Identification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms
dc.contributor.author | Her, Lucy | |
dc.contributor.author | Shi, Jian | |
dc.contributor.author | Wang, Xinwen | |
dc.contributor.author | He, Bing | |
dc.contributor.author | Smith, Logan S. | |
dc.contributor.author | Jiang, Hui | |
dc.contributor.author | Zhu, Hao-Jie | |
dc.date.accessioned | 2023-01-11T16:28:36Z | |
dc.date.available | 2024-02-11 11:28:34 | en |
dc.date.available | 2023-01-11T16:28:36Z | |
dc.date.issued | 2023-01 | |
dc.identifier.citation | Her, Lucy; Shi, Jian; Wang, Xinwen; He, Bing; Smith, Logan S.; Jiang, Hui; Zhu, Hao-Jie (2023). "Identification of regulatory variants of carboxylesterase 1 (CES1): A proof- of- concept study for the application of the Allele- Specific Protein Expression (ASPE) assay in identifying cis- acting regulatory genetic polymorphisms." PROTEOMICS 23(1): n/a-n/a. | |
dc.identifier.issn | 1615-9853 | |
dc.identifier.issn | 1615-9861 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/175538 | |
dc.description.abstract | It is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | pharmacogenetics | |
dc.subject.other | carboxylesterase 1 | |
dc.subject.other | allele-specific protein expression | |
dc.subject.other | regulatory variants | |
dc.subject.other | proteomics | |
dc.title | Identification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbsecondlevel | Biological Chemistry | |
dc.subject.hlbsecondlevel | Chemical Engineering | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175538/1/pmic13614.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175538/2/pmic13614_am.pdf | |
dc.identifier.doi | 10.1002/pmic.202200176 | |
dc.identifier.source | PROTEOMICS | |
dc.identifier.citedreference | Yoshimura, M., Kimura, T., Ishii, M., Ishii, K., Matsuura, T., Geshi, E., Hosokawa, M., & Muramatsu, M. ( 2008 ). Functional polymorphisms in carboxylesterase1A2 (CES1A2) gene involves specific protein 1 (Sp1) binding sites. Biochemical and Biophysical Research Communications, 369 ( 3 ), 939 – 942. | |
dc.identifier.citedreference | Geshi, E., Kimura, T., Yoshimura, M., Suzuki, H., Koba, S., Sakai, T., Saito, T., Koga, A., Muramatsu, M., & Katagiri, T. ( 2005 ). A single nucleotide polymorphism in the carboxylesterase gene is associated with the responsiveness to imidapril medication and the promoter activity. Hypertension Research, 28 ( 9 ), 719 – 725. https://doi.org/10.1291/hypres.28.719 | |
dc.identifier.citedreference | Xiao, F. Y., Luo, J. Q., Liu, M., Chen, B. L., Cao, S., Liu, Z. Q., Zhou, H.-H., Zhou, G., & Zhang, W. ( 2017 ). Effect of carboxylesterase 1 S75N on clopidogrel therapy among acute coronary syndrome patients. Scientific Reports, 7, 7244. ARTN 724. https://doi.org/10.1038/s41598-017-07736-1 | |
dc.identifier.citedreference | Chaudhry, A. S., Prasad, B., Shirasaka, Y., Fohner, A., Finkelstein, D., Fan, Y. P., Wang, S., Wu, G., Aklillu, E., Sim, S. C., Thummel, K. E., & Schuetz, E. G. ( 2015 ). The CYP2C19 Intron 2 branch point SNP is the ancestral polymorphism contributing to the poor metabolizer phenotype in livers with CYP2C19(star)35 and CYP2C19(star)2 alleles. Drug Metabolism and Disposition, 43 ( 8 ), 1226 – 1235. https://doi.org/10.1124/dmd.115.064428 | |
dc.identifier.citedreference | Sanford, J. C., Wang, X., Shi, J., Barrie, E. S., Wang, D., Zhu, H. J., & Sadee, W. ( 2016 ). Regulatory effects of genomic translocations at the human carboxylesterase-1 (CES1) gene locus. Pharmacogenet Genomics, 26 ( 5 ), 197 – 207. https://doi.org/10.1097/FPC.0000000000000206 | |
dc.identifier.citedreference | Adams, J. U. ( 2014 ). Essentials of cell biology. Nature Education. | |
dc.identifier.citedreference | Laizure, S. C., Herring, V., Hu, Z., Witbrodt, K., & Parker, R. B. ( 2013 ). The role of human carboxylesterases in drug metabolism: Have we overlooked their importance? Pharmacotherapy, 33 ( 2 ), 210 – 222. https://doi.org/10.1002/phar.1194 | |
dc.identifier.citedreference | Imai, T., Taketani, M., Shii, M., Hosokawa, M., & Chiba, K. ( 2006 ). Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metabolism and Disposition, 34 ( 10 ), 1734 – 1741. https://doi.org/10.1124/dmd.106.009381 | |
dc.identifier.citedreference | Ward, L. D., & Kellis, M. ( 2012 ). HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Research, 40 ( Database issue ), D930 – 934. https://doi.org/10.1093/nar/gkr917 | |
dc.identifier.citedreference | Griffiths AJF, M. J.,, & Suzuki, D. T., et al. ( 2000 ). An introduction to genetic analysis. 7th edition. New York: Freeman, W. H.. Transcription: An overview of gene regulation in eukaryotes. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21780/ | |
dc.identifier.citedreference | van Heyningen, V., & Bickmore, W. ( 2013 ). Regulation from a distance: long-range control of gene expression in development and disease. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 368 ( 1620 ), 20120372. https://doi.org/10.1098/rstb.2012.0372 | |
dc.identifier.citedreference | Shi, J., Wang, X., Lyu, L., Jiang, H., & Zhu, H. J. ( 2018 ). Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes. Drug Metabolism and Pharmacokinetics, 33 ( 2 ), 133 – 140. https://doi.org/10.1016/j.dmpk.2018.03.003 | |
dc.identifier.citedreference | Wang, X., He, B., Shi, J., Li, Q., & Zhu, H. J. ( 2020 ). Comparative proteomics analysis of human liver microsomes and S9 fractions. Drug Metabolism and Disposition, 48 ( 1 ), 31 – 40. https://doi.org/10.1124/dmd.119.089235 | |
dc.identifier.citedreference | He, B., Shi, J., Wang, X., Jiang, H., & Zhu, H. J. ( 2019 ). Label-free absolute protein quantification with data-independent acquisition. Journal of Proteomics, 200, 51 – 59. https://doi.org/10.1016/j.jprot.2019.03.005 | |
dc.identifier.citedreference | Barber, J., Russell, M. R., Rostami-Hodjegan, A., & Achour, B. ( 2020 ). Characterization of CYP2B6 K262R allelic variants by quantitative allele-specific proteomics using a QconCAT standard. Journal of Pharmaceutical and Biomedical Analysis, 178, 112901. https://doi.org/10.1016/j.jpba.2019.112901 | |
dc.identifier.citedreference | Her, L., & Zhu, H. J. ( 2020 ). Carboxylesterase 1 and precision pharmacotherapy: Pharmacogenetics and nongenetic regulators. Drug Metabolism and Disposition, 48 ( 3 ), 230 – 244. https://doi.org/10.1124/dmd.119.089680 | |
dc.identifier.citedreference | Wang, X., Wang, G., Shi, J., Aa, J., Comas, R., Liang, Y., & Zhu, H. J. ( 2016 ). CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors. Pharmacogenomics Journal, 16 ( 3 ), 220 – 230. https://doi.org/10.1038/tpj.2015.42 | |
dc.identifier.citedreference | Shi, J., Wang, X. W., Lyu, L. Y., Jiang, H., & Zhu, H. J. ( 2018 ). Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes. Drug Metabolism and Pharmacokinetics, 33 ( 2 ), 133 – 140. https://doi.org/10.1016/j.dmpk.2018.03.003 | |
dc.identifier.citedreference | He, B., Shi, J., Wang, X., Jiang, H., & Zhu, H. J. ( 2020 ). Genome-wide pQTL analysis of protein expression regulatory networks in the human liver. BMC Biology, 18 ( 1 ), 97. https://doi.org/10.1186/s12915-020-00830-3 | |
dc.identifier.citedreference | Yamada, S., Richardson, K., Tang, M., Halaschek-Wiener, J., Cook, V. J., Fitzgerald, J. M., Elwood, K., Marra, F., & Brooks-Wilson, A. ( 2010 ). Genetic variation in carboxylesterase genes and susceptibility to isoniazid-induced hepatotoxicity. Pharmacogenomics Journal, 10 ( 6 ), 524 – 536. tpj20105 [pii]. https://doi.org/10.1038/tpj.2010.5 | |
dc.identifier.citedreference | Sai, K., Saito, Y., Tatewaki, N., Hosokawa, M., Kaniwa, N., Nishimaki-Mogami, T., Naito, M., Sawada, J. -. I., Shirao, K., Hamaguchi, T., Yamamoto, N., Kunitoh, H., Tamura, T., Yamada, Y., Ohe, Y., Yoshida, T., Minami, H., Ohtsu, A., Matsumura, Y., & Okuda, H. ( 2010 ). Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. British Journal of Clinical Pharmacology, 70 ( 2 ), 222 – 233. https://doi.org/10.1111/j.1365-2125.2010.03695.x | |
dc.identifier.citedreference | Wang, X., Rida, N., Shi, J., Wu, A., Bleske, B., & Zhu, H. J. ( 2017 ). A comprehensive functional assessment of carboxylesterase 1 nonsynonymous polymorphisms. Drug Metabolism and Disposition, https://doi.org/10.1124/dmd.117.077669 | |
dc.identifier.citedreference | Oh, J., Lee, S., Lee, H., Cho, J. Y., Yoon, S. H., Jang, I. J., Yu, K.-S., & Lim, K. S. ( 2017 ). The novel carboxylesterase 1 variant c.662A>G may decrease the bioactivation of oseltamivir in humans. PLoS ONE, 12 ( 4 ), e0176320. ARTN e017632. https://doi.org/10.1371/journal.pone.0176320 | |
dc.identifier.citedreference | Johnson, K. A., Barry, E., Lambert, D., Fitzgerald, M., McNicholas, F., Kirley, A., Gill, M., Bellgrove, M. A., & Hawi, Z. ( 2013 ). Methylphenidate side effect profile is influenced by genetic variation in the attention-deficit/hyperactivity disorder-associated CES1 gene. Journal of Child and Adolescent Psychopharmacology, 23 ( 10 ), 655 – 664. https://doi.org/10.1089/cap.2013.0032 | |
dc.identifier.citedreference | Wong, E. S., Schmitt, B. M., Kazachenka, A., Thybert, D., Redmond, A., Connor, F., Rayner, T. F., Feig, C., Ferguson-Smith, A. C., Marioni, J. C., Odom, D. T., & Flicek, P. ( 2017 ). Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution. Nature Communication, 8 ( 1 ), 1092. https://doi.org/10.1038/s41467-017-01037-x | |
dc.identifier.citedreference | Van Dyke, K., Lutz, S., Mekonnen, G., Myers, C. L., & Albert, F. W. ( 2021 ). Trans-acting genetic variation affects the expression of adjacent genes. Genetics, 217 ( 3 ). https://doi.org/10.1093/genetics/iyaa051 | |
dc.identifier.citedreference | Montgomery, S. B., & Dermitzakis, E. T. ( 2011 ). From expression QTLs to personalized transcriptomics. Nature Reviews Genetics, 12 ( 4 ), 277 – 282. https://doi.org/10.1038/nrg2969 | |
dc.identifier.citedreference | Meiklejohn, C. D., Coolon, J. D., Hartl, D. L., & Wittkopp, P. J. ( 2014 ). The roles of cis- and trans-regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene expression. Genome Research, 24 ( 1 ), 84 – 95. https://doi.org/10.1101/gr.156414.113 | |
dc.identifier.citedreference | Rao, X., Thapa, K. S., Chen, A. B., Lin, H., Gao, H., Reiter, J. L., Hargreaves, K. A., Ipe, J., Lai, D., Xuei, X., Wang, Y., Gu, H., Kapoor, M., Farris, S. P., Tischfield, J., Foroud, T., Goate, A. M., Skaar, T. C., Dayne Mayfield, R., & Liu, Y. ( 2021 ). Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders. Molecular Psychiatry, 26 ( 4 ), 1142 – 1151. https://doi.org/10.1038/s41380-019-0508-z | |
dc.identifier.citedreference | Shao, L., Xing, F., Xu, C., Zhang, Q., Che, J., Wang, X., Song, J., Li, X., Xiao, J., Chen, L.-L., Ouyang, Y., & Zhang, Q. ( 2019 ). Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proceedings National Academy of Science United States of America, 116 ( 12 ), 5653 – 5658. https://doi.org/10.1073/pnas.1820513116 | |
dc.identifier.citedreference | Liu, Z., Dong, X., & Li, Y. ( 2018 ). A genome-wide study of allele-specific expression in colorectal cancer. Frontiers in Genetics, 9, 570. https://doi.org/10.3389/fgene.2018.00570 | |
dc.identifier.citedreference | Ohtsuki, S., Schaefer, O., Kawakami, H., Inoue, T., Liehner, S., Saito, A., Ishiguro, N., Kishimoto, W., Ludwig-Schwellinger, E., Ebner, T., & Terasaki, T. ( 2012 ). Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metabolism and Disposition, 40 ( 1 ), 83 – 92. https://doi.org/10.1124/dmd.111.042259 | |
dc.identifier.citedreference | Battle, A., Khan, Z., Wang, S. H., Mitrano, A., Ford, M. J., Pritchard, J. K., & Gilad, Y. ( 2015 ). Genomic variation. Impact of regulatory variation from RNA to protein. Science, 347 ( 6222 ), 664 – 667. https://doi.org/10.1126/science.1260793 | |
dc.identifier.citedreference | Koussounadis, A., Langdon, S. P., Um, I. H., Harrison, D. J., & Smith, V. A. ( 2015 ). Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Science Reports, 5, 10775. https://doi.org/10.1038/srep10775 | |
dc.identifier.citedreference | Shi, J., Wang, X., Zhu, H., Jiang, H., Wang, D., Nesvizhskii, A., & Zhu, H. J. ( 2018 ). Determining Allele-Specific Protein Expression (ASPE) using a novel quantitative concatamer based proteomics method. Journal of Proteome Research, 17 ( 10 ), 3606 – 3612. https://doi.org/10.1021/acs.jproteome.8b00620 | |
dc.identifier.citedreference | Russell, M. R., Achour, B., McKenzie, E. A., Lopez, R., Harwood, M. D., Rostami-Hodjegan, A., & Barber, J. ( 2013 ). Alternative fusion protein strategies to express recalcitrant QconCAT proteins for quantitative proteomics of human drug metabolizing enzymes and transporters. Journal of Proteome Research, 12 ( 12 ), 5934 – 5942. https://doi.org/10.1021/pr400279u | |
dc.identifier.citedreference | Wang, X., Rida, N., Shi, J., Wu, A. H., Bleske, B. E., & Zhu, H. J. ( 2017 ). A comprehensive functional assessment of carboxylesterase 1 nonsynonymous polymorphisms. Drug Metabolism and Disposition, 45 ( 11 ), 1149 – 1155. https://doi.org/10.1124/dmd.117.077669 | |
dc.identifier.citedreference | Wang, D., Zou, L., Jin, Q., Hou, J., Ge, G., & Yang, L. ( 2018 ). Human carboxylesterases: A comprehensive review. Acta Pharmaceutica Sinica B, 8 ( 5 ), 699 – 712. https://doi.org/10.1016/j.apsb.2018.05.005 | |
dc.identifier.citedreference | Zhu, H. J., Patrick, K. S., Yuan, H. J., Wang, J. S., Donovan, J. L., DeVane, C. L., Malcolm, R., Johnson, J. A., Youngblood, G. L., Sweet, D. H., Langaee, T. Y., & Markowitz, J. S. ( 2008 ). Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: Clinical significance and molecular basis. American Journal of Human Genetics, 82 ( 6 ), 1241 – 1248. https://doi.org/10.1016/j.ajhg.2008.04.015 | |
dc.identifier.citedreference | Lewis, J. P., Horenstein, R. B., Ryan, K., O’Connell, J. R., Gibson, Q., Mitchell, B. D., Tanner, K., Chai, S., Bliden, K. P., Tantry, U. S., Peer, C. J., Figg, W. D., Spencer, S. D., Pacanowski, M. A., Gurbel, P. A., & Shuldiner, A. R. ( 2013 ). The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenetics and Genomics, 23 ( 1 ), 1 – 8. https://doi.org/10.1097/FPC.0b013e32835aa8a2 | |
dc.identifier.citedreference | Hosokawa, M., Furihata, T., Yaginuma, Y., Yamamoto, N., Watanabe, N., Tsukada, E., Ohhata, Y., Kobayashi, K., Satoh, T., & Chiba, K. ( 2008 ). Structural organization and characterization of the regulatory element of the human carboxylesterase (CES1A1 and CES1A2) genes. Drug Metabolism and Pharmacokinetics, 23 ( 1 ), 73 – 84. https://doi.org/10.2133/dmpk.23.73 | |
dc.identifier.citedreference | Tanimoto, K., Kaneyasu, M., Shimokuni, T., Hiyama, K., & Nishiyama, M. ( 2007 ). Human carboxylesterase 1A2 expressed from carboxylesterase 1A1 and 1A2 genes is a potent predictor of CPT-11 cytotoxicity in vitro. Pharmacogenetics and Genomics, 17 ( 1 ), 1 – 10. https://doi.org/10.1097/01.fpc.0000230110.18957.50 | |
dc.identifier.citedreference | Zou, J.-J., Chen, S.-L., Fan, H.-W., Tan, J., He, B.-S., & Xie, H.-G. ( 2014 ). The CES1A -816C as a genetic marker to predict greater platelet clopidogrel response in patients with percutaneous coronary intervention. Journal of Cardiovascular Pharmacology, 63 ( 2 ), 178 – 183. | |
dc.identifier.citedreference | Xie, C., Ding, X., Gao, J., Wang, H., Hang, Y., Zhang, H., Zhang, J., Jiang, B., & Miao, L. ( 2014 ). The effects of CES1A2 A(-816)C and CYP2C19 loss-of-function polymorphisms on clopidogrel response variability among Chinese patients with coronary heart disease. Pharmacogenetics and Genomics, 24 ( 4 ), 204 – 210. https://doi.org/10.1097/fpc.0000000000000035 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.