Show simple item record

Identification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms

dc.contributor.authorHer, Lucy
dc.contributor.authorShi, Jian
dc.contributor.authorWang, Xinwen
dc.contributor.authorHe, Bing
dc.contributor.authorSmith, Logan S.
dc.contributor.authorJiang, Hui
dc.contributor.authorZhu, Hao-Jie
dc.date.accessioned2023-01-11T16:28:36Z
dc.date.available2024-02-11 11:28:34en
dc.date.available2023-01-11T16:28:36Z
dc.date.issued2023-01
dc.identifier.citationHer, Lucy; Shi, Jian; Wang, Xinwen; He, Bing; Smith, Logan S.; Jiang, Hui; Zhu, Hao-Jie (2023). "Identification of regulatory variants of carboxylesterase 1 (CES1): A proof- of- concept study for the application of the Allele- Specific Protein Expression (ASPE) assay in identifying cis- acting regulatory genetic polymorphisms." PROTEOMICS 23(1): n/a-n/a.
dc.identifier.issn1615-9853
dc.identifier.issn1615-9861
dc.identifier.urihttps://hdl.handle.net/2027.42/175538
dc.description.abstractIt is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpharmacogenetics
dc.subject.othercarboxylesterase 1
dc.subject.otherallele-specific protein expression
dc.subject.otherregulatory variants
dc.subject.otherproteomics
dc.titleIdentification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175538/1/pmic13614.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175538/2/pmic13614_am.pdf
dc.identifier.doi10.1002/pmic.202200176
dc.identifier.sourcePROTEOMICS
dc.identifier.citedreferenceYoshimura, M., Kimura, T., Ishii, M., Ishii, K., Matsuura, T., Geshi, E., Hosokawa, M., & Muramatsu, M. ( 2008 ). Functional polymorphisms in carboxylesterase1A2 (CES1A2) gene involves specific protein 1 (Sp1) binding sites. Biochemical and Biophysical Research Communications, 369 ( 3 ), 939 – 942.
dc.identifier.citedreferenceGeshi, E., Kimura, T., Yoshimura, M., Suzuki, H., Koba, S., Sakai, T., Saito, T., Koga, A., Muramatsu, M., & Katagiri, T. ( 2005 ). A single nucleotide polymorphism in the carboxylesterase gene is associated with the responsiveness to imidapril medication and the promoter activity. Hypertension Research, 28 ( 9 ), 719 – 725. https://doi.org/10.1291/hypres.28.719
dc.identifier.citedreferenceXiao, F. Y., Luo, J. Q., Liu, M., Chen, B. L., Cao, S., Liu, Z. Q., Zhou, H.-H., Zhou, G., & Zhang, W. ( 2017 ). Effect of carboxylesterase 1 S75N on clopidogrel therapy among acute coronary syndrome patients. Scientific Reports, 7, 7244. ARTN 724. https://doi.org/10.1038/s41598-017-07736-1
dc.identifier.citedreferenceChaudhry, A. S., Prasad, B., Shirasaka, Y., Fohner, A., Finkelstein, D., Fan, Y. P., Wang, S., Wu, G., Aklillu, E., Sim, S. C., Thummel, K. E., & Schuetz, E. G. ( 2015 ). The CYP2C19 Intron 2 branch point SNP is the ancestral polymorphism contributing to the poor metabolizer phenotype in livers with CYP2C19(star)35 and CYP2C19(star)2 alleles. Drug Metabolism and Disposition, 43 ( 8 ), 1226 – 1235. https://doi.org/10.1124/dmd.115.064428
dc.identifier.citedreferenceSanford, J. C., Wang, X., Shi, J., Barrie, E. S., Wang, D., Zhu, H. J., & Sadee, W. ( 2016 ). Regulatory effects of genomic translocations at the human carboxylesterase-1 (CES1) gene locus. Pharmacogenet Genomics, 26 ( 5 ), 197 – 207. https://doi.org/10.1097/FPC.0000000000000206
dc.identifier.citedreferenceAdams, J. U. ( 2014 ). Essentials of cell biology. Nature Education.
dc.identifier.citedreferenceLaizure, S. C., Herring, V., Hu, Z., Witbrodt, K., & Parker, R. B. ( 2013 ). The role of human carboxylesterases in drug metabolism: Have we overlooked their importance? Pharmacotherapy, 33 ( 2 ), 210 – 222. https://doi.org/10.1002/phar.1194
dc.identifier.citedreferenceImai, T., Taketani, M., Shii, M., Hosokawa, M., & Chiba, K. ( 2006 ). Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metabolism and Disposition, 34 ( 10 ), 1734 – 1741. https://doi.org/10.1124/dmd.106.009381
dc.identifier.citedreferenceWard, L. D., & Kellis, M. ( 2012 ). HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Research, 40 ( Database issue ), D930 – 934. https://doi.org/10.1093/nar/gkr917
dc.identifier.citedreferenceGriffiths AJF, M. J.,, & Suzuki, D. T., et al. ( 2000 ). An introduction to genetic analysis. 7th edition. New York: Freeman, W. H.. Transcription: An overview of gene regulation in eukaryotes. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21780/
dc.identifier.citedreferencevan Heyningen, V., & Bickmore, W. ( 2013 ). Regulation from a distance: long-range control of gene expression in development and disease. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 368 ( 1620 ), 20120372. https://doi.org/10.1098/rstb.2012.0372
dc.identifier.citedreferenceShi, J., Wang, X., Lyu, L., Jiang, H., & Zhu, H. J. ( 2018 ). Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes. Drug Metabolism and Pharmacokinetics, 33 ( 2 ), 133 – 140. https://doi.org/10.1016/j.dmpk.2018.03.003
dc.identifier.citedreferenceWang, X., He, B., Shi, J., Li, Q., & Zhu, H. J. ( 2020 ). Comparative proteomics analysis of human liver microsomes and S9 fractions. Drug Metabolism and Disposition, 48 ( 1 ), 31 – 40. https://doi.org/10.1124/dmd.119.089235
dc.identifier.citedreferenceHe, B., Shi, J., Wang, X., Jiang, H., & Zhu, H. J. ( 2019 ). Label-free absolute protein quantification with data-independent acquisition. Journal of Proteomics, 200, 51 – 59. https://doi.org/10.1016/j.jprot.2019.03.005
dc.identifier.citedreferenceBarber, J., Russell, M. R., Rostami-Hodjegan, A., & Achour, B. ( 2020 ). Characterization of CYP2B6 K262R allelic variants by quantitative allele-specific proteomics using a QconCAT standard. Journal of Pharmaceutical and Biomedical Analysis, 178, 112901. https://doi.org/10.1016/j.jpba.2019.112901
dc.identifier.citedreferenceHer, L., & Zhu, H. J. ( 2020 ). Carboxylesterase 1 and precision pharmacotherapy: Pharmacogenetics and nongenetic regulators. Drug Metabolism and Disposition, 48 ( 3 ), 230 – 244. https://doi.org/10.1124/dmd.119.089680
dc.identifier.citedreferenceWang, X., Wang, G., Shi, J., Aa, J., Comas, R., Liang, Y., & Zhu, H. J. ( 2016 ). CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors. Pharmacogenomics Journal, 16 ( 3 ), 220 – 230. https://doi.org/10.1038/tpj.2015.42
dc.identifier.citedreferenceShi, J., Wang, X. W., Lyu, L. Y., Jiang, H., & Zhu, H. J. ( 2018 ). Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes. Drug Metabolism and Pharmacokinetics, 33 ( 2 ), 133 – 140. https://doi.org/10.1016/j.dmpk.2018.03.003
dc.identifier.citedreferenceHe, B., Shi, J., Wang, X., Jiang, H., & Zhu, H. J. ( 2020 ). Genome-wide pQTL analysis of protein expression regulatory networks in the human liver. BMC Biology, 18 ( 1 ), 97. https://doi.org/10.1186/s12915-020-00830-3
dc.identifier.citedreferenceYamada, S., Richardson, K., Tang, M., Halaschek-Wiener, J., Cook, V. J., Fitzgerald, J. M., Elwood, K., Marra, F., & Brooks-Wilson, A. ( 2010 ). Genetic variation in carboxylesterase genes and susceptibility to isoniazid-induced hepatotoxicity. Pharmacogenomics Journal, 10 ( 6 ), 524 – 536. tpj20105 [pii]. https://doi.org/10.1038/tpj.2010.5
dc.identifier.citedreferenceSai, K., Saito, Y., Tatewaki, N., Hosokawa, M., Kaniwa, N., Nishimaki-Mogami, T., Naito, M., Sawada, J. -. I., Shirao, K., Hamaguchi, T., Yamamoto, N., Kunitoh, H., Tamura, T., Yamada, Y., Ohe, Y., Yoshida, T., Minami, H., Ohtsu, A., Matsumura, Y., & Okuda, H. ( 2010 ). Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. British Journal of Clinical Pharmacology, 70 ( 2 ), 222 – 233. https://doi.org/10.1111/j.1365-2125.2010.03695.x
dc.identifier.citedreferenceWang, X., Rida, N., Shi, J., Wu, A., Bleske, B., & Zhu, H. J. ( 2017 ). A comprehensive functional assessment of carboxylesterase 1 nonsynonymous polymorphisms. Drug Metabolism and Disposition, https://doi.org/10.1124/dmd.117.077669
dc.identifier.citedreferenceOh, J., Lee, S., Lee, H., Cho, J. Y., Yoon, S. H., Jang, I. J., Yu, K.-S., & Lim, K. S. ( 2017 ). The novel carboxylesterase 1 variant c.662A>G may decrease the bioactivation of oseltamivir in humans. PLoS ONE, 12 ( 4 ), e0176320. ARTN e017632. https://doi.org/10.1371/journal.pone.0176320
dc.identifier.citedreferenceJohnson, K. A., Barry, E., Lambert, D., Fitzgerald, M., McNicholas, F., Kirley, A., Gill, M., Bellgrove, M. A., & Hawi, Z. ( 2013 ). Methylphenidate side effect profile is influenced by genetic variation in the attention-deficit/hyperactivity disorder-associated CES1 gene. Journal of Child and Adolescent Psychopharmacology, 23 ( 10 ), 655 – 664. https://doi.org/10.1089/cap.2013.0032
dc.identifier.citedreferenceWong, E. S., Schmitt, B. M., Kazachenka, A., Thybert, D., Redmond, A., Connor, F., Rayner, T. F., Feig, C., Ferguson-Smith, A. C., Marioni, J. C., Odom, D. T., & Flicek, P. ( 2017 ). Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution. Nature Communication, 8 ( 1 ), 1092. https://doi.org/10.1038/s41467-017-01037-x
dc.identifier.citedreferenceVan Dyke, K., Lutz, S., Mekonnen, G., Myers, C. L., & Albert, F. W. ( 2021 ). Trans-acting genetic variation affects the expression of adjacent genes. Genetics, 217 ( 3 ). https://doi.org/10.1093/genetics/iyaa051
dc.identifier.citedreferenceMontgomery, S. B., & Dermitzakis, E. T. ( 2011 ). From expression QTLs to personalized transcriptomics. Nature Reviews Genetics, 12 ( 4 ), 277 – 282. https://doi.org/10.1038/nrg2969
dc.identifier.citedreferenceMeiklejohn, C. D., Coolon, J. D., Hartl, D. L., & Wittkopp, P. J. ( 2014 ). The roles of cis- and trans-regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene expression. Genome Research, 24 ( 1 ), 84 – 95. https://doi.org/10.1101/gr.156414.113
dc.identifier.citedreferenceRao, X., Thapa, K. S., Chen, A. B., Lin, H., Gao, H., Reiter, J. L., Hargreaves, K. A., Ipe, J., Lai, D., Xuei, X., Wang, Y., Gu, H., Kapoor, M., Farris, S. P., Tischfield, J., Foroud, T., Goate, A. M., Skaar, T. C., Dayne Mayfield, R., & Liu, Y. ( 2021 ). Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders. Molecular Psychiatry, 26 ( 4 ), 1142 – 1151. https://doi.org/10.1038/s41380-019-0508-z
dc.identifier.citedreferenceShao, L., Xing, F., Xu, C., Zhang, Q., Che, J., Wang, X., Song, J., Li, X., Xiao, J., Chen, L.-L., Ouyang, Y., & Zhang, Q. ( 2019 ). Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proceedings National Academy of Science United States of America, 116 ( 12 ), 5653 – 5658. https://doi.org/10.1073/pnas.1820513116
dc.identifier.citedreferenceLiu, Z., Dong, X., & Li, Y. ( 2018 ). A genome-wide study of allele-specific expression in colorectal cancer. Frontiers in Genetics, 9, 570. https://doi.org/10.3389/fgene.2018.00570
dc.identifier.citedreferenceOhtsuki, S., Schaefer, O., Kawakami, H., Inoue, T., Liehner, S., Saito, A., Ishiguro, N., Kishimoto, W., Ludwig-Schwellinger, E., Ebner, T., & Terasaki, T. ( 2012 ). Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metabolism and Disposition, 40 ( 1 ), 83 – 92. https://doi.org/10.1124/dmd.111.042259
dc.identifier.citedreferenceBattle, A., Khan, Z., Wang, S. H., Mitrano, A., Ford, M. J., Pritchard, J. K., & Gilad, Y. ( 2015 ). Genomic variation. Impact of regulatory variation from RNA to protein. Science, 347 ( 6222 ), 664 – 667. https://doi.org/10.1126/science.1260793
dc.identifier.citedreferenceKoussounadis, A., Langdon, S. P., Um, I. H., Harrison, D. J., & Smith, V. A. ( 2015 ). Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Science Reports, 5, 10775. https://doi.org/10.1038/srep10775
dc.identifier.citedreferenceShi, J., Wang, X., Zhu, H., Jiang, H., Wang, D., Nesvizhskii, A., & Zhu, H. J. ( 2018 ). Determining Allele-Specific Protein Expression (ASPE) using a novel quantitative concatamer based proteomics method. Journal of Proteome Research, 17 ( 10 ), 3606 – 3612. https://doi.org/10.1021/acs.jproteome.8b00620
dc.identifier.citedreferenceRussell, M. R., Achour, B., McKenzie, E. A., Lopez, R., Harwood, M. D., Rostami-Hodjegan, A., & Barber, J. ( 2013 ). Alternative fusion protein strategies to express recalcitrant QconCAT proteins for quantitative proteomics of human drug metabolizing enzymes and transporters. Journal of Proteome Research, 12 ( 12 ), 5934 – 5942. https://doi.org/10.1021/pr400279u
dc.identifier.citedreferenceWang, X., Rida, N., Shi, J., Wu, A. H., Bleske, B. E., & Zhu, H. J. ( 2017 ). A comprehensive functional assessment of carboxylesterase 1 nonsynonymous polymorphisms. Drug Metabolism and Disposition, 45 ( 11 ), 1149 – 1155. https://doi.org/10.1124/dmd.117.077669
dc.identifier.citedreferenceWang, D., Zou, L., Jin, Q., Hou, J., Ge, G., & Yang, L. ( 2018 ). Human carboxylesterases: A comprehensive review. Acta Pharmaceutica Sinica B, 8 ( 5 ), 699 – 712. https://doi.org/10.1016/j.apsb.2018.05.005
dc.identifier.citedreferenceZhu, H. J., Patrick, K. S., Yuan, H. J., Wang, J. S., Donovan, J. L., DeVane, C. L., Malcolm, R., Johnson, J. A., Youngblood, G. L., Sweet, D. H., Langaee, T. Y., & Markowitz, J. S. ( 2008 ). Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: Clinical significance and molecular basis. American Journal of Human Genetics, 82 ( 6 ), 1241 – 1248. https://doi.org/10.1016/j.ajhg.2008.04.015
dc.identifier.citedreferenceLewis, J. P., Horenstein, R. B., Ryan, K., O’Connell, J. R., Gibson, Q., Mitchell, B. D., Tanner, K., Chai, S., Bliden, K. P., Tantry, U. S., Peer, C. J., Figg, W. D., Spencer, S. D., Pacanowski, M. A., Gurbel, P. A., & Shuldiner, A. R. ( 2013 ). The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenetics and Genomics, 23 ( 1 ), 1 – 8. https://doi.org/10.1097/FPC.0b013e32835aa8a2
dc.identifier.citedreferenceHosokawa, M., Furihata, T., Yaginuma, Y., Yamamoto, N., Watanabe, N., Tsukada, E., Ohhata, Y., Kobayashi, K., Satoh, T., & Chiba, K. ( 2008 ). Structural organization and characterization of the regulatory element of the human carboxylesterase (CES1A1 and CES1A2) genes. Drug Metabolism and Pharmacokinetics, 23 ( 1 ), 73 – 84. https://doi.org/10.2133/dmpk.23.73
dc.identifier.citedreferenceTanimoto, K., Kaneyasu, M., Shimokuni, T., Hiyama, K., & Nishiyama, M. ( 2007 ). Human carboxylesterase 1A2 expressed from carboxylesterase 1A1 and 1A2 genes is a potent predictor of CPT-11 cytotoxicity in vitro. Pharmacogenetics and Genomics, 17 ( 1 ), 1 – 10. https://doi.org/10.1097/01.fpc.0000230110.18957.50
dc.identifier.citedreferenceZou, J.-J., Chen, S.-L., Fan, H.-W., Tan, J., He, B.-S., & Xie, H.-G. ( 2014 ). The CES1A -816C as a genetic marker to predict greater platelet clopidogrel response in patients with percutaneous coronary intervention. Journal of Cardiovascular Pharmacology, 63 ( 2 ), 178 – 183.
dc.identifier.citedreferenceXie, C., Ding, X., Gao, J., Wang, H., Hang, Y., Zhang, H., Zhang, J., Jiang, B., & Miao, L. ( 2014 ). The effects of CES1A2 A(-816)C and CYP2C19 loss-of-function polymorphisms on clopidogrel response variability among Chinese patients with coronary heart disease. Pharmacogenetics and Genomics, 24 ( 4 ), 204 – 210. https://doi.org/10.1097/fpc.0000000000000035
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.