachat, S., Tully, C., Münch, S., Watson-Parris, D., Neubauer, D., et al. ( 2022 ). The global atmosphere-aerosol model ICON-A-HAM2.3—Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness. Journal of Advances in Modeling Earth Systems, 14 ( 4 ), e2021MS002699. https://doi.org/10.1029/2021MS002699
dc.identifier.citedreferenceSéférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., et al. ( 2019 ). Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems, 11 ( 12 ), 4182 – 4227. https://doi.org/10.1029/2019MS001791
dc.identifier.citedreferenceSeland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., et al. ( 2020 ). Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geoscientific Model Development, 13 ( 12 ), 6165 – 6200. https://doi.org/10.5194/gmd-13-6165-2020
dc.identifier.citedreferenceSherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. ( 2020 ). An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58, e2019RG000678. https://doi.org/10.1029/2019rg000678
dc.identifier.citedreferenceShindell, D. ( 2014 ). Inhomogeneous forcing and transient climate sensitivity. Nature Climate Change, 4, 274 – 277. https://doi.org/10.1038/nclimate2136
dc.identifier.citedreferenceSimmons, A. J., & Burridge, D. M. ( 1981 ). An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Monthly Weather Review, 109, 758 – 766. https://doi.org/10.1175/1520-0493(1981)109<0758:aeaamc>2.0.co;2
dc.identifier.citedreferenceSmith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., et al. ( 2020 ). Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 20 ( 16 ), 9591 – 9618. https://doi.org/10.5194/acp-20-9591-2020
dc.identifier.citedreferenceSoden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., & Shields, C. A. ( 2008 ). Quantifying climate feedbacks using radiative kernels. Journal of Climate, 21 ( 14 ), 3504 – 3520. https://doi.org/10.1175/2007JCLI2110.1
dc.identifier.citedreferenceStevens, B. ( 2015 ). Rethinking the lower bound on aerosol radiative forcing. Journal of Climate, 28 ( 12 ), 4794 – 4819. https://doi.org/10.1175/jcli-d-14-00656.1
dc.identifier.citedreferenceStevens, B., Sherwood, S. C., Bony, S., & Webb, M. J. ( 2016 ). Prospects for narrowing bounds on Earth’s equilibrium climate sensitivity. Earth’s Future, 4 ( 11 ), 512 – 522. https://doi.org/10.1002/2016EF000376
dc.identifier.citedreferenceTang, Q., Prather, M. J., Hsu, J., Ruiz, D. J., Cameron-Smith, P. J., Xie, S., & Golaz, J.-C. ( 2021 ). Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model. Geoscientific Model Development, 14 ( 3 ), 1219 – 1236. https://doi.org/10.5194/gmd-14-1219-2021
dc.identifier.citedreferenceTatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., et al. ( 2019 ). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12 ( 7 ), 2727 – 2765. https://doi.org/10.5194/gmd-12-2727-2019
dc.identifier.citedreferenceTaylor, M. A., & Fournier, A. ( 2010 ). A compatible and conservative spectral element method on unstructured grids. Journal of Computational Physics, 229, 5879 – 5895. https://doi.org/10.1016/j.jcp.2010.04.008
dc.identifier.citedreferenceTaylor, M. A., Guba, O., Steyer, A., Ullrich, P. A., Hall, D. M., & Eldrid, C. ( 2020 ). An energy consistent discretization of the nonhydrostatic equations in primitive variables. Journal of Advances in Modeling Earth Systems, 12 ( 1 ). https://doi.org/10.1029/2019MS001783
dc.identifier.citedreferenceThuburn, J., Ringler, T. D., Skamarock, W. C., & Klemp, J. B. ( 2009 ). Numerical representation of geostrophic modes on arbitrarily structured C-grids. Journal of Computational Physics, 228 ( 22 ), 8321 – 8335. https://doi.org/10.1016/j.jcp.2009.08.006
dc.identifier.citedreferenceTokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., & Knutti, R. ( 2020 ). Past warming trend constrains future warming in CMIP6 models. Science Advances, 6 ( 12 ). https://doi.org/10.1126/sciadv.aaz9549
dc.identifier.citedreferenceTorrence, C., & Compo, G. P. ( 1998 ). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79 ( 1 ), 61 – 78. https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
dc.identifier.citedreferenceTsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., et al. ( 2018 ). JRA-55 based surface data set for driving ocean–sea-ice models (JRA55-do). Ocean Modeling, 130, 79 – 139. https://doi.org/10.1016/j.ocemod.2018.07.002
dc.identifier.citedreferenceTurner, A. K., & Hunke, E. C. ( 2015 ). Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model. Journal of Geophysical Research, 120, 1253 – 1275. https://doi.org/10.1002/2014JC010358
dc.identifier.citedreferenceTurner, A. K., Lipscomb, W. H., Hunke, E. C., Jacobsen, D. W., Jeffery, N., Engwirda, D., et al. ( 2021 ). MPAS-seaice (v1.0.0): Sea-ice dynamics on unstructured Voronoi meshes. Geoscientific Model Development Discussions, 1 – 46. https://doi.org/10.5194/gmd-2021-355
dc.identifier.citedreferenceUllrich, P. A., Devendran, D., & Johansen, H. ( 2016 ). Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part II. Monthly Weather Review, 144 ( 4 ), 1529 – 1549. https://doi.org/10.1175/mwr-d-15-0301.1
dc.identifier.citedreferenceUllrich, P. A., & Taylor, M. A. ( 2015 ). Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part I. Monthly Weather Review, 143 ( 6 ), 2419 – 2440. https://doi.org/10.1175/mwr-d-14-00343.1
dc.identifier.citedreferenceVan Roekel, L., Adcroft, A., Danabasoglu, G., Griffies, S. M., Kauffman, B., Large, W., et al. ( 2018 ). The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES. Journal of Advances in Modeling Earth Systems, 10, 2647 – 2685. https://doi.org/10.1029/2018MS001336
dc.identifier.citedreferenceVitart, F., & Robertson, A. W. ( 2018 ). The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate and Atmospheric Science, 1 ( 1 ), 3. https://doi.org/10.1038/s41612-018-0013-0
dc.identifier.citedreferenceVoldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., et al. ( 2019 ). Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11 ( 7 ), 2177 – 2213. https://doi.org/10.1029/2019MS001683
dc.identifier.citedreferenceWang, H., Easter, R. C., Zhang, R., Ma, P.-L., Singh, B., Zhang, K., et al. ( 2020 ). Aerosols in the E3SM version 1: New developments and their impacts on radiative forcing. Journal of Advances in Modeling Earth Systems, 12 ( 1 ), e2019MS001851. https://doi.org/10.1029/2019MS001851
dc.identifier.citedreferenceWang, Y.-C., Pan, H.-L., & Hsu, H.-H. ( 2015 ). Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the atmospheric radiation measurement southern great plains site. Journal of Geophysical Research: Atmosphere, 120 ( 20 ), 10681 – 10702. https://doi.org/10.1002/2015JD023337
dc.identifier.citedreferenceWheeler, M., & Kiladis, G. N. ( 1999 ). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. Journal of the Atmospheric Sciences, 56 ( 3 ), 374 – 399. https://doi.org/10.1175/1520-0469(1999)056<0374:ccewao>2.0.co;2
dc.identifier.citedreferenceWheeler, M., & McBride, J. ( 2012 ). Australasian monsoon. In K. M. W. Lau, & E. D. Waliser (Eds.), Intraseasonal variability in the atmosphere-ocean climate system (pp. 147 – 197 ). Springer. https://doi.org/10.1007/978-3-642-13914-7_5
dc.identifier.citedreferenceWinton, M., Adcroft, A., Dunne, J. P., Held, I. M., Shevliakova, E., Zhao, M., et al. ( 2020 ). Climate sensitivity of GFDL’s CM4.0. Journal of Advances in Modeling Earth Systems, 12 ( 1 ), e2019MS001838. https://doi.org/10.1029/2019MS001838
dc.identifier.citedreferenceWu, M., Liu, X., Yu, H., Wang, H., Shi, Y., Yang, K., et al. ( 2020 ). Understanding processes that control dust spatial distributions with global climate models and satellite observations. Atmospheric Chemistry and Physics, 20, 13835 – 13855. https://doi.org/10.5194/acp-20-13835-2020
dc.identifier.citedreferenceXie, S., Lin, W., Rasch, P. J., Ma, P.-L., Neale, R., Larson, V. E., et al. ( 2018 ). Understanding cloud and convective characteristics in version 1 of the E3SM Atmosphere Model. Journal of Advances in Modeling Earth Systems, 10 ( 10 ), 2618 – 2644. https://doi.org/10.1029/2018ms001350
dc.identifier.citedreferenceXie, S., Wang, Y.-C., Ma, H.-Y., Tang, Q., Tang, S., Zheng, X., et al. ( 2019 ). Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function. Journal of Advances in Modeling Earth Systems, 11 ( 7 ), 2290 – 2310. https://doi.org/10.1029/2019MS001702
dc.identifier.citedreferenceXie, S., & Zhang, M. ( 2000 ). Impact of the convection triggering function on single-column model simulations. Journal of Geophysical Research: Atmosphere, 105 ( D11 ), 14983 – 14996. https://doi.org/10.1029/2000JD900170
dc.identifier.citedreferenceYukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., et al. ( 2019 ). The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan. Series II, 97 ( 5 ), 931 – 965. https://doi.org/10.2151/jmsj.2019-051
dc.identifier.citedreferenceZeng, X., & Geil, K. ( 2016 ). Global warming projection in the 21st-century based on an observational data-driven model. Geophysical Research Letters, 43 ( 20 ), 10947 – 10954. https://doi.org/10.1002/2016GL071035
dc.identifier.citedreferenceZhang, C., Golaz, J.-C., Forsyth, R., Vo, T., Xie, S., Shaheen, Z., et al. ( 2022 ). The E3SM diagnostics package (E3SM Diags v2.7): A python-based diagnostics package for Earth system models evaluation. Geoscientific Model Development Discussions, 1 – 35. https://doi.org/10.5194/gmd-2022-38
dc.identifier.citedreferenceZhang, C., & Gottschalck, J. ( 2002 ). SST anomalies of ENSO and the Madden-Julian oscillation in the equatorial Pacific. Journal of Climate, 15 ( 17 ), 2429 – 2445. https://doi.org/10.1175/1520-0442(2002)015<2429:saoeat>2.0.co;2
dc.identifier.citedreferenceZhang, G. J., & McFarlane, N. A. ( 1995 ). Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate center general circulation model. Atmosphere-Ocean, 33 ( 3 ), 407 – 446. https://doi.org/10.1080/07055900.1995.9649539
dc.identifier.citedreferenceZhang, K., Rasch, P. J., Taylor, M. A., Wan, H., Leung, R., Ma, P.-L., et al. ( 2018 ). Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1). Geoscientific Model Development, 11 ( 5 ), 1971 – 1988. https://doi.org/10.5194/gmd-11-1971-2018
dc.identifier.citedreferenceZhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P.-L., et al. ( 2014 ). Technical note: On the use of nudging for aerosol-climate model intercomparison studies. Atmospheric Chemistry and Physics, 14 ( 16 ), 8631 – 8645. https://doi.org/10.5194/acp-14-8631-2014
dc.identifier.citedreferenceZhang, K., Zhang, W., Wan, H., Rasch, P. J., Ghan, S. J., Easter, R. C., et al. ( 2022 ). Effective radiative forcing of anthropogenic aerosols in E3SM version 1: Historical changes, causality, decomposition, and parameterization sensitivities. Atmospheric Chemistry and Physics, 22 ( 13 ), 9129 – 9160. https://doi.org/10.5194/acp-22-9129-2022
dc.identifier.citedreferenceZhang, Y., Xie, S., Lin, W., Klein, S. A., Zelinka, M., Ma, P.-L., et al. ( 2019 ). Evaluation of clouds in version 1 of the E3SM atmosphere model with satellite simulators. Journal of Advances in Modeling Earth Systems, 11 ( 5 ), 1253 – 1268. https://doi.org/10.1029/2018MS001562
dc.identifier.citedreferenceZhao, M., Golaz, J.-C., Held, I. M., Guo, H., Balaji, V., Benson, R., et al. ( 2018 ). The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. Journal of Advances in Modeling Earth Systems, 10 ( 3 ), 735 – 769. https://doi.org/10.1002/2017ms001209
dc.identifier.citedreferenceZheng, X., Li, Q., Zhou, T., Tang, Q., Van Roekel, L. P., & Golaz, J.-C. ( 2021 ). Description of historical and future projection simulations by the global coupled E3SMv1.0 model as used in CMIP6. Geoscientific Model Development Discussions, 1 – 40. https://doi.org/10.5194/gmd-2021-312
dc.identifier.citedreferenceZiemke, J. R., Oman, L. D., Strode, S. A., Douglass, A. R., Olsen, M. A., McPeters, R. D., et al. ( 2019 ). Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmospheric Chemistry and Physics, 19 ( 5 ), 3257 – 3269. https://doi.org/10.5194/acp-19-3257-2019
dc.identifier.citedreferenceAdler, R., Sapiano, M., Huffman, G., Wang, J.-J., Gu, G., Bolvin, D., et al. ( 2018 ). The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9 ( 4 ), 138. https://doi.org/10.3390/atmos9040138
dc.identifier.citedreferenceAhn, M.-S., Kim, D., Kang, D., Lee, J., Sperber, K. R., Gleckler, P. J., et al. ( 2020 ). MJO propagation across the maritime continent: Are CMIP6 models better than CMIP5 models? Geophysical Research Letters, 47 ( 11 ). https://doi.org/10.1029/2020gl087250
dc.identifier.citedreferenceAksenov, Y., Popova, E. E., Yool, A., Nurser, A. J., Williams, T. D., Bertino, L., & Bergh, J. ( 2017 ). On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Marine Policy, 75. https://doi.org/10.1016/j.marpol.2015.12.027
dc.identifier.citedreferenceAlbright, A. L., Proistosescu, C., & Huybers, P. ( 2021 ). Origins of a relatively tight lower bound on anthropogenic aerosol radiative forcing from Bayesian analysis of historical observations. Journal of Climate, 34 ( 21 ), 8777 – 8792. https://doi.org/10.1175/jcli-d-21-0167.1
dc.identifier.citedreferenceAndrews, T., Gregory, J. M., & Webb, M. J. ( 2015 ). The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. Journal of Climate, 28 ( 4 ), 1630 – 1648. https://doi.org/10.1175/JCLI-D-14-00545.1
dc.identifier.citedreferenceArctic Council. ( 2009 ). Arctic Marine Shipping Assessment 2009 Report (Summary Report). Arctic Council’s Protection of the Arctic Marine Environment (PAME). Retrieved from http://hdl.handle.net/11374/54
dc.identifier.citedreferenceBailey, D., Holland, M., Hunke, E., Lipscomb, B., Briegleb, B., Bitz, C., & Schramm, J. ( 2011 ). Community Ice CodE (CICE) user’s guide—Version 4.0 (user guide). National Center of Atmospheric Research. Retrieved from https://www.cesm.ucar.edu/models/cesm1.0/cice/ice_usrdoc.pdf
dc.identifier.citedreferenceBellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., et al. ( 2020 ). Bounding global aerosol radiative forcing of climate change. Reviews of Geophysics, 58 ( 1 ), e2019RG000660. https://doi.org/10.1029/2019rg000660
dc.identifier.citedreferenceBeres, J. H., Alexander, M. J., & Holton, J. R. ( 2004 ). A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. Journal of the Atmospheric Sciences, 61 ( 3 ), 324 – 337. https://doi.org/10.1175/1520-0469(2004)061<0324:amostg>2.0.co;2
dc.identifier.citedreferenceBitz, C. M., & Lipscomb, W. H. ( 1999 ). An energy-conserving thermodynamic model of sea ice. Journal of Geophysical Research: Oceans, 104 ( C7 ), 15669 – 15677. https://doi.org/10.1029/1999JC900100
dc.identifier.citedreferenceBradley, A. M., Bosler, P. A., & Guba, O. ( 2021 ). Islet: Interpolation semi-Lagrangian element-based transport. Geoscientific Model Development Discussions, 15, 1 – 48. https://doi.org/10.5194/gmd-2021-296
dc.identifier.citedreferenceBradley, A. M., Bosler, P. A., Guba, O., Taylor, M. A., & Barnett, G. A. ( 2019 ). Communication-efficient property preservation in tracer transport. SIAM Journal on Scientific Computing, 41 ( 3 ), C161 – C193. https://doi.org/10.1137/18m1165414
dc.identifier.citedreferenceBriegleb, B., & Light, B. ( 2007 ). A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the community climate system model (NCAR Technical Note Nos. NCAR/TN-472+STR). National Center of Atmospheric Research. https://doi.org/10.5065/D6B27S71
dc.identifier.citedreferenceBrown, J. R., Brierley, C. M., An, S.-I., Guarino, M.-V., Stevenson, S., Williams, C. J. R., et al. ( 2020 ). Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate of the Past, 16 ( 5 ), 1777 – 1805. https://doi.org/10.5194/cp-16-1777-2020
dc.identifier.citedreferenceBrunke, M. A., Ma, P.-L., Eyre, J. E. J. R., Rasch, P. J., Sorooshian, A., & Zeng, X. ( 2019 ). Subtropical marine low stratiform cloud deck spatial errors in the E3SMv1 Atmosphere Model. Geophysical Research Letters, 46 ( 21 ), 12598 – 12607. https://doi.org/10.1029/2019gl084747
dc.identifier.citedreferenceBurrows, S. M., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X., et al. ( 2020 ). The DOE E3SM v1.1 biogeochemistry configuration: Description and simulated ecosystem-climate responses to historical changes in forcing. Journal of Advances in Modeling Earth Systems, 12 ( 9 ), e2019MS001766. https://doi.org/10.1029/2019ms001766
dc.identifier.citedreferenceCaldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J. C., Lin, W., et al. ( 2019 ). The DOE E3SM coupled model version 1: Description and results at high-resolution. Journal of Advances in Modeling Earth Systems, 11 ( 12 ), 4095 – 4146. https://doi.org/10.1029/2019MS001870
dc.identifier.citedreferenceCampin, J.-M., Marshall, J., & Ferreira, D. ( 2008 ). Sea ice-ocean coupling using a rescaled vertical coordinate. Ocean Modeling, 24 ( 1–2 ), 1 – 14. https://doi.org/10.1016/J.Ocemod.2008.05.005
dc.identifier.citedreferenceCariolle, D., Lasserre-Bigorry, A., Royer, J.-F., & Geleyn, J.-F. ( 1990 ). A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes. Journal of Geophysical Research: Atmospheres, 95 ( D2 ), 1883 – 1898. https://doi.org/10.1029/JD095iD02p01883
dc.identifier.citedreferenceCess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., et al. ( 1989 ). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245 ( 4917 ), 513 – 516. https://doi.org/10.1126/science.245.4917.513
dc.identifier.citedreferenceCharron, M., & Manzini, E. ( 2002 ). Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. Journal of the Atmospheric Sciences, 59 ( 5 ), 923 – 941. https://doi.org/10.1175/1520-0469(2002)059<0923:gwffpa>2.0.co;2
dc.identifier.citedreferenceComeau, D., Asay-Davis, X. S., Begeman, C. B., Hoffman, M. J., Lin, W., Petersen, M. R., et al. ( 2022 ). The DOE E3SM v1.2 cryosphere configuration: Description and simulated Antarctic ice-shelf basal melting. Journal of Advances in Modeling Earth Systems, 14 ( 2 ). https://doi.org/10.1029/2021ms002468
dc.identifier.citedreferenceCraig, A. P., Vertenstein, M., & Jacob, R. ( 2012 ). A new flexible coupler for Earth system modeling developed for CCSM4 and CESM1. International Journal of High Performance Computing Applications, 26 ( 1 ), 31 – 42. https://doi.org/10.1177/1094342011428141
dc.identifier.citedreferenceDanabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et al. ( 2020 ). The Community Earth System Model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12 ( 2 ), e2019MS001916. https://doi.org/10.1029/2019ms001916
dc.identifier.citedreferenceDanabasoglu, G., & Marshall, J. ( 2007 ). Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modeling, 18 ( 2 ), 122 – 141. https://doi.org/10.1016/j.ocemod.2007.03.006
dc.identifier.citedreferenceDanabasoglu, G., & Williams, J. C. M. ( 1995 ). Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. Journal of Climate, 8 ( 12 ), 2967 – 2987. https://doi.org/10.1175/1520-0442(1995)008<2967:sotgoc>2.0.co;2
dc.identifier.citedreferenceDang, C., Zender, C. S., & Flanner, M. G. ( 2019 ). Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces. The Cryosphere, 13 ( 9 ), 2325 – 2343. https://doi.org/10.5194/tc-13-2325-2019
dc.identifier.citedreferenceDennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., et al. ( 2011 ). CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. International Journal of High Performance Computing Applications, 26 ( 1 ), 74 – 89. https://doi.org/10.1177/1094342011428142
dc.identifier.citedreferenceDennis, J. M., Edwards, J., Loy, R., Jacob, R., Mirin, A. A., Craig, A. P., & Vertenstein, M. ( 2012 ). An application-level parallel I/O library for Earth system models. International Journal of High Performance Computing Applications, 26 ( 1 ), 43 – 53. https://doi.org/10.1177/1094342011428143
dc.identifier.citedreferenceDennis, J. M., Fournier, A., Spotz, W. F., St-Cyr, A., Taylor, M. A., Thomas, S. J., & Tufo, H. ( 2005 ). High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. International Journal of High Performance Computing Applications, 19 ( 3 ), 225 – 235. https://doi.org/10.1177/1094342005056108
dc.identifier.citedreferenceDong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S., Zhou, C., & Andrews, T. ( 2020 ). Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models. Journal of Climate, 33 ( 18 ), 7755 – 7775. https://doi.org/10.1175/JCLI-D-19-1011.1
dc.identifier.citedreferenceDong, Y., Proistosescu, C., Armour, K. C., & Battisti, D. S. ( 2019 ). Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a green’s function approach: The preeminence of the western pacific. Journal of Climate, 32 ( 17 ), 5471 – 5491. https://doi.org/10.1175/JCLI-D-18-0843.1
dc.identifier.citedreferenceDubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., & Slutsker, I. ( 2000 ). Accuracy assessments of aerosol optical properties retrieved from aerosol robotic network (AERONET) sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres, 105 ( D8 ), 9791 – 9806. https://doi.org/10.1029/2000jd900040
dc.identifier.citedreferenceDunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., et al. ( 2020 ). The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems, 12 ( 11 ), e2019MS002015. https://doi.org/10.1029/2019MS002015
dc.identifier.citedreferenceEngwirda, D. ( 2017 ). JIGSAW-GEO (1.0): Locally orthogonal staggered unstructured grid generation for general circulation modeling on the sphere. Geoscientific Model Development, 10 ( 6 ), 2117 – 2140. https://doi.org/10.5194/gmd-10-2117-2017
dc.identifier.citedreferenceEngwirda, D. ( 2018 ). Generalized primal-dual grids for unstructured co-volume schemes. Journal of Computational Physics, 375, 155 – 176. https://doi.org/10.1016/j.jcp.2018.07.025
dc.identifier.citedreferenceEngwirda, D., & Ivers, D. ( 2016 ). Off-centre Steiner points for Delaunay-refinement on curved surfaces. Computer-Aided Design, 72, 157 – 171. https://doi.org/10.1016/j.cad.2015.10.007
dc.identifier.citedreferenceEvans, K., Lauritzen, P., Mishra, S., Neale, R., Taylor, M., & Tribbia, J. ( 2013 ). AMIP simulation with the CAM4 spectral element dynamical core. Journal of Climate, 26 ( 3 ), 689 – 709. https://doi.org/10.1175/jcli-d-11-00448.1
dc.identifier.citedreferenceEyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. ( 2016 ). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9 ( 5 ), 1937 – 1958. https://doi.org/10.5194/gmd-9-1937-2016
dc.identifier.citedreferenceFarman, J. C., Gardiner, B. G., & Shanklin, J. D. ( 1985 ). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315 ( 6016 ), 207 – 210. https://doi.org/10.1038/315207a0
dc.identifier.citedreferenceFeng, Y., Wang, H., Rasch, P. J., Zhang, K., Lin, W., Tang, Q., et al. ( 2022 ). Global dust cycle and direct radiative effect in E3SM version 1: Impact of increasing model resolution. Journal of Advances in Modeling Earth Systems, 50. https://doi.org/10.1029/2021MS002909
dc.identifier.citedreferenceGassmann, A., & Herzog, H.-J. ( 2008 ). Towards a consistent numerical compressible non-hydrostatic model using generalized Hamiltonian tools. Quarterly Journal of the Royal Meteorological Society, 134 ( 635 ), 1597 – 1613. https://doi.org/10.1002/qj.297
dc.identifier.citedreferenceGent, P. R., & Mcwilliams, J. C. ( 1990 ). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20 ( 1 ), 150 – 155. https://doi.org/10.1175/1520-0485(1990)020<0150:imiocm>2.0.co;2
dc.identifier.citedreferenceGillett, N. P., Arora, V. K., Flato, G. M., Scinocca, J. F., & von Salzen, K. ( 2012 ). Improved constraints on 21st-century warming derived using 160 yr of temperature observations. Geophysical Research Letters, 39 ( 1 ). https://doi.org/10.1029/2011GL050226
dc.identifier.citedreferenceGillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., et al. ( 2016 ). The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geoscientific Model Development, 9 ( 10 ), 3685 – 3697. https://doi.org/10.5194/gmd-9-3685-2016
dc.identifier.citedreferenceGolaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., et al. ( 2019 ). The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. Journal of Advances in Modeling Earth Systems, 11 ( 7 ), 2089 – 2129. https://doi.org/10.1029/2018MS001603
dc.identifier.citedreferenceGolaz, J.-C., Larson, V. E., & Cotton, W. R. ( 2002 ). A PDF-based model for boundary layer clouds. Part I: Method and model description. Journal of the Atmospheric Sciences, 59, 3540 – 3551. https://doi.org/10.1175/1520-0469(2002)059<3540:apbmfb>2.0.co;2
dc.identifier.citedreferenceGregory, J. M., & Andrews, T. ( 2016 ). Variation in climate sensitivity and feedback parameters during the historical period. Geophysical Research Letters, 43 ( 8 ), 3911 – 3920. https://doi.org/10.1002/2016GL068406
dc.identifier.citedreferenceGregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., et al. ( 2004 ). A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters, 31 ( 3 ). https://doi.org/10.1029/2003gl018747
dc.identifier.citedreferenceGriffies, S. M., Gnanadesikan, A., Pacanowski, R. C., Larichev, V. D., Dukowicz, J. K., & Smith, R. D. ( 1998 ). Isoneutral diffusion in a z -coordinate ocean model. Journal of Physical Oceanography, 28 ( 5 ), 805 – 830. https://doi.org/10.1175/1520-0485(1998)028<0805:idiazc>2.0.co;2
dc.identifier.citedreferenceGuba, O., Taylor, M., Ullrich, P., Overfelt, J., & Levy, M. ( 2014 ). The spectral element method on variable resolution grids: Evaluating grid sensitivity and resolution-aware numerical viscosity. Geoscientific Model Development, 7, 4081 – 4117. https://doi.org/10.5194/gmdd-7-4081-2014
dc.identifier.citedreferenceGuerra, J. E., & Ullrich, P. A. ( 2016 ). A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models. Geoscientific Model Development, 9 ( 5 ), 2007 – 2029. https://doi.org/10.5194/gmd-9-2007-2016
dc.identifier.citedreferenceHannah, W. M., Bradley, A. M., Guba, O., Tang, Q., Golaz, J.-C., & Wolfe, W. ( 2021 ). Separating physics and dynamics grids for improved computational efficiency in spectral element Earth System Models. Journal of Advances in Modeling Earth Systems, 13 ( 7 ), e2020MS002419. https://doi.org/10.1029/2020ms002419
dc.identifier.citedreferenceHannah, W. M., Pressel, K. G., Ovchinnikov, M., & Elsaesser, G. S. ( 2022 ). Checkerboard patterns in E3SMv2 and E3SM-MMFv2. Geoscientific Model Development Discussions, 1 – 24. https://doi.org/10.5194/gmd-2022-35
dc.identifier.citedreferenceHansen, J. ( 2005 ). Efficacy of climate forcings. Journal of Geophysical Research, 110 ( D18 ). https://doi.org/10.1029/2005jd005776
dc.identifier.citedreferenceHarrop, B. E., Ma, P.-L., Rasch, P. J., Neale, R. B., & Hannay, C. ( 2018 ). The role of convective gustiness in reducing seasonal precipitation biases in the tropical West Pacific. Journal of Advances in Modeling Earth Systems, 10 ( 4 ), 961 – 970. https://doi.org/10.1002/2017MS001157
dc.identifier.citedreferenceHegglin, M., Kinnison, D., Lamarque, J.-F., & Plummer, D. ( 2016 ). CCMI ozone in support of CMIP6 - version 1.0. Earth System Grid Federation. https://doi.org/10.22033/ESGF/input4MIPs.1115
dc.identifier.citedreferenceHenderson, S. A., Maloney, E. D., & Barnes, E. A. ( 2016 ). The influence of the Madden-Julian oscillation on Northern Hemisphere winter blocking. Journal of Climate, 29 ( 12 ), 4597 – 4616. https://doi.org/10.1175/JCLI-D-15-0502.1
dc.identifier.citedreferenceHerrington, A. R., Lauritzen, P. H., Taylor, M. A., Goldhaber, S., Eaton, B. E., Bacmeister, J. T., et al. ( 2019 ). Physics-dynamics coupling with element-based high-order Galerkin methods: Quasi-equal-area physics grid. Monthly Weather Review, 147 ( 1 ), 69 – 84. https://doi.org/10.1175/mwr-d-18-0136.1
dc.identifier.citedreferenceHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 ( 730 ), 1999 – 2049. https://doi.org/10.1002/qj.3803
dc.identifier.citedreferenceHess, M., Koepke, P., & Schult, I. ( 1998 ). Optical properties of aerosols and clouds: The software package OPAC (pp. 831 – 844 ). Bulletin of the American Meteorological Society. https://doi.org/10.1175/1520-0477(1998)079<0831:opoaac>2.0.co;2
dc.identifier.citedreferenceHiggins, R., Schemm, J. E., Shi, W., & Leetmaa, A. ( 2000 ). Extreme precipitation events in the western United States related to tropical forcing. Journal of Climate, 13 ( 4 ), 793 – 820. https://doi.org/10.1175/1520-0442(2000)013<0793:epeitw>2.0.co;2
dc.identifier.citedreferenceHill, C., DeLuca, C., Suarez, M., & Da Silva, A. ( 2004 ). The architecture of the Earth system modeling framework. Computing in Science & Engineering, 6 ( 1 ), 18 – 28. https://doi.org/10.1109/mcise.2004.1255817
dc.identifier.citedreferenceHoch, K. E., Petersen, M. R., Brus, S. R., Engwirda, D., Roberts, A. F., Rosa, K. L., & Wolfram, P. J. ( 2020 ). MPAS-Ocean simulation quality for variable-resolution North American coastal meshes. Journal of Advances in Modeling Earth Systems, 12 ( 3 ), e2019MS001848. https://doi.org/10.1029/2019ms001848
dc.identifier.citedreferenceHoffman, M. J., Perego, M., Price, S. F., Lipscomb, W. H., Zhang, T., Jacobsen, D., et al. ( 2018 ). MPAS-Albany Land Ice (MALI): A variable-resolution ice sheet model for Earth system modeling using Voronoi grids. Geoscientific Model Development, 11 ( 9 ), 3747 – 3780. https://doi.org/10.5194/gmd-11-3747-2018
dc.identifier.citedreferenceHolben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., et al. ( 1998 ). AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66 ( 1 ), 1 – 16. https://doi.org/10.1016/s0034-4257(98)00031-5
dc.identifier.citedreferenceHoose, C., Kristjansson, J. E., Iversen, T., Kirkevag, A., Seland, O., & Gettelman, A. ( 2009 ). Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect. Geophysical Research Letters, 36 ( 12 ). https://doi.org/10.1029/2009GL038568
dc.identifier.citedreferenceHsu, J., & Prather, M. J. ( 2009 ). Stratospheric variability and tropospheric ozone. Journal of Geophysical Research: Atmospheres, 114 ( D6 ). https://doi.org/10.1029/2008JD010942
dc.identifier.citedreferenceHu, A., Van Roekel, L., Weijer, W., Garuba, O. A., Cheng, W., & Nadiga, B. T. ( 2020 ). Role of AMOC in transient climate response to greenhouse gas forcing in two coupled models. Journal of Climate, 33 ( 14 ), 5845 – 5859. https://doi.org/10.1175/jcli-d-19-1027.1
dc.identifier.citedreferenceHu, Y., Rodier, S., Xu, K.-M., Sun, W., Huang, J., Lin, B., et al. ( 2010 ). Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. Journal of Geophysical Research: Atmospheres, 115 ( D4 ). https://doi.org/10.1029/2009JD012384
dc.identifier.citedreferenceHuffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., et al. ( 2001 ). Global precipitation at 1° daily resolution from multisatellite observations. Journal of Hydrometeorology, 2 ( 1 ), 36 – 50. https://doi.org/10.1175/1525-7541(2001)002<0036:gpaodd>2.0.co;2
dc.identifier.citedreferenceHunke, E. C. ( 2010 ). Thickness sensitivities in the CICE sea ice model. Ocean Modeling, 34, 137 – 149. https://doi.org/10.1016/j.ocemod.2010.05.004
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al. ( 2013 ). The community Earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 – 1360. https://doi.org/10.1175/bams-d-12-00121.1
dc.identifier.citedreferenceJiang, X., Waliser, D. E., Xavier, P. K., Petch, J., Klingaman, N. P., Woolnough, S. J., et al. ( 2015 ). Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research: Atmospheres, 120 ( 10 ), 4718 – 4748. https://doi.org/10.1002/2014jd022375
dc.identifier.citedreferenceJones, P. D., New, M., Parker, D. E., Martin, S., & Rigor, I. G. ( 1999 ). Surface air temperature and its changes over the past 150 yr. Reviews of Geophysics, 37 ( 2 ), 173 – 199. https://doi.org/10.1029/1999rg900002
dc.identifier.citedreferenceKasahara, A. ( 1974 ). Various vertical coordinate systems used for numerical weather prediction. Monthly Weather Review., 102, 509 – 522. https://doi.org/10.1175/1520-0493(1974)102<0509:vvcsuf>2.0.co;2
dc.identifier.citedreferenceKinne, S., O’Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., et al. ( 2013 ). MAC-v1: A new global aerosol climatology for climate studies. Journal of Advances in Modeling Earth Systems, 5, 704 – 740. https://doi.org/10.1002/jame.20035
dc.identifier.citedreferenceKok, J. F. ( 2011 ). Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmospheric Chemistry and Physics, 11 ( 19 ), 10149 – 10156. https://doi.org/10.5194/acp-11-10149-2011
dc.identifier.citedreferenceKok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., et al. ( 2017 ). Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nature Geoscience, 10 ( 4 ), 274 – 278. https://doi.org/10.1038/ngeo2912
dc.identifier.citedreferenceKooperman, G. J., Pritchard, M. S., Ghan, S. J., Wang, M., Somerville, R. C. J., & Russell, L. M. ( 2012 ). Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5. Journal of Geophysical Research: Atmospheres, 117, D23204. https://doi.org/10.1029/2012JD018588
dc.identifier.citedreferenceKretzschmar, J., Salzmann, M., Mülmenstädt, J., Boucher, O., & Quaas, J. ( 2017 ). Comment on “rethinking the lower bound on aerosol radiative forcing”. Journal of Climate, 30 ( 16 ), 6579 – 6584. https://doi.org/10.1175/JCLI-D-16-0668.1
dc.identifier.citedreferenceLaprise, R. ( 1992 ). The Euler equations of motion with hydrostatic pressure as an independent variable. Monthly Weather Review, 120 ( 1 ), 197 – 207. https://doi.org/10.1175/1520-0493(1992)120<0197:teeomw>2.0.co;2
dc.identifier.citedreferenceLarge, W. G., Mcwilliams, J. C., & Doney, S. C. ( 1994 ). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32 ( 4 ), 363 – 403. https://doi.org/10.1029/94RG01872
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.