Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex
dc.contributor.author | Borges, Beatriz C. | |
dc.contributor.author | Meng, Xiangying | |
dc.contributor.author | Long, Patrick | |
dc.contributor.author | Kanold, Patrick O. | |
dc.contributor.author | Corfas, Gabriel | |
dc.date.accessioned | 2023-01-11T16:28:28Z | |
dc.date.available | 2024-03-11 11:28:23 | en |
dc.date.available | 2023-01-11T16:28:28Z | |
dc.date.issued | 2023-02 | |
dc.identifier.citation | Borges, Beatriz C.; Meng, Xiangying; Long, Patrick; Kanold, Patrick O.; Corfas, Gabriel (2023). "Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex." Glia 71(2): 187-204. | |
dc.identifier.issn | 0894-1491 | |
dc.identifier.issn | 1098-1136 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/175535 | |
dc.description.abstract | For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV− axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.Main PointLoss of oligodendrocyte ErbB receptor signaling leads to A1 hypomyelination, reduced PV expression and density of PV+ neurons and synapses, hypoconnectivity of inhibitory circuits and shift of the E/I balance towards excitation. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | auditory cortex | |
dc.subject.other | circuit | |
dc.subject.other | E/I balance | |
dc.subject.other | inhibition | |
dc.subject.other | myelin basic protein | |
dc.subject.other | oligodendrocytes | |
dc.title | Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbsecondlevel | Neurosciences | |
dc.subject.hlbsecondlevel | Public Health | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175535/1/glia24266_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175535/2/glia24266.pdf | |
dc.identifier.doi | 10.1002/glia.24266 | |
dc.identifier.source | Glia | |
dc.identifier.citedreference | Rio, C., Rieff, H. I., Qi, P., Khurana, T. S., & Corfas, G. ( 1997 ). Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron, 19 ( 1 ), 39 – 50. https://doi.org/10.1016/s0896-6273(00)80346-3 | |
dc.identifier.citedreference | Meng, X., Solarana, K., Bowen, Z., Liu, J., Nagode, D. A., Sheikh, A., & Kanold, P. O. ( 2020 ). Transient subgranular hyperconnectivity to L2/3 and enhanced pairwise correlations during the critical period in the mouse auditory cortex. Cerebral Cortex, 30 ( 3 ), 1914 – 1930. https://doi.org/10.1093/cercor/bhz213 | |
dc.identifier.citedreference | Meng, X., Winkowski, D. E., Kao, J. P. Y., & Kanold, P. O. ( 2017 ). Sublaminar subdivision of mouse auditory cortex layer 2/3 based on functional translaminar connections. The Journal of Neuroscience, 37 ( 42 ), 10200 – 10214. https://doi.org/10.1523/JNEUROSCI.1361-17.2017 | |
dc.identifier.citedreference | Meuth, S. G., Bittner, S., Ulzheimer, J. C., Kleinschnitz, C., Kieseier, B. C., & Wiendl, H. ( 2010 ). Therapeutic approaches to multiple sclerosis: An update on failed, interrupted, or inconclusive trials of neuroprotective and alternative treatment strategies. BioDrugs, 24 ( 5 ), 317 – 330. https://doi.org/10.2165/11537190-000000000-00000 | |
dc.identifier.citedreference | Micheva, K. D., Wolman, D., Mensh, B. D., Pax, E., Buchanan, J., Smith, S. J., & Bock, D. D. ( 2016 ). A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. eLife, 5, 1 – 29. https://doi.org/10.7554/eLife.15784 | |
dc.identifier.citedreference | Monje, M. ( 2018 ). Myelin plasticity and nervous system function. Annual Review of Neuroscience, 41, 61 – 76. https://doi.org/10.1146/annurev-neuro-080317-061853 | |
dc.identifier.citedreference | Muralidharan, S., Dirda, N. D., Katz, E. J., Tang, C. M., Bandyopadhyay, S., Kanold, P. O., & Kao, J. P. ( 2016 ). NCM, a photolabile group for preparation of caged molecules: Synthesis and biological application. PLoS One, 11 ( 10 ), e0163937. https://doi.org/10.1371/journal.pone.0163937 | |
dc.identifier.citedreference | Narayanan, V., Cerina, M., Gobel, K., Meuth, P., Herrmann, A. M., Fernandez-Orth, J., & Pape, H. C. ( 2018 ). Impairment of frequency-specific responses associated with altered electrical activity patterns in auditory thalamus following focal and general demyelination. Experimental Neurology, 309, 54 – 66. https://doi.org/10.1016/j.expneurol.2018.07.010 | |
dc.identifier.citedreference | Peters, A., & Proskauer, C. C. ( 1980 ). Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in the rat visual cortex. A combined Golgi-electron microscope study. Journal of Neurocytology, 9 ( 2 ), 163 – 183. https://doi.org/10.1007/BF01205156 | |
dc.identifier.citedreference | Prevot, V., Rio, C., Cho, G. J., Lomniczi, A., Heger, S., Neville, C. M., & Corfas, G. ( 2003 ). Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. The Journal of Neuroscience, 23 ( 1 ), 230 – 239. | |
dc.identifier.citedreference | Qu, S., Rinehart, C., Wu, H. H., Wang, S. E., Carter, B., Xin, H., & Arteaga, C. L. ( 2006 ). Gene targeting of ErbB3 using a Cre-mediated unidirectional DNA inversion strategy. Genesis, 44 ( 10 ), 477 – 486. https://doi.org/10.1002/dvg.20243 | |
dc.identifier.citedreference | Que, L., Lukacsovich, D., Luo, W., & Foldy, C. ( 2021 ). Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus. Nature Communications, 12 ( 1 ), 108. https://doi.org/10.1038/s41467-020-20328-4 | |
dc.identifier.citedreference | Rinholm, J. E., Hamilton, N. B., Kessaris, N., Richardson, W. D., Bergersen, L. H., & Attwell, D. ( 2011 ). Regulation of oligodendrocyte development and myelination by glucose and lactate. The Journal of Neuroscience, 31 ( 2 ), 538 – 548. https://doi.org/10.1523/JNEUROSCI.3516-10.2011 | |
dc.identifier.citedreference | Rotschafer, S. E. ( 2021 ). Auditory discrimination in autism spectrum disorder. Frontiers in Neuroscience, 15, 651209. https://doi.org/10.3389/fnins.2021.651209 | |
dc.identifier.citedreference | Roy, K., Murtie, J. C., El-Khodor, B. F., Edgar, N., Sardi, S. P., Hooks, B. M., & Corfas, G. ( 2007 ). Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proceedings of the National Academy of Sciences of the United States of America, 104 ( 19 ), 8131 – 8136. https://doi.org/10.1073/pnas.0702157104 | |
dc.identifier.citedreference | Sommeijer, J. P., & Levelt, C. N. ( 2012 ). Synaptotagmin-2 is a reliable marker for parvalbumin positive inhibitory boutons in the mouse visual cortex. PLoS One, 7 ( 4 ), e35323. https://doi.org/10.1371/journal.pone.0035323 | |
dc.identifier.citedreference | Srinivasan, V., Udayakumar, N., & Anandan, K. ( 2020 ). Influence of primary auditory cortex in the characterization of autism Spectrum in young adults using brain connectivity parameters and deep belief networks: An fMRI study. Current Medical Imaging, 16 ( 9 ), 1059 – 1073. https://doi.org/10.2174/1573405615666191111142039 | |
dc.identifier.citedreference | Stankovic, K. M., & Corfas, G. ( 2003 ). Real-time quantitative RT-PCR for low-abundance transcripts in the inner ear: Analysis of neurotrophic factor expression. Hearing Research, 185 ( 1–2 ), 97 – 108. https://doi.org/10.1016/s0378-5955(03)00298-3 | |
dc.identifier.citedreference | Stedehouder, J., Brizee, D., Shpak, G., & Kushner, S. A. ( 2018 ). Activity-dependent myelination of parvalbumin interneurons mediated by axonal morphological plasticity. The Journal of Neuroscience, 38 ( 15 ), 3631 – 3642. https://doi.org/10.1523/JNEUROSCI.0074-18.2018 | |
dc.identifier.citedreference | Stedehouder, J., Brizee, D., Slotman, J. A., Pascual-Garcia, M., Leyrer, M. L., Bouwen, B. L., & Kushner, S. A. ( 2019 ). Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. eLife, 8, 1 – 28. https://doi.org/10.7554/eLife.48615 | |
dc.identifier.citedreference | Stedehouder, J., Couey, J. J., Brizee, D., Hosseini, B., Slotman, J. A., Dirven, C. M. F., & Kushner, S. A. ( 2017 ). Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans. Cerebral Cortex, 27 ( 10 ), 5001 – 5013. https://doi.org/10.1093/cercor/bhx203 | |
dc.identifier.citedreference | Stedehouder, J., & Kushner, S. A. ( 2017 ). Myelination of parvalbumin interneurons: A parsimonious locus of pathophysiological convergence in schizophrenia. Molecular Psychiatry, 22 ( 1 ), 4 – 12. https://doi.org/10.1038/mp.2016.147 | |
dc.identifier.citedreference | Steinman, G., & Mankuta, D. ( 2019 ). Molecular biology of autism’s etiology - an alternative mechanism. Medical Hypotheses, 130, 109272. https://doi.org/10.1016/j.mehy.2019.109272 | |
dc.identifier.citedreference | Suter, B. A., O’Connor, T., Iyer, V., Petreanu, L. T., Hooks, B. M., Kiritani, T., Svoboda, K., & Shepherd, G. M. ( 2010 ). Ephus: multipurpose data acquisition software for neuroscience experiments. Frontiers in Neural Circuits, 4, 100. https://doi.org/10.3389/fncir.2010.00100 | |
dc.identifier.citedreference | Tamas, G., Buhl, E. H., & Somogyi, P. ( 1997 ). Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. The Journal of Physiology, 500 ( 3 ), 715 – 738. https://doi.org/10.1113/jphysiol.1997.sp022054 | |
dc.identifier.citedreference | Ueno, H., Shoshi, C., Suemitsu, S., Usui, S., Sujiura, H., & Okamoto, M. ( 2013 ). Somatosensory and visual deprivation each decrease the density of parvalbumin neurons and their synapse terminals in the prefrontal cortex and hippocampus of mice. Acta Medica Okayama, 67 ( 3 ), 135 – 143. https://doi.org/10.18926/AMO/50406 | |
dc.identifier.citedreference | Wang, X., Lu, T., Bendor, D., & Bartlett, E. ( 2008 ). Neural coding of temporal information in auditory thalamus and cortex. Neuroscience, 154 ( 1 ), 294 – 303. https://doi.org/10.1016/j.neuroscience.2008.03.065 | |
dc.identifier.citedreference | Yang, S. M., Michel, K., Jokhi, V., Nedivi, E., & Arlotta, P. ( 2020 ). Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science, 370 ( 6523 ), 1 – 10. https://doi.org/10.1126/science.abd2109 | |
dc.identifier.citedreference | Yau, H. J., Wang, H. F., Lai, C., & Liu, F. C. ( 2003 ). Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: Preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cerebral Cortex, 13 ( 3 ), 252 – 264. https://doi.org/10.1093/cercor/13.3.252 | |
dc.identifier.citedreference | Bragina, L., Fattorini, G., Giovedi, S., Melone, M., Bosco, F., Benfenati, F., & Conti, F. ( 2011 ). Analysis of synaptotagmin, SV2, and Rab3 expression in cortical glutamatergic and GABAergic axon terminals. Frontiers in Cellular Neuroscience, 5, 32. | |
dc.identifier.citedreference | Cerina, M., Narayanan, V., Gobel, K., Bittner, S., Ruck, T., Meuth, P., & Meuth, S. G. ( 2017 ). The quality of cortical network function recovery depends on localization and degree of axonal demyelination. Brain, Behavior, and Immunity, 59, 103 – 117. https://doi.org/10.1016/j.bbi.2016.08.014 | |
dc.identifier.citedreference | Chen, S., Velardez, M. O., Warot, X., Yu, Z. X., Miller, S. J., Cros, D., & Corfas, G. ( 2006 ). Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. The Journal of Neuroscience, 26 ( 12 ), 3079 – 3086. https://doi.org/10.1523/jneurosci.3785-05.2006 | |
dc.identifier.citedreference | Benamer, N., Vidal, M., Balia, M., & Angulo, M. C. ( 2020 ). Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nature Communications, 11 ( 1 ), 5151. https://doi.org/10.1038/s41467-020-18984-7 | |
dc.identifier.citedreference | Bendor, D. ( 2015 ). The role of inhibition in a computational model of an auditory cortical neuron during the encoding of temporal information. PLoS Computational Biology, 11 ( 4 ), e1004197. https://doi.org/10.1371/journal.pcbi.1004197 | |
dc.identifier.citedreference | Dehorter, N., Ciceri, G., Bartolini, G., Lim, L., del Pino, I., & Marin, O. ( 2015 ). Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science, 349 ( 6253 ), 1216 – 1220. https://doi.org/10.1126/science.aab3415 | |
dc.identifier.citedreference | Doerflinger, N. H., Macklin, W. B., & Popko, B. ( 2003 ). Inducible site-specific recombination in myelinating cells. Genesis, 35 ( 1 ), 63 – 72. https://doi.org/10.1002/gene.10154 | |
dc.identifier.citedreference | Drake, C. T., Mulligan, K. A., Wimpey, T. L., Hendrickson, A., & Chavkin, C. ( 1991 ). Characterization of Vicia villosa agglutinin-labeled GABAergic interneurons in the hippocampal formation and in acutely dissociated hippocampus. Brain Research, 554 ( 1–2 ), 176 – 185. https://doi.org/10.1016/0006-8993(91)90186-y | |
dc.identifier.citedreference | Du, F., & Ongur, D. ( 2013 ). Probing myelin and axon abnormalities separately in psychiatric disorders using MRI techniques. Frontiers in Integrative Neuroscience, 7, 24. | |
dc.identifier.citedreference | Favuzzi, E., Marques-Smith, A., Deogracias, R., Winterflood, C. M., Sanchez-Aguilera, A., Mantoan, L., & Rico, B. ( 2017 ). Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron, 95 ( 3 ), 639 – 655, e610. https://doi.org/10.1016/j.neuron.2017.06.028 | |
dc.identifier.citedreference | Filice, F., Vorckel, K. J., Sungur, A. O., Wohr, M., & Schwaller, B. ( 2016 ). Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Molecular Brain, 9, 10. https://doi.org/10.1186/s13041-016-0192-8 | |
dc.identifier.citedreference | Foster, A. Y., Bujalka, H., & Emery, B. ( 2019 ). Axoglial interactions in myelin plasticity: Evaluating the relationship between neuronal activity and oligodendrocyte dynamics. Glia, 67 ( 11 ), 2038 – 2049. https://doi.org/10.1002/glia.23629 | |
dc.identifier.citedreference | Gerecke, K. M., Wyss, J. M., Karavanova, I., Buonanno, A., & Carroll, S. L. ( 2001 ). ErbB transmembrane tyrosine kinase receptors are differentially expressed throughout the adult rat central nervous system. The Journal of Comparative Neurology, 433 ( 1 ), 86 – 100. https://doi.org/10.1002/cne.1127 | |
dc.identifier.citedreference | Ghaffarian, N., Mesgari, M., Cerina, M., Gobel, K., Budde, T., Speckmann, E. J., & Gorji, A. ( 2016 ). Thalamocortical-auditory network alterations following cuprizone-induced demyelination. Journal of Neuroinflammation, 13 ( 1 ), 160. https://doi.org/10.1186/s12974-016-0629-0 | |
dc.identifier.citedreference | Gibson, E. M., Geraghty, A. C., & Monje, M. ( 2018 ). Bad wrap: Myelin and myelin plasticity in health and disease. Developmental Neurobiology, 78 ( 2 ), 123 – 135. https://doi.org/10.1002/dneu.22541 | |
dc.identifier.citedreference | Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., & Monje, M. ( 2014 ). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science, 344 ( 6183 ), 1252304. https://doi.org/10.1126/science.1252304 | |
dc.identifier.citedreference | Graciarena, M., Seiffe, A., Nait-Oumesmar, B., & Depino, A. M. ( 2018 ). Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Frontiers in Cellular Neuroscience, 12, 517. https://doi.org/10.3389/fncel.2018.00517 | |
dc.identifier.citedreference | Hu, H., Gan, J., & Jonas, P. ( 2014 ). Interneurons. Fast-spiking, parvalbumin(+) GABAergic interneurons: From cellular design to microcircuit function. Science, 345 ( 6196 ), 1255263. https://doi.org/10.1126/science.1255263 | |
dc.identifier.citedreference | Jones, M. K., Kraus, N., Bonacina, S., Nicol, T., Otto-Meyer, S., & Roberts, M. Y. ( 2020 ). Auditory processing differences in toddlers with autism spectrum disorder. Journal of Speech, Language, and Hearing Research, 63 ( 5 ), 1608 – 1617. https://doi.org/10.1044/2020_JSLHR-19-00061 | |
dc.identifier.citedreference | Lagler, M., Ozdemir, A. T., Lagoun, S., Malagon-Vina, H., Borhegyi, Z., Hauer, R., & Klausberger, T. ( 2016 ). Divisions of identified parvalbumin-expressing basket cells during working memory-guided decision making. Neuron, 91 ( 6 ), 1390 – 1401. https://doi.org/10.1016/j.neuron.2016.08.010 | |
dc.identifier.citedreference | Lee, Y., Morrison, B. M., Li, Y., Lengacher, S., Farah, M. H., Hoffman, P. N., & Rothstein, J. D. ( 2012 ). Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 487 ( 7408 ), 443 – 448. https://doi.org/10.1038/nature11314 | |
dc.identifier.citedreference | Li, J., Han, W., Pelkey, K. A., Duan, J., Mao, X., Wang, Y. X., & Lu, W. ( 2017 ). Molecular dissection of neuroligin 2 and Slitrk3 reveals an essential framework for GABAergic synapse development. Neuron, 96 ( 4 ), 808 – 826. https://doi.org/10.1016/j.neuron.2017.10.003 | |
dc.identifier.citedreference | Liu, J., Dietz, K., DeLoyht, J. M., Pedre, X., Kelkar, D., Kaur, J., & Casaccia, P. ( 2012 ). Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nature Neuroscience, 15 ( 12 ), 1621 – 1623. https://doi.org/10.1038/nn.3263 | |
dc.identifier.citedreference | Luth, H. J., Fischer, J., & Celio, M. R. ( 1992 ). Soybean lectin binding neurons in the visual cortex of the rat contain parvalbumin and are covered by glial nets. Journal of Neurocytology, 21 ( 3 ), 211 – 221. https://doi.org/10.1007/BF01194979 | |
dc.identifier.citedreference | Maas, D. A., Eijsink, V. D., Spoelder, M., van Hulten, J. A., De Weerd, P., Homberg, J. R., & Martens, G. J. M. ( 2020 ). Interneuron hypomyelination is associated with cognitive inflexibility in a rat model of schizophrenia. Nature Communications, 11 ( 1 ), 2329. https://doi.org/10.1038/s41467-020-16218-4 | |
dc.identifier.citedreference | Makinodan, M., Rosen, K. M., Ito, S., & Corfas, G. ( 2012 ). A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science, 337 ( 6100 ), 1357 – 1360. https://doi.org/10.1126/science.1220845 | |
dc.identifier.citedreference | Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcao, A., Xiao, L., & Castelo-Branco, G. ( 2016 ). Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 352 ( 6291 ), 1326 – 1329. https://doi.org/10.1126/science.aaf6463 | |
dc.identifier.citedreference | Mayer, C., Hafemeister, C., Bandler, R. C., Machold, R., Batista Brito, R., Jaglin, X., & Satija, R. ( 2018 ). Developmental diversification of cortical inhibitory interneurons. Nature, 555 ( 7697 ), 457 – 462. https://doi.org/10.1038/nature25999 | |
dc.identifier.citedreference | McKenzie, I. A., Ohayon, D., Li, H., de Faria, J. P., Emery, B., Tohyama, K., & Richardson, W. D. ( 2014 ). Motor skill learning requires active central myelination. Science, 346 ( 6207 ), 318 – 322. https://doi.org/10.1126/science.1254960 | |
dc.identifier.citedreference | Meng, X., Kao, J. P., Lee, H. K., & Kanold, P. O. ( 2015 ). Visual deprivation causes refinement of intracortical circuits in the auditory cortex. Cell Reports, 12 ( 6 ), 955 – 964. https://doi.org/10.1016/j.celrep.2015.07.018 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.