Show simple item record

Ultra-Low Frequency Waves in the Hermean Magnetosphere: On the Role of the Morphology of the Magnetic Field and the Foreshock

dc.contributor.authorKallio, E.
dc.contributor.authorJarvinen, R.
dc.contributor.authorMassetti, S.
dc.contributor.authorAlberti, T.
dc.contributor.authorMilillo, A.
dc.contributor.authorOrsini, S.
dc.contributor.authorAngelis, E.
dc.contributor.authorLaky, G.
dc.contributor.authorSlavin, J.
dc.contributor.authorRaines, J. M.
dc.contributor.authorPulkkinen, T. I.
dc.date.accessioned2023-01-11T16:26:23Z
dc.date.available2024-01-11 11:26:19en
dc.date.available2023-01-11T16:26:23Z
dc.date.issued2022-12-28
dc.identifier.citationKallio, E.; Jarvinen, R.; Massetti, S.; Alberti, T.; Milillo, A.; Orsini, S.; Angelis, E.; Laky, G.; Slavin, J.; Raines, J. M.; Pulkkinen, T. I. (2022). "Ultra-Low Frequency Waves in the Hermean Magnetosphere: On the Role of the Morphology of the Magnetic Field and the Foreshock." Geophysical Research Letters 49(24): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/175493
dc.description.abstractUltra-low frequency (ULF) waves have been observed in the Mercury’s magnetosphere by the Mariner 10 and MErcury Surface, Space ENvironment, GEochemistry and Ranging missions. The observed ∼2 s (∼0.6 Hz) period waves in the magnetic field are proposed to be generated by dynamic processes in the Mercury’s magnetosphere. We investigate the Hermean ULF waves with a global hybrid model. We found evidence for ∼2-s circularly polarized right-handed waves in Mercury’s magnetosphere at the closest approach of BepiColombo mission’s first Mercury flyby in the model. The most intense wave power occurs on the dawn side closed magnetic field lines. These waves were found to be generated on the hemisphere which is magnetically directly connected to the interplanetary magnetic field on the dayside and to the foreshock region. It is therefore possible that the generation mechanism of these waves is associated with the precipitating ion flux or with the wave activity in the foreshock region.Plain Language SummaryMercury’s space environment includes several types of waves. Many of them are associated with the magnetosphere, which is the region dominated by the planet’s intrinsic magnetic field and the solar wind. Low frequency waves at about 2-s period were measured in the magnetic field by Mariner 10 and MErcury Surface, Space ENvironment, GEochemistry and Ranging spacecraft near the planet. The origin of these waves is proposed to be dynamical processes in the Mercury-solar wind interaction. Here we investigate the 2-s waves with a large-scale computer simulation model, which covers global three-dimensional space and resolves detailed solar wind ion movement and electromagnetic fields in the solar wind and magnetosphere around Mercury. Our analysis suggests that these waves occurred at the closest approach of BepiColombo mission’s first Mercury flyby on 1 October 2021, in the dawn side of Mercury’s magnetosphere. This location is connected via magnetic field lines to the solar wind in the day side of the planet. The waves may be generated in the solar wind before it encounters the Hermean magnetosphere or may be associated with ions traveling toward the planet’s surface.Key PointsUltra-low frequency waves in Mercury’s magnetosphere were investigated with a global hybrid modelAbout 2-s period circularly polarized right-handed waves occur on closed field lines along BepiColombo’s first Mercury flyby in the modelThe waves are generated on the hemisphere which is directly magnetically connected to the interplanetary magnetic field and to the foreshock
dc.publisherWiley Periodicals, Inc.
dc.subject.otherULF waves
dc.subject.otherbow shock
dc.subject.othermagnetosphere
dc.subject.otherMercury
dc.subject.otherwaves
dc.subject.otherforeshock
dc.titleUltra-Low Frequency Waves in the Hermean Magnetosphere: On the Role of the Morphology of the Magnetic Field and the Foreshock
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175493/1/grl65242.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175493/2/grl65242_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175493/3/2022GL101850-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2022GL101850
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMilillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., et al. ( 2020 ). Investigating Mercury’s environment with the two-spacecraft BepiColombo mission. Space Science Reviews, 216 ( 5 ), 93. https://doi.org/10.1007/s11214-020-00712-8
dc.identifier.citedreferenceBoardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Schriver, D., & Solomon, S. C. ( 2012 ). Survey of coherent ∼1 Hz waves in Mercury’s inner magnetosphere from MESSENGER observations. Journal of Geophysical Research, 117 ( A12 ), A00M05. https://doi.org/10.1029/2012JA017822
dc.identifier.citedreferenceBoardsen, S. A., Sundberg, T., Slavin, J. A., Anderson, B. J., Korth, H., Solomon, S. C., & Blomberg, L. G. ( 2010 ). Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby. Geophysical Research Letters, 37 ( 12 ), L12101. https://doi.org/10.1029/2010GL043606
dc.identifier.citedreferenceGershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Sundberg, T., Boardsen, S. A., et al. ( 2015 ). MESSENGER observations of multiscale Kelvin-Helmholtz vortices at Mercury. Journal of Geophysical Research: Space Physics, 120 ( 6 ), 4354 – 4368. https://doi.org/10.1002/2014JA020903
dc.identifier.citedreferenceGlassmeier, K.-H., Klimushkin, D., Othmer, C., & Mager, P. ( 2004 ). ULF waves at Mercury: Earth, the giants, and their little brother compared. Advances in Space Research, 33 ( 11 ), 1875 – 1883. https://doi.org/10.1016/j.asr.2003.04.047
dc.identifier.citedreferenceHarada, Y., Aizawa, S., Saito, Y., André, N., Persson, M., Delcourt, D., et al. ( 2022 ). BepiColombo Mio observations of low-energy ions during the first Mercury flyby: Initial results. Geophysical Research Letters, 49 ( 17 ), e2022GL100279. https://doi.org/10.1029/2022GL100279
dc.identifier.citedreferenceHeyner, D., Auster, H.-U., Fornaçon, K.-H., Carr, C., Richter, I., Mieth, J. Z. D., et al. ( 2021 ). The BepiColombo planetary magnetometer MPO-MAG: What can we learn from the Hermean magnetic field? Space Science Reviews, 217 ( 4 ), 52. https://doi.org/10.1007/s11214-021-00822-x
dc.identifier.citedreferenceJames, M. K., Bunce, E. J., Yeoman, T. K., Imber, S. M., & Korth, H. ( 2016 ). A statistical survey of ultra-low-frequency wave power and polarization in the Hermean magnetosphere. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 8755 – 8772. https://doi.org/10.1002/2016JA023103
dc.identifier.citedreferenceJames, M. K., Imber, S. M., Yeoman, T. K., & Bunce, E. J. ( 2019 ). Field line resonance in the Hermean magnetosphere: Structure and implications for plasma distribution. Journal of Geophysical Research: Space Physics, 124 ( 1 ), 211 – 228. https://doi.org/10.1029/2018JA025920
dc.identifier.citedreferenceJanhunen, P., & Kallio, E. ( 2004 ). Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry. Annales Geophysicae, 22 ( 5 ), 1829 – 1837. https://doi.org/10.5194/angeo-22-1829-2004
dc.identifier.citedreferenceJarvinen, R., Alho, M., Kallio, E., & Pulkkinen, T. I. ( 2020a ). Oxygen ion escape from Venus is modulated by ultra-low-frequency waves. Geophysical Research Letters, 47, 11. https://doi.org/10.1029/2020GL087462
dc.identifier.citedreferenceJarvinen, R., Alho, M., Kallio, E., & Pulkkinen, T. I. ( 2020b ). Ultra-low frequency waves in the ion foreshock of Mercury: A global hybrid modeling study. Monthly Notices of the Royal Astronomical Society, 491 ( 3 ), 4147 – 4161. stz3257. https://doi.org/10.1093/mnras/stz3257
dc.identifier.citedreferenceJarvinen, R., Kallio, E., & Pulkkinen, T. I. ( 2022 ). Ultra-low frequency foreshock waves and ion dynamics at Mars. Journal of Geophysical Research: Space Physics, 127 ( 5 ), e2021JA030078. https://doi.org/10.1029/2021JA030078
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120 ( 6 ), 4763 – 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceKallio, E., Barabash, S., Janhunen, P., & Jarvinen, R. ( 2008 ). Magnetized Mars: Transformation of Earth-like magnetosphere to Venus-like induced magnetosphere. Planetary and Space Science, 56 ( 6 ), 823 – 827. https://doi.org/10.1016/j.pss.2007.12.005
dc.identifier.citedreferenceKallio, E., & Janhunen, P. ( 2003 ). Solar wind and magnetospheric ion impact on Mercury’s surface. Geophysical Research Letters, 30 ( 17 ), 1877. https://doi.org/10.1029/2003GL017842
dc.identifier.citedreferenceKallio, E., & Janhunen, P. ( 2004 ). The response of the Hermean magnetosphere to the interplanetary magnetic field. Advances in Space Research, 33 ( 12 ), 2176 – 2181. https://doi.org/10.1016/S0273-1177(03)00447-2
dc.identifier.citedreferenceKim, E.-H., Johnson, J. R., Valeo, E., & Phillips, C. K. ( 2015 ). Global modeling of ULF waves at Mercury. Geophysical Research Letters, 42 ( 13 ), 5147 – 5154. https://doi.org/10.1002/2015GL064531
dc.identifier.citedreferenceLe, G., Chi, P. J., Blanco-Cano, X., Boardsen, S., Slavin, J. A., Anderson, B. J., & Korth, H. ( 2013 ). Upstream ultra-low frequency waves in Mercury’s foreshock region: MESSENGER magnetic field observations. Journal of Geophysical Research: Space Physics, 118 ( 6 ), 2809 – 2823. https://doi.org/10.1002/jgra.50342
dc.identifier.citedreferenceMassetti, S., Orsini, S., Milillo, A., Mura, A., De Angelis, E., Lammer, H., & Wurz, P. ( 2003 ). Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus, 166 ( 2 ), 229 – 237. https://doi.org/10.1016/j.icarus.2003.08.005
dc.identifier.citedreferenceOrsini, S., Livi, S. A., Lichtenegger, H., Barabash, S., Milillo, A., De Angelis, E., et al. ( 2021 ). SERENA: Particle instrument suite for Sun-Mercury interaction insights on-board BepiColombo. Space Science Reviews, 216 ( 1 ), 11. https://doi.org/10.1007/s11214-020-00787-3
dc.identifier.citedreferenceOrsini, S., Milillo, A., Lichtenegger, H., Varsani, A., Barabash, S., Livi, S., et al. ( 2022 ). Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission. Nature Communications, 13 ( 1 ), 7390. https://doi.org/10.1038/s41467-022-34988-x
dc.identifier.citedreferenceRaines, J. M., Staudacher, N. M., Dewey, R. M., Tracy, P. J., Bert, C. M., Sarantos, M., et al. ( 2022 ). Proton precipitation in Mercury’s northern magnetospheric cusp. Journal of Geophysical Research: Space Physics, 127 ( 11 ), e2022JA030397. https://doi.org/10.1029/2022JA030397
dc.identifier.citedreferenceRomanelli, N., DiBraccio, G., Gershman, D., Le, G., Mazelle, C., Meziane, K., et al. ( 2020 ). Upstream ultra-low frequency waves observed by MESSENGER’s magnetometer: Implications for particle acceleration at Mercury’s bow shock. Geophysical Research Letters, 47 ( 9 ), e2020GL087350. https://doi.org/10.1029/2020GL087350
dc.identifier.citedreferenceRussell, C. T. ( 1989 ). ULF waves in the Mercury magnetosphere. Geophysical Research Letters, 16 ( 11 ), 1253 – 1256. https://doi.org/10.1029/GL016i011p01253
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D., Imber, S., Poh, G. K., Raines, J., et al. ( 2014 ). MESSENGER observations of Mercury’s magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119 ( 10 ), 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Jr., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131 ( 1–4 ), 3 – 39. https://doi.org/10.1007/s11214-007-9247-6
dc.identifier.citedreferenceSouthwood, D. J. ( 1997 ). The magnetic field of Mercury. Planetary and Space Science, 45 ( 1 ), 113 – 117. https://doi.org/10.1016/S0032-0633(96)00105-5
dc.identifier.citedreferenceSundberg, T., Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., et al. ( 2012 ). MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. Geophysical Research Letters, 117 ( A4 ), A04216. https://doi.org/10.1029/2011JA017268
dc.identifier.citedreferenceWinslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E., & Solomon, S. C. ( 2012 ). Observations of Mercury’s northern cusp region with MESSENGER’s magnetometer. Geophysical Research Letters, 39 ( 8 ), L08112. https://doi.org/10.1029/2012GL051472
dc.identifier.citedreferenceZhang, H., Zong, Q., Connor, H., Delamere, P., Facskó, G., Han, D., et al. ( 2022 ). Dayside transient phenomena and their impact on the magnetosphere and ionosphere. Space Science Reviews, 218 ( 5 ), 40. https://doi.org/10.1007/s11214-021-00865-0
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., et al. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Slavin, J. A., Winslow, R. M., Phillips, R. J., & Solomon, S. C. ( 2014 ). Steady-state field-aligned currents at Mercury. Geophysical Research Letters, 41 ( 21 ), 7444 – 7452. https://doi.org/10.1002/2014GL061677
dc.identifier.citedreferenceBaumjohann, W., Matsuoka, A., Narita, Y., Magnes, W., Heyner, D., Glassmeier, K. H., et al. ( 2020 ). The BepiColombo–Mio Magnetometer en route to Mercury. Space Science Reviews, 216 ( 8 ), 125. https://doi.org/10.1007/s11214-020-00754-y
dc.identifier.citedreferenceMangano, V., Dosa, M., Franz, M., Milillo, A., Oliveira, J. S., Lee, Y. J., et al. ( 2021 ). BepiColombo science investigations during cruise and flybys at the Earth, Venus and Mercury. Space Science Reviews, 217 ( 1 ), 23. https://doi.org/10.1007/s11214-021-00797-9
dc.identifier.citedreferenceBoardsen, S. A., Anderson, B. J., Acuña, M. H., Slavin, J. A., Korth, H., & Solomon, S. C. ( 2009 ). Narrow-band ultra-low-frequency wave observations by MESSENGER during its January 2008 flyby through Mercury’s magnetosphere. Geophysical Research Letters, 36 ( 1 ), L01104. https://doi.org/10.1029/2008GL036034
dc.identifier.citedreferenceBoardsen, S. A., Kim, E.-H., Raines, J. M., Slavin, J. A., Gershman, D. J., Anderson, B. J., et al. ( 2015 ). Interpreting ∼1 Hz magnetic compressional waves in Mercury’s inner magnetosphere in terms of propagating ion-Bernstein waves. Journal of Geophysical Research: Space Physics, 120 ( 6 ), 4213 – 4228. https://doi.org/10.1002/2014JA020910
dc.identifier.citedreferenceBoardsen, S. A., & Slavin, J. A. ( 2007 ). Search for pick-up ion generated Na + cyclotron waves at Mercury. Geophysical Research Letters, 34 ( 22 ), L22106. https://doi.org/10.1029/2007GL031504
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.