Show simple item record

Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications

dc.contributor.authorVinod, Nidhi
dc.contributor.authorSlot, Martijn
dc.contributor.authorMcGregor, Ian R.
dc.contributor.authorOrdway, Elsa M.
dc.contributor.authorSmith, Marielle N.
dc.contributor.authorTaylor, Tyeen C.
dc.contributor.authorSack, Lawren
dc.contributor.authorBuckley, Thomas N.
dc.contributor.authorAnderson-Teixeira, Kristina J.
dc.date.accessioned2023-01-11T16:26:43Z
dc.date.available2024-02-11 11:26:39en
dc.date.available2023-01-11T16:26:43Z
dc.date.issued2023-01
dc.identifier.citationVinod, Nidhi; Slot, Martijn; McGregor, Ian R.; Ordway, Elsa M.; Smith, Marielle N.; Taylor, Tyeen C.; Sack, Lawren; Buckley, Thomas N.; Anderson-Teixeira, Kristina J. (2023). "Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications." New Phytologist (1): 22-47.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/175500
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermicroclimate
dc.subject.othervertical gradients
dc.subject.otherleaf temperature
dc.subject.otherleaf traits
dc.subject.othergas exchange
dc.subject.otherforest
dc.subject.otherecosystem
dc.subject.otherclimate change
dc.titleThermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175500/1/nph18539_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175500/2/nph18539-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175500/3/nph18539.pdf
dc.identifier.doi10.1111/nph.18539
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceRijkers T, Pons TL, Bongers F. 2000. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Functional Ecology 14: 77 – 86.
dc.identifier.citedreferenceBoardman NK. 1977. Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology 28: 355 – 377.
dc.identifier.citedreferenceTurnbull MH, Whitehead D, Tissue DT, Schuster WSF, Brown KJ, Griffin KL. 2003. Scaling foliar respiration in two contrasting forest canopies. Functional Ecology 17: 101 – 114.
dc.identifier.citedreferenceTymen B, Vincent G, Courtois EA, Heurtebize J, Dauzat J, Marechaux I, Chave J. 2017. Quantifying micro-environmental variation in tropical rainforest understory at landscape scale by combining airborne LiDAR scanning and a sensor network. Annals of Forest Science 74: 32.
dc.identifier.citedreferenceUrban J, Ingwers M, McGuire MA, Teskey RO. 2017. Stomatal conductance increases with rising temperature. Plant Signaling & Behavior 12: e1356534.
dc.identifier.citedreferenceUrban O, Kosvancová M, Marek MV, Lichtenthaler HK. 2007. Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Tree Physiology 27: 1207 – 1215.
dc.identifier.citedreferenceVan Wittenberghe S, Adriaenssens S, Staelens J, Verheyen K, Samson R. 2012. Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient. Trees 26: 1427 – 1438.
dc.identifier.citedreferenceVårhammar A, Wallin G, McLean CM, Dusenge ME, Medlyn BE, Hasper TB, Nsabimana D, Uddling J. 2015. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species. New Phytologist 206: 1000 – 1012.
dc.identifier.citedreferenceVickers CE, Gershenzon J, Lerdau MT, Loreto F. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology 5: 283 – 291.
dc.identifier.citedreferenceVogel S. 1968. “Sun leaves” and “shade leaves”: differences in convective heat dissipation. Ecology 49: 1203 – 1204.
dc.identifier.citedreferenceVogel S. 2009. Leaves in the lowest and highest winds: temperature, force and shape. New Phytologist 183: 13 – 26.
dc.identifier.citedreferenceWang B, Chen T, Li C, Xu G, Wu G, Liu G. 2022. Discrepancy in growth resilience to drought among different stand-aged forests declines going from a semi-humid region to an arid region. Forest Ecology and Management 511: 120135.
dc.identifier.citedreferenceWay DA. 2019. Just the right temperature. Nature Ecology & Evolution 3: 718 – 719.
dc.identifier.citedreferenceWay DA, Pearcy RW. 2012. Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology 32: 1066 – 1081.
dc.identifier.citedreferenceWebster C, Westoby M, Rutter N, Jonas T. 2018. Three-dimensional thermal characterization of forest canopies using UAV photogrammetry. Remote Sensing of Environment 209: 835 – 847.
dc.identifier.citedreferenceWeerasinghe LK, Creek D, Crous KY, Xiang S, Liddell MJ, Turnbull MH, Atkin OK. 2014. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiology 34: 564 – 584.
dc.identifier.citedreferencevan de Weg MJ, Meir P, Grace J, Ramos GD. 2012. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168: 23 – 34.
dc.identifier.citedreferenceWong SC, Cowan IR, Farquhar GD. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424 – 426.
dc.identifier.citedreferenceWoodward FI, Lomas MR. 2004. Vegetation dynamics – simulating responses to climatic change. Biological Reviews 79: 643 – 670.
dc.identifier.citedreferenceWright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821 – 827.
dc.identifier.citedreferenceWu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, Guan K, Stark SC, Christoffersen B, Prohaska N et al. 2016. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351: 972 – 976.
dc.identifier.citedreferenceWyka TP, Oleksyn J, Żytkowiak R, Karolewski P, Jagodziński AM, Reich PB. 2012. Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia 170: 11 – 24.
dc.identifier.citedreferenceWylie RB. 1951. Principles of foliar organization shown by sun-shade leaves from ten species of deciduous dicotyledonous trees. American Journal of Botany 38: 355 – 361.
dc.identifier.citedreferenceXu B, Arain MA, Black TA, Law BE, Pastorello GZ, Chu H. 2020. Seasonal variability of forest sensitivity to heat and drought stresses: a synthesis based on carbon fluxes from North American forest ecosystems. Global Change Biology 26: 901 – 918.
dc.identifier.citedreferenceXu C-Y, Griffin KL. 2006. Seasonal variation in the temperature response of leaf respiration in Quercus rubra: foliage respiration and leaf properties. Functional Ecology 20: 778 – 789.
dc.identifier.citedreferenceYang PC, Black TA, Neumann HH, Novak MD, Blanken PD. 1999. Spatial and temporal variability of CO 2 concentration and flux in a boreal aspen forest. Journal of Geophysical Research: Atmospheres 104: 27653 – 27661.
dc.identifier.citedreferenceYoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR. 1994. Evidence of reduced photosynthetic rates in old trees. Forest Science 40: 513 – 527.
dc.identifier.citedreferenceZellweger F, Coomes D, Lenoir J, Depauw L, Maes SL, Wulf M, Kirby KJ, Brunet J, Kopecký M, Máliš F et al. 2019. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography 28: 1774 – 1786.
dc.identifier.citedreferenceZellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J et al. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368: 772 – 775.
dc.identifier.citedreferenceZhang J-L, Poorter L, Hao G-Y, Cao K-F. 2012. Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span. Annals of Botany 110: 1027 – 1033.
dc.identifier.citedreferenceZhou H, Xu M, Pan H, Yu X. 2015. Leaf-age effects on temperature responses of photosynthesis and respiration of an alpine oak, Quercus aquifolioides, in southwestern China. Tree Physiology 35: 1236 – 1248.
dc.identifier.citedreferenceZweifel R, Bohm JP, Hasler R. 2002. Midday stomatal closure in Norway spruce–reactions in the upper and lower crown. Tree Physiology 22: 1125 – 1136.
dc.identifier.citedreferenceZwieniecki MA, Boyce CK, Holbrook NM. 2004. Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves. Plant, Cell & Environment 27: 357 – 365.
dc.identifier.citedreferenceAbrams MD, Kubiske ME. 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: influence of light regime and shade-tolerance rank. Forest Ecology and Management 31: 245 – 253.
dc.identifier.citedreferenceAlbert LP, Wu J, Prohaska N, de Camargo PB, Huxman TE, Tribuzy ES, Ivanov VY, Oliveira RS, Garcia S, Smith MN et al. 2018. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist 219: 870 – 884.
dc.identifier.citedreferencede Almeida DRA, Nelson BW, Schietti J, Gorgens EB, Resende AF, Stark SC, Valbuena R. 2016. Contrasting fire damage and fire susceptibility between seasonally flooded forest and upland forest in the central Amazon using portable profiling LiDAR. Remote Sensing of Environment 184: 153 – 160.
dc.identifier.citedreferenceAmbrose AR, Sillett SC, Koch GW, Van Pelt R, Antoine ME, Dawson TE. 2010. Effects of height on treetop transpiration and stomatal conductance in coast redwood ( Sequoia sempervirens ). Tree Physiology 30: 1260 – 1272.
dc.identifier.citedreferenceAnderson-Teixeira KJ, Herrmann V, Banbury Morgan R, Bond-Lamberty B, Cook-Patton SC, Ferson AE, Muller-Landau HC, Wang MMH. 2021. Carbon cycling in mature and regrowth forests globally. Environmental Research Letters 16: 053009.
dc.identifier.citedreferenceBolstad PV, Mitchell K, Vose JM. 1999. Foliar temperature–respiration response functions for broad-leaved tree species in the southern Appalachians. Tree Physiology 19: 871 – 878.
dc.identifier.citedreferenceAnderson-Teixeira KJ, Herrmann V, Rollinson CR, Gonzalez B, Gonzalez-Akre EB, Pederson N, Alexander MR, Allen CD, Alfaro-Sánchez R, Awada T et al. 2022. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Global Change Biology 28: 245 – 266.
dc.identifier.citedreferenceAnderson-Teixeira KJ, McGarvey JC, Muller-Landau HC, Park JY, Gonzalez-Akre EB, Herrmann V, Bennett AC, So CV, Bourg NA, Thompson JR et al. 2015. Size-related scaling of tree form and function in a mixed-age forest. Functional Ecology 29: 1587 – 1602.
dc.identifier.citedreferenceAragão LEOC, Anderson LO, Fonseca MG, Rosan TM, Vedovato LB, Wagner FH, Silva CVJ, Silva Junior CHL, Arai E, Aguiar AP et al. 2018. 21 st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications 9: 536.
dc.identifier.citedreferenceAraki MG, Gyokusen K, Kajimoto T. 2017. Vertical and seasonal variations in temperature responses of leaf respiration in a Chamaecyparis obtusa canopy. Tree Physiology 37: 1269 – 1284.
dc.identifier.citedreferenceArora VK, Katavouta A, Williams RG, Jones CD, Brovkin V, Friedlingstein P, Schwinger J, Bopp L, Boucher O, Cadule P et al. 2020. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17: 4173 – 4222.
dc.identifier.citedreferencevon Arx G, Dobbertin M, Rebetez M. 2012. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agricultural and Forest Meteorology 166–167: 144 – 155.
dc.identifier.citedreferenceAshton PS, Hall P. 1992. Comparisons of structure among mixed dipterocarp forests of north-western Borneo. Journal of Ecology 80: 459 – 481.
dc.identifier.citedreferenceAtherton J, Olascoaga B, Alonso L, Porcar-Castell A. 2017. Spatial variation of leaf optical properties in a boreal forest is influenced by species and light environment. Frontiers in Plant Science 8: 1 – 14.
dc.identifier.citedreferenceAugspurger CK, Bartlett EA. 2003. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiology 23: 517 – 525.
dc.identifier.citedreferenceBachofen C, D’Odorico P, Buchmann N. 2020. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192: 323 – 339.
dc.identifier.citedreferenceBaker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89 – 113.
dc.identifier.citedreferenceBaldocchi DD, Meyers TP. 1988. A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteorology 45: 31 – 58.
dc.identifier.citedreferenceBaldocchi DD, Meyers TP. 1991. Trace gas exchange above the floor of a deciduous forest: 1. Evaporation and CO 2 efflux. Journal of Geophysical Research: Atmospheres 96: 7271 – 7285.
dc.identifier.citedreferenceBaldocchi DD, Vogel CA, Hall B. 1997. Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. Journal of Geophysical Research: Atmospheres 102: 28939 – 28951.
dc.identifier.citedreferenceBall MC, Cowan IR, Farquhar GD. 1988. Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove forest. Functional Plant Biology 15: 263 – 276.
dc.identifier.citedreferenceBaltzer JL, Thomas SC. 2005. Leaf optical responses to light and soil nutrient availability in temperate deciduous trees. American Journal of Botany 92: 214 – 223.
dc.identifier.citedreferenceBanerjee T, De Roo F, Mauder M. 2017. Explaining the convector effect in canopy turbulence by means of large-eddy simulation. Hydrology and Earth System Sciences 21: 2987 – 3000.
dc.identifier.citedreferenceBanerjee T, Linn R. 2018. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation. Forests 9: 198.
dc.identifier.citedreferenceBarnard DM, Bauerle WL. 2016. Seasonal variation in canopy aerodynamics and the sensitivity of transpiration estimates to wind velocity in broadleaved deciduous species. Journal of Hydrometeorology 17: 3029 – 3043.
dc.identifier.citedreferenceBartemucci P, Messier C, Canham CD. 2006. Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Canadian Journal of Forest Research 36: 2065 – 2079.
dc.identifier.citedreferenceBartholomew DC, Bittencourt PRL, da Costa ACL, Banin LF, Costa PB, Coughlin SI, Domingues TF, Ferreira LV, Giles A, Mencuccini M et al. 2020. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant, Cell & Environment 43: 2380 – 2393.
dc.identifier.citedreferenceBéland M, Baldocchi DD. 2021. Vertical structure heterogeneity in broadleaf forests: effects on light interception and canopy photosynthesis. Agricultural and Forest Meteorology 307: 108525.
dc.identifier.citedreferenceBennett AC, Arndt SK, Bennett LT, Knauer J, Beringer J, Griebel A, Hinko-Najera N, Liddell MJ, Metzen D, Pendall E et al. 2021. Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems. Global Change Biology 27: 4727 – 4744.
dc.identifier.citedreferenceBennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants 1: 15139.
dc.identifier.citedreferenceBertrand R, Aubret F, Grenouillet G, Ribéron A, Blanchet S. 2020. Comment on ‘Forest microclimate dynamics drive plant responses to warming’. Science 370: 1 – 2.
dc.identifier.citedreferenceBonan GB. 2016. Ecological climatology: concepts and applications. New York, NY, USA: Cambridge University Press.
dc.identifier.citedreferenceBonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW. 2003. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Global Change Biology 9: 1543 – 1566.
dc.identifier.citedreferenceBonan GB, Patton EG, Finnigan JJ, Baldocchi DD, Harman IN. 2021. Moving beyond the incorrect but useful paradigm: reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes – a review. Agricultural and Forest Meteorology 306: 108435.
dc.identifier.citedreferenceBonan GB, Patton EG, Harman IN, Oleson KW, Finnigan JJ, Lu Y, Burakowski EA. 2018. Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml V0). Geoscientific Model Development 11: 1467 – 1496.
dc.identifier.citedreferenceBrando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC et al. 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences, USA 111: 6347 – 6352.
dc.identifier.citedreferenceBreshears DD, Fontaine JB, Ruthrof KX, Field JP, Feng X, Burger JR, Law DJ, Kala J, Hardy GESJ. 2021. Underappreciated plant vulnerabilities to heat waves. New Phytologist 231: 32 – 39.
dc.identifier.citedreferenceBrooks JR, Flanagan LB, Varney GT, Ehleringer JR. 1997. Vertical gradients in photosynthetic gas exchange characteristics and refixation of respired CO 2 within boreal forest canopies. Tree Physiology 17: 1 – 12.
dc.identifier.citedreferenceBuckley TN. 2021. Optimal carbon partitioning helps reconcile the apparent divergence between optimal and observed canopy profiles of photosynthetic capacity. New Phytologist 230: 2246 – 2260.
dc.identifier.citedreferenceBuckley TN, Martorell S, Diaz-Espejo A, Tomàs M, Medrano H. 2014. Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine ( Vitis vinifera ). Plant, Cell & Environment 37: 2707 – 2721.
dc.identifier.citedreferenceBurgess SSO, Dawson TE, Burgess SSO. 2006. Regressions of leaf traits. New Phytologist 174: 626 – 636.
dc.identifier.citedreferenceCampbell G, Norman J. 1998. An introduction to environmental biophysics. New York, NY, USA: Springer.
dc.identifier.citedreferenceCarswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B, Barbosa EM, Nobre AD, Grace J, Jarvis PG. 2000. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology 20: 179 – 186.
dc.identifier.citedreferenceCarter KR, Cavaleri MA. 2018. Within-canopy experimental leaf warming induces photosynthetic decline instead of acclimation in two northern hardwood species. Frontiers in Forests and Global Change 1: 1 – 17.
dc.identifier.citedreferenceCarter KR, Wood TE, Reed SC, Butts KM, Cavaleri MA. 2021. Experimental warming across a tropical forest canopy height gradient reveals minimal photosynthetic and respiratory acclimation. Plant, Cell & Environment 44: 2879 – 2897.
dc.identifier.citedreferencede Casas RR, Vargas P, Pérez-Corona E, Manrique E, García-Verdugo C, Balaguer L. 2011. Sun and shade leaves of Olea europaea respond differently to plant size, light availability and genetic variation. Functional Ecology 25: 802 – 812.
dc.identifier.citedreferencede Castro F. 2000. Light spectral composition in a tropical forest: measurements and model. Tree Physiology 20: 49 – 56.
dc.identifier.citedreferenceCavaleri MA, Oberbauer SF, Clark DB, Clark DA, Ryan MG. 2010. Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91: 1730 – 1739.
dc.identifier.citedreferenceCavaleri MA, Oberbauer SF, Ryan MG. 2008. Foliar and ecosystem respiration in an old-growth tropical rain forest. Plant, Cell & Environment 31: 473 – 483.
dc.identifier.citedreferenceCavender-Bares J, Bazzaz FA. 2000. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124: 8 – 18.
dc.identifier.citedreferenceChazdon RL, Fetcher N. 1984. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. Journal of Ecology 72: 553 – 564.
dc.identifier.citedreferenceChen X, Massman WJ, Su Z. 2019. A column canopy-air turbulent diffusion method for different canopy structures. Journal of Geophysical Research: Atmospheres 124: 488 – 506.
dc.identifier.citedreferenceChen X, Sun J, Wang M, Lyu M, Niklas KJ, Michaletz ST, Zhong Q, Cheng D. 2020. The leaf economics spectrum constrains phenotypic plasticity across a light gradient. Frontiers in Plant Science 11: 1 – 11.
dc.identifier.citedreferenceChin ARO, Sillett SC. 2017. Leaf acclimation to light availability supports rapid growth in tall Picea sitchensis trees. Tree Physiology 37: 1352 – 1366.
dc.identifier.citedreferenceChitra-Tarak R, Xu C, Aguilar S, Anderson-Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD et al. 2021. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytologist 231: 1798 – 1813.
dc.identifier.citedreferenceChristoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR, Baker R, Kruijt B, Rowland L, Fisher RA, Binks OJ et al. 2016. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geoscientific Model Development 9: 4227 – 4255.
dc.identifier.citedreferenceCoble AP, Cavaleri MA. 2014. Light drives vertical gradients of leaf morphology in a sugar maple ( Acer saccharum ) forest. Tree Physiology 34: 146 – 158.
dc.identifier.citedreferenceCoble AP, VanderWall B, Mau A, Cavaleri MA. 2016. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Tree Physiology 36: 1077 – 1091.
dc.identifier.citedreferenceCondit R, Watts K, Bohlman SA, Pérez R, Foster RB, Hubbell SP. 2000. Quantifying the deciduousness of tropical forest canopies under varying climates. Journal of Vegetation Science 11: 649 – 658.
dc.identifier.citedreferenceCopolovici LO, Filella I, Llusià J, Niinemets Ü, Peñuelas J. 2005. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiology 139: 485 – 496.
dc.identifier.citedreferenceCorlett RT. 2011. Impacts of warming on tropical lowland rainforests. Trends in Ecology & Evolution 26: 606 – 613.
dc.identifier.citedreferenceCouvreur V, Ledder G, Manzoni S, Way DA, Muller EB, Russo SE. 2018. Water transport through tall trees: a vertically explicit, analytical model of xylem hydraulic conductance in stems. Plant, Cell & Environment 41: 1821 – 1839.
dc.identifier.citedreferenceCunningham SC, Read J. 2003. Do temperate rainforest trees have a greater ability to acclimate to changing temperatures than tropical rainforest trees? New Phytologist 157: 55 – 64.
dc.identifier.citedreferenceCurtis EM, Knight CA, Leigh A. 2019. Intracanopy adjustment of leaf-level thermal tolerance is associated with microclimatic variation across the canopy of a desert tree ( Acacia papyrocarpa ). Oecologia 189: 37 – 46.
dc.identifier.citedreferenceDang QL, Margolis HA, Sy M, Coyea MR, Collatz GJ, Walthall CL. 1997. Profiles of photosynthetically active radiation, nitrogen and photosynthetic capacity in the boreal forest: implications for scaling from leaf to canopy. Journal of Geophysical Research: Atmospheres 102: 28845 – 28859.
dc.identifier.citedreferenceDavis FW, Synes NW, Fricker GA, McCullough IM, Serra-Diaz JM, Franklin J, Flint AL. 2019. LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes. Agricultural and Forest Meteorology 269–270: 192 – 202.
dc.identifier.citedreferenceDe Frenne P, Lenoir J, Luoto M, Scheffers BR, Zellweger F, Aalto J, Ashcroft MB, Christiansen DM, Decocq G, Pauw KD et al. 2021. Forest microclimates and climate change: importance, drivers and future research agenda. Global Change Biology 27: 2279 – 2297.
dc.identifier.citedreferenceDe Pury DGG, Farquhar GD. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell & Environment 20: 537 – 557.
dc.identifier.citedreferenceDenmead OT, Bradley EF. 1987. On scalar transport in plant canopies. Irrigation Science 8: 131 – 149.
dc.identifier.citedreferenceDetto M, Asner GP, Muller-Landau HC, Sonnentag O. 2015. Spatial variability in tropical forest leaf area density from multireturn lidar and modeling. Journal of Geophysical Research – Biogeosciences 120: 294 – 309.
dc.identifier.citedreferenceDietz J, Leuschner C, Hölscher D, Kreilein H. 2007. Vertical patterns and duration of surface wetness in an old-growth tropical montane forest, Indonesia. Flora – Morphology, Distribution, Functional Ecology of Plants 202: 111 – 117.
dc.identifier.citedreferenceDomingues TF, Berry JA, Martinelli LA, Ometto JPHB, Ehleringer JR. 2005. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajós National Forest, Pará, Brazil). Earth Interactions 9: 1 – 23.
dc.identifier.citedreferenceDoughty CE, Goulden ML. 2008. Are tropical forests near a high temperature threshold? Journal of Geophysical Research – Biogeosciences 113: 1 – 12.
dc.identifier.citedreferenceDrake JE, Harwood R, Vårhammar A, Barbour MM, Reich PB, Barton CVM, Tjoelker MG. 2020. No evidence of homeostatic regulation of leaf temperature in Eucalyptus parramattensis trees: integration of CO 2 flux and oxygen isotope methodologies. New Phytologist 228: 1511 – 1523.
dc.identifier.citedreferenceDuque A, Stevenson PR, Feeley KJ. 2015. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences, USA 112: 10744 – 10749.
dc.identifier.citedreferenceDuursma RA, Marshall JD. 2006. Vertical canopy gradients in δ 13 C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees 20: 496 – 506.
dc.identifier.citedreferenceFauset S, Freitas HC, Galbraith DR, Sullivan MJP, Aidar MPM, Joly CA, Phillips OL, Vieira SA, Gloor MU. 2018. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment 41: 1618 – 1631.
dc.identifier.citedreferenceFeeley K, Martinez-Villa J, Perez T, Silva Duque A, Triviño Gonzalez D, Duque A. 2020. The thermal tolerances, distributions, and performances of tropical montane tree species. Frontiers in Forests and Global Change 3: 5 – 9.
dc.identifier.citedreferenceField C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56: 341 – 347.
dc.identifier.citedreferenceFinnigan JJ. 1979. Turbulence in waving wheat. Boundary-Layer Meteorology 16: 181 – 211.
dc.identifier.citedreferenceFisher JB, Lee B, Purdy AJ, Halverson GH, Dohlen MB, Cawse-Nicholson K, Wang A, Anderson RG, Aragon B, Arain MA et al. 2020. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resources Research 56: e2019WR026058.
dc.identifier.citedreferenceFisher RA, Koven CD. 2020. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. Journal of Advances in Modeling Earth Systems 12: e2018MS001453.
dc.identifier.citedreferenceFisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ et al. 2018. Vegetation demographics in Earth system models: a review of progress and priorities. Global Change Biology 24: 35 – 54.
dc.identifier.citedreferenceFlores BM, Holmgren M, Xu C, van Nes EH, Jakovac CC, Mesquita RCG, Scheffer M. 2017. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences, USA 114: 4442 – 4446.
dc.identifier.citedreferenceFoley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10: 603 – 628.
dc.identifier.citedreferenceFredeen AL, Sage RF. 1999. Temperature and humidity effects on branchlet gas-exchange in white spruce: an explanation for the increase in transpiration with branchlet temperature. Trees 14: 161 – 168.
dc.identifier.citedreferenceFriedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I et al. 2006. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. Journal of Climate 19: 3337 – 3353.
dc.identifier.citedreferenceFritts HC. 1976. Tree rings and climate. London, UK; New York, NY, USA: Academic Press.
dc.identifier.citedreferenceGarcia MN, Ferreira MJ, Ivanov V, dos Santos VAHF, Ceron JV, Guedes AV, Saleska SR, Oliveira RS. 2021. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in central Amazon. Oecologia 197: 13 – 24.
dc.identifier.citedreferenceGarcía-Plazaola JI, Becerril JM, Hernández A, Niinemets Ü, Kollist H. 2004. Acclimation of antioxidant pools to the light environment in a natural forest canopy. New Phytologist 163: 87 – 97.
dc.identifier.citedreferenceGebauer R, Volařík D, Urban J, Børja I, Nagy NE, Eldhuset TD, Krokene P. 2015. Effects of prolonged drought on the anatomy of sun and shade needles in young Norway spruce trees. Ecology and Evolution 5: 4989 – 4998.
dc.identifier.citedreferenceGillerot L, Forrester DI, Bottero A, Rigling A, Lévesque M. 2020. Tree neighbourhood diversity has negligible effects on drought resilience of European beech, silver fir and Norway spruce. Ecosystems 24: 20 – 36.
dc.identifier.citedreferenceGora EM, Esquivel-Muelbert A. 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants 7: 384 – 391.
dc.identifier.citedreferenceGoss R, Lepetit B. 2015. Biodiversity of NPQ. Journal of Plant Physiology 172: 13 – 32.
dc.identifier.citedreferenceGregoriou K, Pontikis K, Vemmos S. 2007. Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive ( Olea europaea L.). Photosynthetica 45: 172 – 181.
dc.identifier.citedreferenceGreiser C, Ehrlén J, Meineri E, Hylander K. 2019. Hiding from the climate: characterizing microrefugia for boreal forest understory species. Global Change Biology 26: 471 – 483.
dc.identifier.citedreferenceGrossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG. 2020. Plant responses to rising vapor pressure deficit. New Phytologist 226: 1550 – 1566.
dc.identifier.citedreferenceHaberlandt G. 1914. Physiological plant anatomy. London, UK: Macmillan & Co.
dc.identifier.citedreferenceHadley JL, Smith WK. 1987. Influence of krummholz mat microclimate on needle physiology and survival. Oecologia 73: 82 – 90.
dc.identifier.citedreferenceHaesen S, Lembrechts JJ, De Frenne P, Lenoir J, Aalto J, Ashcroft MB, Kopecký M, Luoto M, Maclean I, Nijs I et al. 2021. ForestTemp – sub-canopy microclimate temperatures of European forests. Global Change Biology 27: 6307 – 6319.
dc.identifier.citedreferenceHamerlynck E, Knapp AK. 1996. Photosynthetic and stomatal responses to high temperature and light in two oaks at the western limit of their range. Tree Physiology 16: 557 – 565.
dc.identifier.citedreferenceHanberry BB, Bragg DC, Alexander HD. 2020. Open forest ecosystems: an excluded state. Forest Ecology and Management 472: 118256.
dc.identifier.citedreferenceHanberry BB, Bragg DC, Hutchinson TF. 2018. A reconceptualization of open oak and pine ecosystems of eastern North America using a forest structure spectrum. Ecosphere 9: e02431.
dc.identifier.citedreferenceHansen U, Fiedler B, Rank B. 2002. Variation of pigment composition and antioxidative systems along the canopy light gradient in a mixed beech/oak forest: a comparative study on deciduous tree species differing in shade tolerance. Trees 16: 354 – 364.
dc.identifier.citedreferenceHardwick SR, Toumi R, Pfeifer M, Turner EC, Nilus R, Ewers RM. 2015. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology 201: 187 – 195.
dc.identifier.citedreferenceHarley P, Guenther A, Zimmerman P. 1996. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum ( Liquidambar styraciflua ) leaves. Tree Physiology 16: 25 – 32.
dc.identifier.citedreferenceHarley P, Guenther A, Zimmerman P. 1997. Environmental controls over isoprene emission in deciduous oak canopies. Tree Physiology 17: 705 – 714.
dc.identifier.citedreferenceHarman IN, Finnigan JJ. 2007. A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorology 123: 339 – 363.
dc.identifier.citedreferenceHarris NL, Medina E. 2013. Changes in leaf properties across an elevation gradient in the Luquillo Mountains, Puerto Rico. Ecological Bulletins 54: 169 – 180.
dc.identifier.citedreferenceHe L, Chen JM, Gonsamo A, Luo X, Wang R, Liu Y, Liu R. 2018. Changes in the shadow: the shifting role of shaded leaves in global carbon and water cycles under climate change. Geophysical Research Letters 45: 5052 – 5061.
dc.identifier.citedreferenceHeilman KA, Dietze MC, Arizpe AA, Aragon J, Gray A, Shaw JD, Finley AO, Klesse S, DeRose RJ, Evans MEK. 2022. Ecological forecasting of tree growth: regional fusion of tree-ring and forest inventory data to quantify drivers and characterize uncertainty. Global Change Biology 28: 2442 – 2460.
dc.identifier.citedreferenceHernández GG, Winter K, Slot M. 2020. Similar temperature dependence of photosynthetic parameters in sun and shade leaves of three tropical tree species. Tree Physiology 40: 637 – 651.
dc.identifier.citedreferenceHikosaka K. 2014. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant, Cell & Environment 37: 2077 – 2085.
dc.identifier.citedreferenceHirose T, Werger MJA. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72: 520 – 526.
dc.identifier.citedreferenceHogan JA, McMahon SM, Buzzard V, Michaletz ST, Enquist BJ, Thompson J, Swenson NG, Zimmerman JK. 2019. Drought and the interannual variability of stem growth in an aseasonal, everwet forest. Biotropica 51: 139 – 154.
dc.identifier.citedreferenceHouter NC, Pons TL. 2012. Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement. Oecologia 169: 33 – 45.
dc.identifier.citedreferenceHuang M, Piao S, Ciais P, Peñuelas J, Wang X, Keenan TF, Peng S, Berry JA, Wang K, Mao J et al. 2019. Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution 3: 772 – 779.
dc.identifier.citedreferenceHulley G, Shivers S, Wetherley E, Cudd R. 2019. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: a case study for Los Angeles County, California. Remote Sensing 11: 2136.
dc.identifier.citedreferenceHumphrey V, Berg A, Ciais P, Gentine P, Jung M, Reichstein M, Seneviratne SI, Frankenberg C. 2021. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592: 65 – 69.
dc.identifier.citedreferenceHurtt GC, Moorcroft PR, Levin SA. 1998. Terrestrial models and global change: challenges for the future. Global Change Biology 4: 581 – 590.
dc.identifier.citedreferenceIchie T, Inoue Y, Takahashi N, Kamiya K, Kenzo T. 2016. Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest. Journal of Plant Research 129: 625 – 635.
dc.identifier.citedreferenceIPCC. 2021. Climate change 2021 the physical science basis–IPCC. Cambridge, UK: Cambridge University Press, 1 – 3949.
dc.identifier.citedreferenceIrvine J, Law BE, Kurpius MR, Anthoni PM, Moore D, Schwarz PA. 2004. Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine. Tree Physiology 24: 753 – 763.
dc.identifier.citedreferenceIshida A, Toma T, Marjenah M. 1999. Leaf gas exchange and cholorphyll fluorescence in relation to leaf angle, azimuth, and canopy position in the tropical pioneer tree Macaranga conifera. Tree Physiology 19: 117 – 124.
dc.identifier.citedreferenceJiao-jun Z, Xiu-fen L, Yutaka G, Takeshi M. 2004. Wind profiles in and over trees. Journal of Forestry Research 15: 305.
dc.identifier.citedreferenceJohnston MR, Andreu A, Verfaillie J, Baldocchi D, Moorcroft PR. 2022. What lies beneath: vertical temperature heterogeneity in a Mediterranean woodland savanna. Remote Sensing of Environment 274: 112950.
dc.identifier.citedreferenceJones SM, Bottero A, Kastendick DN, Palik BJ. 2019. Managing red pine stand structure to mitigate drought impacts. Dendrochronologia 57: 125623.
dc.identifier.citedreferenceJucker T, Hardwick SR, Both S, Elias DMO, Ewers RM, Milodowski DT, Swinfield T, Coomes DA. 2018. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Global Change Biology 24: 5243 – 5258.
dc.identifier.citedreferenceKafuti C, Bourland N, De Mil T, Meeus S, Rousseau M, Toirambe B, Bolaluembe P-C, Ndjele L, Beeckman H. 2020. Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the Congo Basin semi-deciduous forest. Forests 11: 35.
dc.identifier.citedreferenceKatul GG, Albertson JD. 1999. Modeling CO 2 sources, sinks, and fluxes within a forest canopy. Journal of Geophysical Research: Atmospheres 104: 6081 – 6091.
dc.identifier.citedreferenceKeenan TF, Niinemets Ü. 2016. Global leaf trait estimates biased due to plasticity in the shade. Nature Plants 3: 1 – 6.
dc.identifier.citedreferenceKenzo T, Inoue Y, Yoshimura M, Yamashita M, Tanaka-Oda A, Ichie T. 2015. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia 177: 191 – 202.
dc.identifier.citedreferenceKesselmeier J, Staudt M. 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 33: 23 – 88.
dc.identifier.citedreferenceKikuzawa K, Lechowicz MJ. 2006. Toward synthesis of relationships among leaf longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests. The American Naturalist 168: 373 – 383.
dc.identifier.citedreferenceKitao M, Kitaoka S, Komatsu M, Utsugi H, Tobita H, Koike T, Maruyama Y. 2012. Leaves of Japanese oak ( Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. Physiologia Plantarum 146: 192 – 204.
dc.identifier.citedreferenceKnapp AK, Carter GA. 1998. Variability in leaf optical properties among 26 species from a broad range of habitats. American Journal of Botany 85: 940 – 946.
dc.identifier.citedreferenceRohde RA, Hausfather Z. 2020. The Berkeley Earth land/ocean temperature record. Earth System Science Data 12: 3469 – 3479.
dc.identifier.citedreferenceKoch GW, Amthor JS, Goulden ML. 1994. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes. Tree Physiology 14: 347 – 360.
dc.identifier.citedreferenceKoch GW, Sillett SC, Jennings GM, Davis SD. 2004. The limits to tree height. Nature 428: 851 – 854.
dc.identifier.citedreferenceKoike F, Syahbuddin. 1993. Canopy structure of a tropical rain forest and the nature of an unstratified upper layer. Functional Ecology 7: 230 – 235.
dc.identifier.citedreferenceKoike T, Kitao M, Maruyama Y, Mori S, Lei TT. 2001. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiology 21: 951 – 958.
dc.identifier.citedreferenceKöniger M, Harris GC, Virgo A, Winter K. 1995. Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants. Oecologia 104: 280 – 290.
dc.identifier.citedreferenceKonrad W, Katul G, Roth-Nebelsick A. 2021. Leaf temperature and its dependence on atmospheric CO 2 and leaf size. Geological Journal 56: 866 – 885.
dc.identifier.citedreferenceKosugi Y, Matsuo N. 2006. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiology 26: 1173 – 1184.
dc.identifier.citedreferenceKosugi Y, Takanashi S, Yokoyama N, Philip E, Kamakura M. 2012. Vertical variation in leaf gas exchange parameters for a Southeast Asian tropical rainforest in Peninsular Malaysia. Journal of Plant Research 125: 735 – 748.
dc.identifier.citedreferenceKrause A, Pugh TAM, Bayer AD, Li W, Leung F, Bondeau A, Doelman JC, Humpenöder F, Anthoni P, Bodirsky BL et al. 2018. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Global Change Biology 24: 3025 – 3038.
dc.identifier.citedreferenceKrause GH, Winter K, Krause B, Jahns P, García M, Aranda J, Virgo A. 2010. High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Functional Plant Biology 37: 890.
dc.identifier.citedreferenceKrinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19: 1 – 25.
dc.identifier.citedreferenceKumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, Cano FJ, Carter KR, Cavaleri MA, Cernusak LA et al. 2019. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist 222: 768 – 784.
dc.identifier.citedreferenceKunert N, Aparecido LMT, Wolff S, Higuchi N, dos Santos J, de Araujo AC, Trumbore S. 2017. A revised hydrological model for the central Amazon: the importance of emergent canopy trees in the forest water budget. Agricultural and Forest Meteorology 239: 47 – 57.
dc.identifier.citedreferenceKunert N, Hajek P, Hietz P, Morris H, Rosner S, Tholen D. 2022. Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biology 24: 1254 – 1261.
dc.identifier.citedreferenceKusi J, Karsai I. 2020. Plastic leaf morphology in three species of Quercus: the more exposed leaves are smaller, more lobated and denser. Plant Species Biology 35: 24 – 37.
dc.identifier.citedreferenceLantz AT, Allman J, Weraduwage SM, Sharkey TD. 2019. Isoprene: new insights into the control of emission and mediation of stress tolerance by gene expression. Plant, Cell & Environment 42: 2808 – 2826.
dc.identifier.citedreferenceLaothawornkitkul J, Taylor JE, Paul ND, Hewitt CN. 2009. Biogenic volatile organic compounds in the Earth system. New Phytologist 183: 27 – 51.
dc.identifier.citedreferenceLaurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside PM, Ribeiro JEL, Capretz RL. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology 87: 469 – 482.
dc.identifier.citedreferenceLaw BE, Cescatti A, Baldocchi DD. 2001. Leaf area distribution and radiative transfer in open-canopy forests: implications for mass and energy exchange. Tree Physiology 21: 777 – 787.
dc.identifier.citedreferenceLee BR, Ibáñez I. 2021. Spring phenological escape is critical for the survival of temperate tree seedlings. Functional Ecology 35: 1848 – 1861.
dc.identifier.citedreferenceLee DW, Bone RA, Tarsis SL, Storch D. 1990. Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. American Journal of Botany 77: 370 – 380.
dc.identifier.citedreferenceLegner N, Fleck S, Leuschner C. 2014. Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance. Trees 28: 263 – 280.
dc.identifier.citedreferenceLeigh A, Sevanto S, Close JD, Nicotra AB. 2017. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? Plant, Cell & Environment 40: 237 – 248.
dc.identifier.citedreferenceLevizou E, Drilias P, Psaras GK, Manetas Y. 2005. Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur. New Phytologist 165: 463 – 472.
dc.identifier.citedreferenceLiakoura V, Stefanou M, Manetas Y, Cholevas C, Karabourniotis G. 1997. Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy. Environmental and Experimental Botany 38: 223 – 229.
dc.identifier.citedreferenceLloyd J, Farquhar GD. 2008. Effects of rising temperatures and [CO 2 ] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 363: 1811 – 1817.
dc.identifier.citedreferenceLloyd J, Patiño S, Paiva RQ, Nardoto GB, Quesada CA, Santos AJB, Baker TR, Brand WA, Hilke I, Gielmann H et al. 2010. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7: 1833 – 1859.
dc.identifier.citedreferenceLongo M, Knox RG, Medvigy DM, Levine NM, Dietze MC, Kim Y, Swann ALS, Zhang K, Rollinson CR, Bras RL et al. 2019. The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the ecosystem demography model, v.2.2 – part 1: model description. Geoscientific Model Development 12: 4309 – 4346.
dc.identifier.citedreferenceLowman M, Rinker HB. 1995. Forest canopies. Cambridge, MA, USA: Academic Press.
dc.identifier.citedreferenceLusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender-Bares J. 2008. Why are evergreen leaves so contrary about shade? Trends in Ecology & Evolution 23: 299 – 303.
dc.identifier.citedreferenceMaes SL, Perring MP, Depauw L, Bernhardt-Römermann M, Blondeel H, Brūmelis G, Brunet J, Decocq G, den Ouden J, Govaert S et al. 2020. Plant functional trait response to environmental drivers across European temperate forest understorey communities. Plant Biology 22: 410 – 424.
dc.identifier.citedreferenceMaclean IMD, Klinges DH. 2021. Microclimc: a mechanistic model of above, below and within-canopy microclimate. Ecological Modelling 451: 109567.
dc.identifier.citedreferenceMajasalmi T, Rautiainen M. 2020. The impact of tree canopy structure on understory variation in a boreal forest. Forest Ecology and Management 466: 118100.
dc.identifier.citedreferenceMarenco RA, Camargo MAB, Antezana-Vera SA, Oliveira MF. 2017. Leaf trait plasticity in six forest tree species of central Amazonia. Photosynthetica 55: 679 – 688.
dc.identifier.citedreferenceMartin TA, Hinckley TM, Meinzer FC, Sprugel DG. 1999. Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches. Tree Physiology 19: 435 – 443.
dc.identifier.citedreferenceMatsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K, Matsubara S, Krause GH, Aranda J et al. 2009. Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Functional Plant Biology 36: 20 – 36.
dc.identifier.citedreferenceMatusick G, Ruthrof KX, Brouwers NC, Dell B, Hardy GSJ. 2013. Sudden forest canopy collapse corresponding with extreme drought and heat in a mediterranean-type eucalypt forest in southwestern Australia. European Journal of Forest Research 132: 497 – 510.
dc.identifier.citedreferenceMau A, Reed S, Wood T, Cavaleri M. 2018. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis. Forests 9: 47.
dc.identifier.citedreferenceMcDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368: eaaz9463.
dc.identifier.citedreferenceMcDowell NG, Bond BJ, Hill L, Ryan MG, Whitehead D. 2011. Relationship between tree height and carbon isotope discrimination. In: Meinzer FC, Niinemets U, eds. Size and age related changes in tree structure and function. New York, NY, USA: Springer, 255 – 286.
dc.identifier.citedreferenceMcGregor IR, Helcoski R, Kunert N, Tepley AJ, Gonzalez-Akre EB, Herrmann V, Zailaa J, Stovall AEL, Bourg NA, McShea WJ et al. 2021. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytologist 231: 601 – 616.
dc.identifier.citedreferenceMeakem V, Tepley AJ, Gonzalez-Akre EB, Herrmann V, Muller-Landau HC, Wright SJ, Hubbell SP, Condit R, Anderson-Teixeira KJ. 2018. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytologist 219: 947 – 958.
dc.identifier.citedreferenceMediavilla S, Escudero A. 2004. Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecology and Management 187: 281 – 294.
dc.identifier.citedreferenceMediavilla S, Martín I, Babiano J, Escudero A. 2019. Foliar plasticity related to gradients of heat and drought stress across crown orientations in three Mediterranean Quercus species. PLoS ONE 14: e0224462.
dc.identifier.citedreferenceMeehl GA, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21 st century. Science 305: 994 – 997.
dc.identifier.citedreferenceMeeussen C, Govaert S, Vanneste T, Bollmann K, Brunet J, Calders K, Cousins SAO, De Pauw K, Diekmann M, Gasperini C et al. 2021. Microclimatic edge-to-interior gradients of European deciduous forests. Agricultural and Forest Meteorology 311: 108699.
dc.identifier.citedreferenceMeinzer FC, Clearwater MJ, Goldstein G. 2001. Water transport in trees: current perspectives, new insights and some controversies. Environmental and Experimental Botany 45: 239 – 262.
dc.identifier.citedreferenceMeir P, Grace J, Miranda AC. 2001. Leaf respiration in two tropical rainforests: constraints on physiology by phosphorus, nitrogen and temperature. Functional Ecology 15: 378 – 387.
dc.identifier.citedreferenceMeyers TP, Paw UKT. 1987. Modelling the plant canopy micrometeorology with higher-order closure principles. Agricultural and Forest Meteorology 41: 143 – 163.
dc.identifier.citedreferenceMichaletz ST, Weiser MD, McDowell NG, Zhou J, Kaspari M, Helliker BR, Enquist BJ. 2016. The energetic and carbon economic origins of leaf thermoregulation. Nature Plants 2: 16129.
dc.identifier.citedreferenceMichaletz ST, Weiser MD, Zhou J, Kaspari M, Helliker BR, Enquist BJ. 2015. Plant thermoregulation: energetics, trait–environment interactions, and carbon economics. Trends in Ecology & Evolution 30: 714 – 724.
dc.identifier.citedreferenceMillen GGM, Clendon JHM. 1979. Leaf angle: an adaptive feature of sun and shade leaves. Botanical Gazette 140: 437 – 442.
dc.identifier.citedreferenceMiller AD, Thompson JR, Tepley AJ, Anderson-Teixeira KJ. 2019. Alternative stable equilibria and critical thresholds created by fire regimes and plant responses in a fire-prone community. Ecography 42: 55 – 66.
dc.identifier.citedreferenceMiller BD, Carter KR, Reed SC, Wood TE, Cavaleri MA. 2021. Only sun-lit leaves of the uppermost canopy exceed both air temperature and photosynthetic thermal optima in a wet tropical forest. Agricultural and Forest Meteorology 301–302: 108347.
dc.identifier.citedreferenceMiller SD, Goulden ML, Hutyra LR, Keller M, Saleska SR, Wofsy SC, Figueira AMS, da Rocha HR, de Camargo PB. 2011. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proceedings of the National Academy of Sciences, USA 108: 19431 – 19435.
dc.identifier.citedreferenceMisson L, Baldocchi DD, Black TA, Blanken PD, Brunet Y, Curiel Yuste J, Dorsey JR, Falk M, Granier A, Irvine MR et al. 2007. Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agricultural and Forest Meteorology 144: 14 – 31.
dc.identifier.citedreferenceMonson RK, Weraduwage SM, Rosenkranz M, Schnitzler J-P, Sharkey TD. 2021. Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 197: 885 – 902.
dc.identifier.citedreferenceMonteith JL, Unsworth MH. 2013. Principles of environmental physics: plants, animals, and the atmosphere. Amsterdam, the Netherlands; Boston, MA, USA: Elsevier/Academic Press.
dc.identifier.citedreferenceMoorcroft PR, Hurtt GC, Pacala SW. 2001. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs 71: 557 – 586.
dc.identifier.citedreferenceMoore G, Orozco G, Aparecido L, Miller G. 2018. Upscaling transpiration in diverse forests: insights from a tropical premontane site. Ecohydrology 11: e1920.
dc.identifier.citedreferenceMott KA, Peak D. 2010. Stomatal responses to humidity and temperature in darkness. Plant, Cell & Environment 33: 1084 – 1090.
dc.identifier.citedreferenceMuir CD. 2019. tealeaves: an R package for modelling leaf temperature using energy budgets. AoB PLANTS 11: 1 – 8.
dc.identifier.citedreferenceMuller JD, Rotenberg E, Tatarinov F, Oz I, Yakir D. 2021. Evidence for efficient non-evaporative leaf-to-air heat dissipation in a pine forest under drought conditions. New Phytologist 232: 2254 – 2266.
dc.identifier.citedreferenceMuller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N et al. 2006. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters 9: 575 – 588.
dc.identifier.citedreferenceMusselman KN, Margulis SA, Molotch NP. 2013. Estimation of solar direct beam transmittance of conifer canopies from airborne LiDAR. Remote Sensing of Environment 136: 402 – 415.
dc.identifier.citedreferenceNakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma K et al. 2017. Forests and their canopies: achievements and horizons in canopy science. Trends in Ecology & Evolution 32: 438 – 451.
dc.identifier.citedreferenceNiinemets Ü. 1998. Adjustment of foliage structure and function to a canopy light gradient in two co-existing deciduous trees. Variability in leaf inclination angles in relation to petiole morphology. Trees 12: 446 – 451.
dc.identifier.citedreferenceNiinemets Ü. 2007. Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment 30: 1052 – 1071.
dc.identifier.citedreferenceNiinemets Ü. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260: 1623 – 1639.
dc.identifier.citedreferenceNiinemets Ü. 2016. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. Journal of Plant Research 129: 313 – 338.
dc.identifier.citedreferenceNiinemets Ü, Bilger W, Kull O, Tenhunen JD. 1998. Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant, Cell & Environment 21: 1205 – 1218.
dc.identifier.citedreferenceNiinemets U, Copolovici L, Hueve K. 2010. High within-canopy variation in isoprene emission potentials in temperate trees: implications for predicting canopy-scale isoprene fluxes. Journal of Geophysical Research – Biogeosciences 115: G04029.
dc.identifier.citedreferenceNiinemets Ü, Keenan TF, Hallik L. 2015a. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist 205: 973 – 993.
dc.identifier.citedreferenceNiinemets Ü, Kull O, Tenhunen JD. 2015b. Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting deciduous trees. International Journal of Plant Sciences 205: 973 – 993.
dc.identifier.citedreferenceNiinemets Ü, Oja V, Kull O. 1999. Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees. Plant, Cell & Environment 22: 1497 – 1513.
dc.identifier.citedreferenceNiinemets Ü, Sonninen E, Tobias M. 2004. Canopy gradients in leaf intercellular CO 2 mole fractions revisited: interactions between leaf irradiance and water stress need consideration. Plant, Cell & Environment 27: 569 – 583.
dc.identifier.citedreferenceNiinemets Ü, Sun Z. 2015. How light, temperature, and measurement and growth [CO 2 ] interactively control isoprene emission in hybrid aspen. Journal of Experimental Botany 66: 841 – 851.
dc.identifier.citedreferenceNiinemets Ü, Valladares F. 2004. Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biology 6: 254 – 268.
dc.identifier.citedreferenceNiyogi KK. 2000. Safety valves for photosynthesis. Current Opinion in Plant Biology 3: 455 – 460.
dc.identifier.citedreferenceNovick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN et al. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change 6: 1023 – 1027.
dc.identifier.citedreferenceNunes MH, Camargo JLC, Vincent G, Calders K, Oliveira RS, Huete A, Mendes de Moura Y, Nelson B, Smith MN, Stark SC et al. 2022. Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nature Communications 13: 1 – 10.
dc.identifier.citedreferenceO’Sullivan OS, Heskel MA, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, Zhu L, Egerton JJG, Bloomfield KJ, Creek D et al. 2017. Thermal limits of leaf metabolism across biomes. Global Change Biology 23: 209 – 223.
dc.identifier.citedreferenceOldham AR, Sillett SC, Tomescu AMF, Koch GW. 2010. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy. American Journal of Botany 97: 1087 – 1097.
dc.identifier.citedreferenceOlson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Martínez JJC, Castorena M et al. 2018. Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences, USA 115: 7551 – 7556.
dc.identifier.citedreferenceOsada N, Takeda H, Furukawa A, Awang M. 2001. Leaf dynamics and maintenance of tree crowns in a Malaysian rain forest stand. Journal of Ecology 89: 774 – 782.
dc.identifier.citedreferenceOsnas JLD, Katabuchi M, Kitajima K, Wright SJ, Reich PB, Van Bael SA, Kraft NJB, Samaniego MJ, Pacala SW, Lichstein JW. 2018. Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences, USA 115: 5480 – 5485.
dc.identifier.citedreferenceOzanne CMP. 2003. Biodiversity meets the atmosphere: a global view of forest canopies. Science 301: 183 – 186.
dc.identifier.citedreferenceParker GG, Fitzjarrald DR, Gonçalves Sampaio IC. 2019. Consequences of environmental heterogeneity for the photosynthetic light environment of a tropical forest. Agricultural and Forest Meteorology 278: 107661.
dc.identifier.citedreferenceParker GG, O’Neill JP, Higman D. 1989. Vertical profile and canopy organization in a mixed deciduous forest. Vegetatio 85: 1 – 11.
dc.identifier.citedreferencePau S, Detto M, Kim Y, Still CJ. 2018. Tropical forest temperature thresholds for gross primary productivity. Ecosphere 9: e02311.
dc.identifier.citedreferencePenman HL, Long IF. 1960. Weather in wheat: an essay in micro-meteorology. Quarterly Journal of the Royal Meteorological Society 86: 16 – 50.
dc.identifier.citedreferencePerez TM, Feeley KJ. 2018. Increasing humidity threatens tropical rainforests. Frontiers in Ecology and Evolution 6: 68.
dc.identifier.citedreferencePerez TM, Feeley KJ. 2020. Photosynthetic heat tolerances and extreme leaf temperatures. Functional Ecology 34: 2236 – 2245.
dc.identifier.citedreferencePiponiot C, Anderson-Teixeira KJ, Davies SJ, Allen D, Bourg NA, Burslem DFRP, Cárdenas D, Chang-Yang C-H, Chuyong G, Cordell S et al. 2022. Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist 234: 1664 – 1677.
dc.identifier.citedreferencePoorter L, Kwant R, Hernández R, Medina E, Werger MJA. 2000. Leaf optical properties in Venezuelan cloud forest trees. Tree Physiology 20: 519 – 526.
dc.identifier.citedreferencePoorter L, Oberbauer SF, Clark DB. 1995. Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. American Journal of Botany 82: 1257 – 1263.
dc.identifier.citedreferencePörtner H-O, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes D, Burrows M, Chan L, Cheung WL et al. 2021. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change. Bonn, Germany: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 1 – 234.
dc.identifier.citedreferenceRaupach MR. 1987. A Lagrangian analysis of scalar transfer in vegetation canopies. Quarterly Journal of the Royal Meteorological Society 113: 107 – 120.
dc.identifier.citedreferenceRaupach MR. 1989. Applying Lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agricultural and Forest Meteorology 47: 85 – 108.
dc.identifier.citedreferenceRaupach MR, Shaw RH. 1982. Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorology 22: 79 – 90.
dc.identifier.citedreferenceRey-Sánchez A, Slot M, Posada J, Kitajima K. 2016. Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest. Climate Research 71: 75 – 89.
dc.identifier.citedreferenceRiedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, Dey S, Parker JE, Schnitzler J-P, Vlot AC. 2017. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 29: 1440 – 1459.
dc.identifier.citedreferenceBin Y, Li Y, Russo SE, Cao H, Ni Y, Ye W, Lian J. 2022. Leaf trait expression varies with tree size and ecological strategy in a subtropical forest. Functional Ecology 36: 1010 – 1022.
dc.identifier.citedreferenceRoberts J, Cabral OMR, Aguiar LFD. 1990. Stomatal and boundary-layer conductances in an Amazonian terra firme rain forest. Journal of Applied Ecology 27: 336.
dc.identifier.citedreferenceRollinson CR, Alexander MR, Dye AW, Moore DJP, Pederson N, Trouet V. 2020. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102: e03264.
dc.identifier.citedreferenceRozendaal DMA, Hurtado VH, Poorter L. 2006. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology 20: 207 – 216.
dc.identifier.citedreferenceRuehr NK, Gast A, Weber C, Daub B, Arneth A. 2016. Water availability as dominant control of heat stress responses in two contrasting tree species. Tree Physiology 36: 164 – 178.
dc.identifier.citedreferenceRussell MB, Woodall CW, Fraver S, D’Amato AW, Domke GM, Skog KE. 2014. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 17: 765 – 777.
dc.identifier.citedreferenceSack L, Cowan PD, Jaikumar N, Holbrook NM. 2003. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment 26: 1343 – 1356.
dc.identifier.citedreferenceSack L, Melcher PJ, Liu WH, Middleton E, Pardee T. 2006. How strong is intracanopy leaf plasticity in temperate deciduous trees? American Journal of Botany 93: 829 – 839.
dc.identifier.citedreferenceSack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198: 983 – 1000.
dc.identifier.citedreferenceSalisbury EJ. 1928. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 216: 1 – 65.
dc.identifier.citedreferenceSanches MC, Ribeiro SP, Dalvi VC, Barbosa da Silva Junior M, Caldas de Sousa H, Pires de Lemos-Filho J. 2010. Differential leaf traits of a neotropical tree Cariniana legalis (Mart.) Kuntze (Lecythidaceae): comparing saplings and emergent trees. Trees 24: 79 – 88.
dc.identifier.citedreferenceScafaro AP, Fan Y, Posch BC, Garcia A, Coast O, Atkin OK. 2021. Responses of leaf respiration to heatwaves. Plant, Cell & Environment 44: 2090 – 2101.
dc.identifier.citedreferenceScartazza A, Di Baccio D, Bertolotto P, Gavrichkova O, Matteucci G. 2016. Investigating the European beech ( Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Tree Physiology 36: 1060 – 1076.
dc.identifier.citedreferenceScharnweber T, Heinze L, Cruz-García R, van der Maaten-Theunissen M, Wilmking M. 2019. Confessions of solitary oaks: we grow fast but we fear the drought. Dendrochronologia 55: 43 – 49.
dc.identifier.citedreferenceScheffers B, Edwards D, Diesmos A, Williams S, Evans T. 2013. Microhabitats reduce animal’s exposure to climate extremes. Global Change Biology 20: 495 – 503.
dc.identifier.citedreferenceSchreuder MDJ, Brewer CA, Heine C. 2001. Modelled influences of non-exchanging trichomes on leaf boundary layers and gas exchange. Journal of Theoretical Biology 210: 23 – 32.
dc.identifier.citedreferenceSchymanski SJ, Or D, Zwieniecki M. 2013. Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations. PLoS ONE 8: e54231.
dc.identifier.citedreferenceSellers PJ. 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6: 1335 – 1372.
dc.identifier.citedreferenceSharkey TD. 2005. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment 28: 269 – 277.
dc.identifier.citedreferenceSharkey TD, Monson RK. 2014. The future of isoprene emission from leaves, canopies and landscapes. Plant, Cell & Environment 37: 1727 – 1740.
dc.identifier.citedreferenceSharkey TD, Wiberley AE, Donohue AR. 2008. Isoprene emission from plants: why and how. Annals of Botany 101: 5 – 18.
dc.identifier.citedreferenceShaw R. 1977. Secondary wind speed maxima inside plant canopies. Journal of Applied Meteorology 16: 514 – 521.
dc.identifier.citedreferenceShugart HH, Wang B, Fischer R, Ma J, Fang J, Yan X, Huth A, Armstrong AH. 2018. Gap models and their individual-based relatives in the assessment of the consequences of global change. Environmental Research Letters 13: 033001.
dc.identifier.citedreferenceSillett SC, Van Pelt R, Koch GW, Ambrose AR, Carroll AL, Antoine ME, Mifsud BM. 2010. Increasing wood production through old age in tall trees. Forest Ecology and Management 259: 976 – 994.
dc.identifier.citedreferenceŠimpraga M, Verbeeck H, Bloemen J, Vanhaecke L, Demarcke M, Joó E, Pokorska O, Amelynck C, Schoon N, Dewulf J et al. 2013. Vertical canopy gradient in photosynthesis and monoterpenoid emissions: an insight into the chemistry and physiology behind. Atmospheric Environment 80: 85 – 95.
dc.identifier.citedreferenceSitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9: 161 – 185.
dc.identifier.citedreferenceSlot M, Cala D, Aranda J, Virgo A, Michaletz ST, Winter K. 2021a. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant, Cell & Environment 44: 2414 – 2427.
dc.identifier.citedreferenceSlot M, Kitajima K. 2015. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177: 885 – 900.
dc.identifier.citedreferenceSlot M, Krause GH, Krause B, Hernández GG, Winter K. 2019. Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynthesis Research 141: 119 – 130.
dc.identifier.citedreferenceSlot M, Nardwattanawong T, Hernández GG, Bueno A, Riederer M, Winter K. 2021b. Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. New Phytologist 232: 1618 – 1631.
dc.identifier.citedreferenceSlot M, Rifai SW, Winter K. 2021c. Photosynthetic plasticity of a tropical tree species, Tabebuia rosea, in response to elevated temperature and [CO 2 ]. Plant, Cell & Environment 44: 2347 – 2364.
dc.identifier.citedreferenceSlot M, Winter K. 2017. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. New Phytologist 214: 1103 – 1117.
dc.identifier.citedreferenceSmith B, Prentice IC, Sykes MT. 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography 10: 621 – 637.
dc.identifier.citedreferenceSmith MN, Stark SC, Taylor TC, Ferreira ML, de Oliveira E, Restrepo-Coupe N, Chen S, Woodcock T, dos Santos DB, Alves LF et al. 2019. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytologist 222: 1284 – 1297.
dc.identifier.citedreferenceSmith MN, Taylor TC, van Haren J, Rosolem R, Restrepo-Coupe N, Adams J, Wu J, de Oliveira RC, da Silva R, de Araujo AC et al. 2020. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nature Plants 6: 1225 – 1230.
dc.identifier.citedreferenceSmith WK, Carter GA. 1988. Shoot structural effects on needle temperatures and photosynthesis in conifers. American Journal of Botany 75: 496 – 500.
dc.identifier.citedreferenceSong Q, Sun C, Deng Y, Bai H, Zhang Y, Yu H, Zhang J, Sha L, Zhou W, Liu Y. 2020. Tree surface temperature in a primary tropical rain forest. Atmosphere 11: 798.
dc.identifier.citedreferenceStark SC, Breshears DD, Aragón S, Villegas JC, Law DJ, Smith MN, Minor DM, de Assis RL, de Almeida DRA, de Oliveira G et al. 2020. Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate. Ecosphere 11: e03231.
dc.identifier.citedreferenceStark SC, Leitold V, Wu JL, Hunter MO, de Castilho CV, Costa FRC, McMahon SM, Parker GG, Shimabukuro MT, Lefsky MA et al. 2012. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecology Letters 15: 1406 – 1414.
dc.identifier.citedreferenceStaudt K, Serafimovich A, Siebicke L, Pyles RD, Falge E. 2011. Vertical structure of evapotranspiration at a forest site (a case study). Agricultural and Forest Meteorology 151: 709 – 729.
dc.identifier.citedreferenceStovall AEL, Shugart H, Yang X. 2019. Tree height explains mortality risk during an intense drought. Nature Communications 10: 4385.
dc.identifier.citedreferenceSuzuki N, Mittler R. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum 126: 45 – 51.
dc.identifier.citedreferenceTan Z-H, Zeng J, Zhang Y-J, Slot M, Gamo M, Hirano T, Kosugi Y, da Rocha HR, Saleska SR, Goulden ML et al. 2017. Optimum air temperature for tropical forest photosynthesis: mechanisms involved and implications for climate warming. Environmental Research Letters 12: 054022.
dc.identifier.citedreferenceTang H, Dubayah R. 2017. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proceedings of the National Academy of Sciences, USA 114: 2640 – 2644.
dc.identifier.citedreferenceTaylor TC, McMahon SM, Smith MN, Boyle B, Violle C, van Haren J, Simova I, Meir P, Ferreira LV, de Camargo PB et al. 2018. Isoprene emission structures tropical tree biogeography and community assembly responses to climate. New Phytologist 220: 435 – 446.
dc.identifier.citedreferenceTaylor TC, Smith MN, Slot M, Feeley KJ. 2019. The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. Plant, Cell & Environment 42: 2448 – 2457.
dc.identifier.citedreferenceTaylor TC, Wisniewski WT, Alves EG, de Oliveira RC, Saleska SR. 2021. A new field instrument for leaf volatiles reveals an unexpected vertical profile of isoprenoid emission capacities in a tropical forest. Frontiers in Forests and Global Change 74: doi: 10.3389/ffgc.2021.668228.
dc.identifier.citedreferenceTepley AJ, Thompson JR, Epstein HE, Anderson-Teixeira KJ. 2017. Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Global Change Biology 23: 4117 – 4132.
dc.identifier.citedreferenceTeskey R, Wertin T, Bauweraerts I, Ameye M, Mcguire MA, Steppe K. 2015. Responses of tree species to heat waves and extreme heat events. Plant, Cell & Environment 38: 1699 – 1712.
dc.identifier.citedreferenceThomas SC, Winner WE. 2002. Photosynthetic differences between saplings and adult trees: an integration of field results by meta-analysis. Tree Physiology 22: 117 – 127.
dc.identifier.citedreferenceTibbitts TW. 1979. Humidity and plants. BioScience 29: 358 – 363.
dc.identifier.citedreferenceTiwari R, Gloor E, da Cruz WJA, Marimon BS, Marimon-Junior BH, Reis SM, de Souza IA, Krause HG, Slot M, Winter K et al. 2021. Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. Plant, Cell & Environment 44: 2428 – 2439.
dc.identifier.citedreferenceTrouillier M, van der Maaten-Theunissen M, Scharnweber T, Würth D, Burger A, Schnittler M, Wilmking M. 2018. Size matters – a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees 33: 183 – 192.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.