Show simple item record

Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images

dc.contributor.authorWang, Yifan
dc.contributor.authorZhou, Chuan
dc.contributor.authorChan, Heang-Ping
dc.contributor.authorHadjiiski, Lubomir M.
dc.contributor.authorChughtai, Aamer
dc.contributor.authorKazerooni, Ella A.
dc.date.accessioned2023-01-11T16:27:03Z
dc.date.available2023-12-11 11:27:01en
dc.date.available2023-01-11T16:27:03Z
dc.date.issued2022-11
dc.identifier.citationWang, Yifan; Zhou, Chuan; Chan, Heang-Ping ; Hadjiiski, Lubomir M.; Chughtai, Aamer; Kazerooni, Ella A. (2022). "Hybrid U- Net- based deep learning model for volume segmentation of lung nodules in CT images." Medical Physics 49(11): 7287-7302.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/175506
dc.description.abstractObjectiveAccurate segmentation of the lung nodule in computed tomography images is a critical component of a computer-assisted lung cancer detection/diagnosis system. However, lung nodule segmentation is a challenging task due to the heterogeneity of nodules. This study is to develop a hybrid deep learning (H-DL) model for the segmentation of lung nodules with a wide variety of sizes, shapes, margins, and opacities.Materials and methodsA dataset collected from Lung Image Database Consortium image collection containing 847 cases with lung nodules manually annotated by at least two radiologists with nodule diameters greater than 7 mm and less than 45 mm was randomly split into 683 training/validation and 164 independent test cases. The 50% consensus consolidation of radiologists’ annotation was used as the reference standard for each nodule. We designed a new H-DL model combining two deep convolutional neural networks (DCNNs) with different structures as encoders to increase the learning capabilities for the segmentation of complex lung nodules. Leveraging the basic symmetric U-shaped architecture of U-Net, we redesigned two new U-shaped deep learning (U-DL) models that were expanded to six levels of convolutional layers. One U-DL model used a shallow DCNN structure containing 16 convolutional layers adapted from the VGG-19 as the encoder, and the other used a deep DCNN structure containing 200 layers adapted from DenseNet-201 as the encoder, while the same decoder with only one convolutional layer at each level was used in both U-DL models, and we referred to them as the shallow and deep U-DL models. Finally, an ensemble layer was used to combine the two U-DL models into the H-DL model. We compared the effectiveness of the H-DL, the shallow U-DL and the deep U-DL models by deploying them separately to the test set. The accuracy of volume segmentation for each nodule was evaluated by the 3D Dice coefficient and Jaccard index (JI) relative to the reference standard. For comparison, we calculated the median and minimum of the 3D Dice and JI over the individual radiologists who segmented each nodule, referred to as M-Dice, min-Dice, M-JI, and min-JI.ResultsFor the 164 test cases with 327 nodules, our H-DL model achieved an average 3D Dice coefficient of 0.750 ± 0.135 and an average JI of 0.617 ± 0.159. The radiologists’ average M-Dice was 0.778 ± 0.102, and the average M-JI was 0.651 ± 0.127; both were significantly higher than those achieved by the H-DL model (p < 0.05). The radiologists’ average min-Dice (0.685 ± 0.139) and the average min-JI (0.537 ± 0.153) were significantly lower than those achieved by the H-DL model (p < 0.05). The results indicated that the H-DL model approached the average performance of radiologists and was superior to the radiologist whose manual segmentation had the min-Dice and min-JI. Moreover, the average Dice and average JI achieved by the H-DL model were significantly higher than those achieved by the individual shallow U-DL model (Dice of 0.745 ± 0.139, JI of 0.611 ± 0.161; p < 0.05) or the individual deep U-DL model alone (Dice of 0.739 ± 0.145, JI of 0.604 ± 0.163; p < 0.05).ConclusionOur newly developed H-DL model outperformed the individual shallow or deep U-DL models. The H-DL method combining multilevel features learned by both the shallow and deep DCNNs could achieve segmentation accuracy comparable to radiologists’ segmentation for nodules with wide ranges of image characteristics.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othercomputer-aided diagnosis
dc.subject.otherdeep learning
dc.subject.otherlung nodule
dc.subject.othernodule segmentation
dc.titleHybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175506/1/mp15810.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175506/2/mp15810_am.pdf
dc.identifier.doi10.1002/mp.15810
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceGoodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. http://www.deeplearningbook.org
dc.identifier.citedreferenceAresta G, Jacobs C, Araújo T, et al. iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network. Sci Rep. 2019; 9 ( 1 ): 1 - 9.
dc.identifier.citedreferenceWu B, Zhou Z, Wang J, Wang Y. Joint Learning for Pulmonary Nodule Segmentation, Attributes and Malignancy Prediction: Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, 4-7 April 2018. IEEE; 2018.
dc.identifier.citedreferenceSzegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, 7-12 June 2015. IEEE; 2015.
dc.identifier.citedreferenceSiddique N, Sidike P, Elkin C, Devabhaktuni V. U-Net and its variants for medical image segmentation: theory and applications. arXiv. 2020; 2011: 01118.
dc.identifier.citedreferenceZhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, eds. Deep learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer; 2018: 3 - 11.
dc.identifier.citedreferencePedrosa J, Aresta G, Ferreira C, et al. LNDb: a lung nodule database on computed tomography. arXiv preprint arXiv. 2019; 1911: 08434.
dc.identifier.citedreferenceArmato SG 3rd, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011; 38 ( 2 ): 915 - 931.
dc.identifier.citedreferenceSzegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z, Rethinking the Inception Architecture for Computer Vision: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 8-22 June 2018; IEEE; 2018.
dc.identifier.citedreferenceIbtehaz N, Sohel Rahman M. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 2020; 121: 74 - 87.
dc.identifier.citedreferenceLi R, Liu W, Yang L, et al. UNet Li. A deep fully convolutional network for pixel-level sea-land segmentation. arXiv" arXiv preprint arXiv. 2017; 1709: 00201.
dc.identifier.citedreferenceKingma DP, Ba JA. A method for stochastic optimization. arXiv preprint arXiv. 2014; 1412: 6980.
dc.identifier.citedreferenceÇiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W, eds. International Conference on Medical Image Computing and Computer-Assised Intervention. Springer; 2016: 424 - 432.
dc.identifier.citedreferenceArmato SG, Roberts RY, McNitt-Gray MF, et al. The Lung Image Database Consortium (LIDC): ensuring the integrity of expert-defined “truth.” Acad Radiol. 2007; 14 ( 12 ): 1455 - 1463.
dc.identifier.citedreferenceHowlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review. Natl Cancer Inst. 2021: 1975 - 2018.
dc.identifier.citedreferenceZhao ZQ, Zheng P, Xu ST, Wu X. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2019; 30 ( 11 ): 3212 - 3232.
dc.identifier.citedreferenceHe K, Sun J. Convolutional Neural Networks at Constrained Time Cost: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Waikoloa Beacu, HI. IEEE; 2015.
dc.identifier.citedreferenceWang H, Raj B. On the origin of deep learning. arXiv preprint arXiv. 2017; 1702: 07800.
dc.identifier.citedreferenceDelalleau O, Bengio Y. Shallow vs. deep sum-product networks. Adv Neural Inform Proce Syst. 2011; 24: 666 - 674.
dc.identifier.citedreferenceHe K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 21-26 July 2016. IEEE; 2016.
dc.identifier.citedreferenceChen H, Dou Q, Wang X, et al. 3D fully convolutional networks for intervertebral disc localization and segmentation. In: Zheng G, Liao H, Jannin P, Cattin P, Lee SL, eds. International Conference on Medical Imaging and Augmented Reality, Springer; 2016: 375 - 382.
dc.identifier.citedreferenceBaumgartner CF, Koch LM, Pollefeys M, Konukoglu E. An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation. In: Pop M, Sermesant M, Jodoin P-M, et al., eds. International Workshop on Statistical Atlases and Computational Models of the Heart. Springer; 2017: 111 - 119.
dc.identifier.citedreferenceZhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys. 2017; 44 ( 10 ): 5221 - 5233.
dc.identifier.citedreferenceGaldran A, Bouchachia H. Residual networks for pulmonary nodule segmentation and texture characterization. In: Campilho A, Karray F, Wang Z, eds. International Conference on Image Analysis and Recognition. Springer; 2020: 396 - 405.
dc.identifier.citedreferenceKaluva KC, Vaidhya K, Chunduru A, Tarai S, Nadimpalli SPP, Vaidya S. An automated workflow for lung nodule follow-up recommendation using deep learning. In: Campilho A, Karray F, Wang Z, eds. International Conference on Image Analysis and Recognition. Springer; 2020: 369 - 377.
dc.identifier.citedreferenceRedmon J, Farhadi A. Yolov3: an incremental improvement. arXiv preprint arXiv. 2018; 1804: 02767.
dc.identifier.citedreferenceHan D, Heuvelmans MA, Oudkerk M. Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening. Transl Lung Cancer Res. 2017; 6 ( 1 ): 52.
dc.identifier.citedreferenceWang S, Zhou M, Liu Z, et al. Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal. 2017; 40: 172 - 183.
dc.identifier.citedreferenceFetita CI, Preteux F, Beigelman-Aubry C, Grenier P. 3D automated lung nodule segmentation in HRCT. In: Ellis RE, Peters TM, eds. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2003: 626 - 634.
dc.identifier.citedreferenceNithila EE, Kumar SS. Segmentation of lung nodule in CT data using active contour model and Fuzzy C-mean clustering. Alexandria Eng J. 2016; 55 ( 3 ): 2583 - 2588.
dc.identifier.citedreferenceXie H, Yang D, Sun NC, Zhang Y. Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognit. 2019; 85: 109 - 119.
dc.identifier.citedreferenceDiciotti S, Lombardo S, Falchini M, Picozzi G, Mascalchi M. Automated segmentation refinement of small lung nodules in CT scans by local shape analysis. IEEE Trans Biomed Eng. 2011; 58 ( 12 ): 3418 - 3428.
dc.identifier.citedreferenceMessay T, Hardie RC, Tuinstra TR. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset. Med Image Anal. 2015; 22 ( 1 ): 48 - 62.
dc.identifier.citedreferenceDehmeshki J, Amin H, Valdivieso M, Ye X. Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging. 2008; 27 ( 4 ): 467 - 480.
dc.identifier.citedreferenceFarag AA, Abd El, Munim HE, Graham JH, Farag AA. A novel approach for lung nodules segmentation in chest CT using level sets. IEEE Trans Image Process. 2013; 22 ( 12 ): 5202 - 5213.
dc.identifier.citedreferenceYe X, Beddoe G, Slabaugh G. Automatic graph cut segmentation of lesions in CT using mean shift superpixels. Int J Biomed Imaging. 2010; 2010: 983963.
dc.identifier.citedreferenceSahba F, Tizhoosh HR, Salama MM. A Reinforcement Learning Framework for Medical Image Segmentation: The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, Canada, 16-21 July 2005. IEEE Xplore; 2006.
dc.identifier.citedreferenceWay TW, Hadjiiski LM, Sahiner B, et al. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Med Phys. 2006; 33 ( 7 ): 2323 - 2337.
dc.identifier.citedreferenceZhou C, Chan H-P, Chughtai AHLM, Kazerooni EA, Wei J. Pathologic categorization of lung nodules: radiomic descriptors of CT attenuation distribution patterns of solid and subsolid nodules in low-dose CT. Eur J Radiol. 2020; 129: 109106.
dc.identifier.citedreferenceSimonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv. 2014; 1409: 1556.
dc.identifier.citedreferenceHasan M, Aleef TA. Automatic mass detection in breast using deep convolutional neural network and SVM classifier. arXiv preprint arXiv. 2019; 1907: 04424.
dc.identifier.citedreferenceHuang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 21-26 July 2017. IEEE Computer Society, Conference Publishing Service; 2017.
dc.identifier.citedreferenceHuang X, Sun W, Tseng TLB, Li C, Qian W. Fast and fully automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks. Comput Med Imaging Graph. 2019; 74: 25 - 36.
dc.identifier.citedreferenceKopelowitz E, Engelhard G. Lung nodules detection and segmentation using 3D Mask-RCNN. arXiv preprint arXiv. 2019; 1907: 07676.
dc.identifier.citedreferenceRonneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, eds. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2015: 234 - 241.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.