Show simple item record

Two-sample test with g-modeling and its applications

dc.contributor.authorZhai, Jingyi
dc.contributor.authorJiang, Hui
dc.date.accessioned2023-01-11T16:28:19Z
dc.date.available2024-02-11 11:28:16en
dc.date.available2023-01-11T16:28:19Z
dc.date.issued2023-01-15
dc.identifier.citationZhai, Jingyi; Jiang, Hui (2023). "Two-sample test with g-modeling and its applications." Statistics in Medicine 42(1): 89-104.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/175533
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othersingle-cell RNA-seq
dc.subject.otherzero-inflated Poisson
dc.subject.otherdifferential expression analysis
dc.subject.otherg$$ g $$-modeling
dc.subject.othertwo-sample test
dc.subject.otherbootstrap
dc.titleTwo-sample test with g-modeling and its applications
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175533/1/sim9603_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175533/2/sim9603.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175533/3/sim9603-sup-0001-supinfo.pdf
dc.identifier.doi10.1002/sim.9603
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceDelmans M, Hemberg M. Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data. BMC Bioinform. 2016; 17 ( 1 ): 110. doi: 10.1186/s12859-016-0944-6
dc.identifier.citedreferenceBrown LD, Greenshtein E, Ritov Y. The Poisson compound decision problem revisited. J Am Stat Assoc. 2013; 108 ( 502 ): 741 - 749.
dc.identifier.citedreferenceEfron B. Tweedie’s formula and selection bias. J Am Stat Assoc. 2011; 106 ( 496 ): 1602 - 1614. doi: 10.1198/jasa.2011.tm11181
dc.identifier.citedreferenceEfron B. Two modeling strategies for empirical Bayes estimation. Stat Sci. 2014; 29 ( 2 ): 285 - 301. doi: 10.1214/13-STS455
dc.identifier.citedreferenceEfron B. Empirical Bayes deconvolution estimates. Biometrika. 2016; 103 ( 1 ): 1 - 20. doi: 10.1093/biomet/asv068
dc.identifier.citedreferenceJiang H, Salzman J. Statistical properties of an early stopping rule for resampling-based multiple testing. Biometrika. 2012; 99 ( 4 ): 973 - 980. doi: 10.1093/biomet/ass051
dc.identifier.citedreferenceGholami S, Janson L, Worhunsky DJ, et al. Number of lymph nodes removed and survival after gastric cancer resection: an analysis from the us gastric cancer collaborative. J Am Coll Surg. 2015; 221 ( 2 ): 291 - 299. doi: 10.1016/j.jamcollsurg.2015.04.024
dc.identifier.citedreferenceBacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016; 17 ( 1 ): 63. doi: 10.1186/s13059-016-0927-y
dc.identifier.citedreferenceKolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015; 58 ( 4 ): 610 - 620. doi: 10.1016/j.molcel.2015.04.005
dc.identifier.citedreferenceStegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nature Rev Genet. 2015; 16: 133. doi: 10.1038/nrg3833
dc.identifier.citedreferenceShalek AK, Satija R, Adiconis X, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013; 498: 236. doi: 10.1038/nature12172
dc.identifier.citedreferenceFinak G, McDavid A, Yajima M, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16 ( 1 ): 278. doi: 10.1186/s13059-015-0844-5
dc.identifier.citedreferenceKharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nature Methods. 2014; 11: 740. doi: 10.1038/nmeth.2967
dc.identifier.citedreferenceWang T, Nabavi S. SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data. Methods. 2018; 145: 25 - 32. doi: 10.1016/j.ymeth.2018.04.017
dc.identifier.citedreferenceNabavi S, Schmolze D, Maitituoheti M, Malladi S, Beck AH. EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes. Bioinformatics. 2015; 32 ( 4 ): 533 - 541. doi: 10.1093/bioinformatics/btv634
dc.identifier.citedreferenceJaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. 2016; 18 ( 5 ): 735 - 743. doi: 10.1093/bib/bbw057
dc.identifier.citedreferenceWang T, Li B, Nelson CE, Nabavi S. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinform. 2019; 20 ( 1 ): 40. doi: 10.1186/s12859-019-2599-6
dc.identifier.citedreferenceKorthauer KD, Chu LF, Newton MA, et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 2016; 17 ( 1 ): 222. doi: 10.1186/s13059-016-1077-y
dc.identifier.citedreferenceAnders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11 ( 10 ): R106. doi: 10.1186/gb-2010-11-10-r106
dc.identifier.citedreferenceSmyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004; 3 ( 1 ): 3 - 25. doi: 10.2202/1544-6115.1027
dc.identifier.citedreferenceSeyednasrollah F, Rantanen K, Jaakkola P, Elo LL. ROTS: reproducible RNA-seq biomarker detector—Prognostic markers for clear cell renal cell cancer. Nucl Acids Res. 2015; 44 ( 1 ): e1. doi: 10.1093/nar/gkv806
dc.identifier.citedreferenceMcCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucl Acids Res. 2012; 40 ( 10 ): 4288 - 4297. doi: 10.1093/nar/gks042
dc.identifier.citedreferencePetropoulos S, Edsgärd D, Reinius B, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016; 165 ( 4 ): 1012 - 1026. doi: 10.1016/j.cell.2016.03.023
dc.identifier.citedreferenceMiao Z, Deng K, Wang X, Zhang X. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics. 2018; 34 ( 18 ): 3223 - 3224. doi: 10.1093/bioinformatics/bty332
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodol). 1995; 57 ( 1 ): 289 - 300.
dc.identifier.citedreferenceMadrid-Padilla OH, Polson NG, Scott J. A deconvolution path for mixtures. Electron J Stat. 2018; 12 ( 1 ): 1717 - 1751. doi: 10.1214/18-EJS1430
dc.identifier.citedreferenceAlam M, Al Mahi N, Begum M. Zero-inflated models for RNA-seq count data. J Biomed Anal. 2018; 1: 55 - 70. doi: 10.30577/jba.2018.v1n2.23
dc.identifier.citedreferencePratt JW, Gibbons JD. Kolmogorov-Smirnov Two-Sample Tests. New York, NY: Springer; 1981: 318 - 344.
dc.identifier.citedreferenceEfron B, Hastie T. Computer Age Statistical Inference: Algorithms, Evidence, and Data Science. New York, NY: Cambridge University Press; 2016.
dc.identifier.citedreferenceLaird N. Nonparametric maximum likelihood estimation of a mixing distribution. J Am Stat Assoc. 1978; 73 ( 364 ): 805 - 811.
dc.identifier.citedreferenceMorris CN. Parametric empirical bayes inference: theory and applications. J Am Stat Assoc. 1983; 78 ( 381 ): 47 - 55. doi: 10.1080/01621459.1983.10477920
dc.identifier.citedreferenceZhang C. Empirical Bayes and compound estimation of normal means. Stat Sin. 1997; 7 ( 1 ): 181 - 193.
dc.identifier.citedreferenceJiang W, Zhang CH. General maximum likelihood empirical bayes estimation of normal means. Ann Stat. 2009; 37 ( 4 ): 1647 - 1684.
dc.identifier.citedreferenceRobbins H. An empirical bayes approach to statistics. Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics; 1956: 157 - 163; University of California Press; Berkeley, CA.
dc.identifier.citedreferenceEfron B. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Cambridge, MA: Institute of Mathematical Statistics Monographs, Cambridge University Press; 2010.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.