Show simple item record

Epigenome-wide association study of BMI in Black populations from InterGEN and GENOA

dc.contributor.authorTaylor, Jacquelyn Y.
dc.contributor.authorHuang, Yunfeng
dc.contributor.authorZhao, Wei
dc.contributor.authorWright, Michelle L.
dc.contributor.authorWang, Zeyuan
dc.contributor.authorHui, Qin
dc.contributor.authorPotts-Thompson, Stephanie
dc.contributor.authorBarcelona, Veronica
dc.contributor.authorPrescott, Laura
dc.contributor.authorYao, Yutong
dc.contributor.authorCrusto, Cindy
dc.contributor.authorKardia, Sharon L. R.
dc.contributor.authorSmith, Jennifer A.
dc.contributor.authorSun, Yan V.
dc.date.accessioned2023-01-11T16:28:52Z
dc.date.available2024-02-11 11:28:47en
dc.date.available2023-01-11T16:28:52Z
dc.date.issued2023-01
dc.identifier.citationTaylor, Jacquelyn Y.; Huang, Yunfeng; Zhao, Wei; Wright, Michelle L.; Wang, Zeyuan; Hui, Qin; Potts-Thompson, Stephanie ; Barcelona, Veronica; Prescott, Laura; Yao, Yutong; Crusto, Cindy; Kardia, Sharon L. R.; Smith, Jennifer A.; Sun, Yan V. (2023). "Epigenome- wide association study of BMI in Black populations from InterGEN and GENOA." Obesity 31(1): 243-255.
dc.identifier.issn1930-7381
dc.identifier.issn1930-739X
dc.identifier.urihttps://hdl.handle.net/2027.42/175543
dc.description.abstractObjectiveObesity is a significant public health concern across the globe. Research investigating epigenetic mechanisms related to obesity and obesity-associated conditions has identified differences that may contribute to cellular dysregulation that accelerates the development of disease. However, few studies include Black women, who experience the highest incidence of obesity and early onset of cardiometabolic disorders.MethodsThe association of BMI with epigenome-wide DNA methylation (DNAm) was examined using the 850K Illumina EPIC BeadChip in two Black populations (Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure [InterGEN], n = 239; and The Genetic Epidemiology Network of Arteriopathy [GENOA] study, n = 961) using linear mixed-effects regression models adjusted for batch effects, cell type heterogeneity, population stratification, and confounding factors.ResultsCross-sectional analysis of the InterGEN discovery cohort identified 28 DNAm sites significantly associated with BMI, 24 of which had not been previously reported. Of these, 17 were replicated using the GENOA study. In addition, a meta-analysis, including both the InterGEN and GENOA cohorts, identified 658 DNAm sites associated with BMI with false discovery rate < 0.05. In a meta-analysis of Black women, we identified 628 DNAm sites significantly associated with BMI. Using a more stringent significance threshold of Bonferroni-corrected p value 0.05, 65 and 61 DNAm sites associated with BMI were identified from the combined sex and female-only meta-analyses, respectively.ConclusionsThis study suggests that BMI is associated with differences in DNAm among women that can be identified with DNA extracted from salivary (discovery) and peripheral blood (replication) samples among Black populations across two cohorts.
dc.publisherWiley Periodicals, Inc.
dc.titleEpigenome-wide association study of BMI in Black populations from InterGEN and GENOA
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEndocrinology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/1/oby23589-sup-0001-FigureS1A.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/2/oby23589-sup-0007-TableS5.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/3/oby23589-sup-0002-FigureS1B.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/4/oby23589-sup-0006-TableS4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/5/oby23589-sup-0004-TableS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/6/oby23589-sup-0003-TableS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/7/oby23589_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/8/oby23589.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175543/9/oby23589-sup-0005-TableS3.pdf
dc.identifier.doi10.1002/oby.23589
dc.identifier.sourceObesity
dc.identifier.citedreferenceHuang D, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4: 44 - 57.
dc.identifier.citedreferencePhipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016; 32: 286 - 288.
dc.identifier.citedreferenceHuang Y, Ollikainen M, Muniandy M, et al. Identification, heritability, and relation with gene expression of novel DNA methylation loci for blood pressure. Hypertension. 2020; 76: 195 - 205.
dc.identifier.citedreferenceWang X, Pan Y, Zhu H, et al. An epigenome-wide study of obesity in African American youth and young adults: novel findings, replication in neutrophils, and relationship with gene expression. Clin Epigenetics. 2018; 10: 3. doi: 10.1186/s13148-017-0435-2
dc.identifier.citedreferenceLoucks EB, Huang YT, Agha G, et al. Epigenetic mediators between childhood socioeconomic disadvantage and mid-life body mass index: the New England Family Study. Psychosom Med. 2016; 78: 1053 - 1065.
dc.identifier.citedreferenceChu SH, Loucks EB, Kelsey KT, et al. Sex-specific epigenetic mediators between early life social disadvantage and adulthood BMI. Epigenomics. 2018; 10: 707 - 722.
dc.identifier.citedreferenceLi S, Wong EM, Bui M, et al. Inference about causation between body mass index and DNA methylation in blood from a twin family study. Int J Obes (Lond). 2019; 43: 243 - 252.
dc.identifier.citedreferenceAli O, Cerjak D, Kent JW Jr, et al. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics. 2016; 11: 699 - 707.
dc.identifier.citedreferenceKievit P, Howard JK, Badman MK, et al. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cell Metab. 2006; 4: 123 - 132.
dc.identifier.citedreferenceKvaløy K, Page CM, Holmen TL. Epigenome-wide methylation differences in a group of lean and obese women - a HUNT study. Sci Rep. 2018; 8: 16330. doi: 10.1038/s41598-018-34003-8
dc.identifier.citedreferenceSharp GC, Alfano R, Ghantous A, et al. Paternal body mass index and offspring DNA methylation: findings from the PACE consortium. Int J Epidemiol. 2021; 50: 1297 - 1315.
dc.identifier.citedreferenceSharma NK, Comeau ME, Montoya D, et al. Integrative analysis of Glucometabolic traits, adipose tissue DNA methylation, and gene expression identifies epigenetic regulatory mechanisms of insulin resistance and obesity in African Americans. Diabetes. 2020; 69: 2779 - 2793.
dc.identifier.citedreferenceCrocker KC, Domingo-Relloso A, Haack K, et al. DNA methylation and adiposity phenotypes: an epigenome-wide association study among adults in the Strong Heart Study. Int J Obes (Lond). 2020; 44: 2313 - 2322.
dc.identifier.citedreferenceHe F, Berg A, Imamura Kawasawa Y, et al. Association between DNA methylation in obesity-related genes and body mass index percentile in adolescents. Sci Rep. 2019; 9: 2079. doi: 10.1038/s41598-019-38587-7
dc.identifier.citedreferenceCampanella G, Gunter MJ, Polidoro S, et al. Epigenome-wide association study of adiposity and future risk of obesity-related diseases. Int J Obes (Lond). 2018; 42: 2022 - 2035.
dc.identifier.citedreferenceMendelson MM, Marioni RE, Joehanes R, et al. Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a Mendelian randomization approach. PLoS Med. 2017; 14: e1002215. doi: 10.1371/journal.pmed.1002215
dc.identifier.citedreferenceCrujeiras AB, Diaz-Lagares A, Sandoval J, et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients. Sci Rep. 2017; 7: 41903. doi: 10.1038/srep41903
dc.identifier.citedreferenceal Muftah WA, Al-Shafai M, Zaghlool SB, et al. Epigenetic associations of type 2 diabetes and BMI in an Arab population. Clin Epigenetics. 2016; 8: 13.
dc.identifier.citedreferenceWang S, Song J, Yang Y, Zhang Y, Wang H, Ma J. HIF3A DNA methylation is associated with childhood obesity and ALT. PLoS One. 2015; 10: e0145944. doi: 10.1371/journal.pone.0145944
dc.identifier.citedreferenceKarlsson IK, Ericsson M, Wang Y, et al. Replicating associations between DNA methylation and body mass index in a longitudinal sample of older twins. Int J Obes (Lond). 2020; 44: 1397 - 1405.
dc.identifier.citedreferenceLigthart S, Marzi C, Aslibekyan S, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016; 17: 255. doi: 10.1186/s13059-016-1119-5
dc.identifier.citedreferenceMeeks K, Henneman P, Venema A, et al. Epigenome-wide association study in whole blood on type 2 diabetes among sub-Saharan African individuals: findings from the RODAM study. Int J Epidemiol. 2019; 48: 58 - 70.
dc.identifier.citedreferenceLai CQ, Parnell LD, Smith CE, et al. Carbohydrate and fat intake associated with risk of metabolic diseases through epigenetics of CPT1A. Am J Clin Nutr. 2020; 112: 1200 - 1211.
dc.identifier.citedreferenceLiu Y, Ding J, Reynolds LM, et al. Methylomics of gene expression in human monocytes. Hum Mol Genet. 2013; 22: 5065 - 5074.
dc.identifier.citedreferenceKomaki S, Shiwa Y, Furukawa R, et al. iMETHYL: an integrative database of human DNA methylation, gene expression, and genomic variation. Hum Genome Var. 2018; 5: 18008. doi: 10.1038/hgv.2018.8
dc.identifier.citedreferenceMathur R, Hui Q, Huang Y, et al. DNA methylation markers of type 2 diabetes mellitus among male veterans with or without human immunodeficiency virus infection. J Infect Dis. 2019; 219: 1959 - 1962.
dc.identifier.citedreferenceFrazier-Wood AC, Aslibekyan S, Absher DM, et al. Methylation at CPT1A locus is associated with lipoprotein subfraction profiles. J Lipid Res. 2014; 55: 1324 - 1330.
dc.identifier.citedreferenceRichard MA, Huan T, Ligthart S, et al. DNA methylation analysis identifies loci for blood pressure regulation. Am J Hum Genet. 2017; 101: 888 - 902.
dc.identifier.citedreferenceDemerath EW, Guan W, Grove ML, et al. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet. 2015; 24: 4464 - 4479.
dc.identifier.citedreferenceGeurts YM, Dugué PA, Joo JE, et al. Novel associations between blood DNA methylation and body mass index in middle-aged and older adults. Int J Obes (Lond). 2018; 42: 887 - 896.
dc.identifier.citedreferenceWahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017; 541: 81 - 86.
dc.identifier.citedreferenceAfshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017; 377: 13 - 27.
dc.identifier.citedreferenceHales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief, no. 360. National Center for Health Statistics; 2020.
dc.identifier.citedreferenceSayols-Baixeras S, Subirana I, Fernández-Sanlés A, et al. DNA methylation and obesity traits: an epigenome-wide association study. The REGICOR study. Epigenetics. 2017; 12: 909 - 916.
dc.identifier.citedreferenceCenters for Disease Control and Prevention. About adult BMI. Updated June 3, 2022. https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
dc.identifier.citedreferenceAslibekyan S, Demerath EW, Mendelson M, et al. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring). 2015; 23: 1493 - 1501.
dc.identifier.citedreferenceCenters for Disease Control and Prevention. Causes of obesity. Updated March 21, 2022. Accessed January 15, 2021. https://www.cdc.gov/obesity/adult/causes.html
dc.identifier.citedreferenceMeeks K, Henneman P, Venema A, et al. An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study. Clin Epigenetics. 2017; 9: 103. doi: 10.1186/s13148-017-0403-x
dc.identifier.citedreferenceLi C, Wang Z, Hardy T, et al. Association of obesity with DNA methylation age acceleration in African American mothers from the InterGEN study. Int J Mol Sci. 2019; 20: 4273. doi: 10.3390/ijms20174273
dc.identifier.citedreferenceDick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014; 383: 1990 - 1998.
dc.identifier.citedreferenceLevine M, Crimmins E. Evidence of accelerated aging among African Americans and its implications for mortality. Soc Sci Med. 2014; 118: 27 - 32.
dc.identifier.citedreferenceThorpe RJ Jr, Fesahazion RG, Parker L, et al. Accelerated health declines among African Americans in the USA. J Urban Health. 2016; 93: 808 - 819.
dc.identifier.citedreferenceWilliams DR, Lawrence JA, Davis BA. Racism and health: evidence and needed research. Annu Rev Public Health. 2019; 40: 105 - 125.
dc.identifier.citedreferenceBarcelona de Mendoza V, Huang Y, Crusto CA, Sun YV, Taylor JY. Perceived racial discrimination and DNA methylation among African American women in the InterGEN study. Biol Res Nurs. 2018; 20: 145 - 152.
dc.identifier.citedreferenceDhana K, Braun K, Nano J, et al. An epigenome-wide association study of obesity-related traits. Am J Epidemiol. 2018; 187: 1662 - 1669.
dc.identifier.citedreferenceSun D, Zhang T, Su S, et al. Body mass index drives changes in DNA methylation: a longitudinal study. Circ Res. 2019; 125: 824 - 833.
dc.identifier.citedreferenceCoassin S, Hermann-Kleiter N, Haun M, et al. A genome-wide analysis of DNA methylation identifies a novel association signal for Lp(a) concentrations in the LPA promoter. PLoS One. 2020; 15: e0232073. doi: 10.1371/journal.pone.0232073
dc.identifier.citedreferenceHeitkamp M, Siegrist M, Molnos S, et al. Obesity genes and weight loss during lifestyle intervention in children with obesity. JAMA Pediatr. 2021; 175: e205142. doi: 10.1001/jamapediatrics.2020.5142
dc.identifier.citedreferenceChambers JC, Loh M, Lehne B, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015; 3: 526 - 534.
dc.identifier.citedreferenceYao C, Joehanes R, Wilson R, et al. Epigenome-wide association study of whole blood gene expression in Framingham Heart Study participants provides molecular insight into the potential role of CHRNA5 in cigarette smoking-related lung diseases. Clin Epigenetics. 2021; 13: 60. doi: 10.1186/s13148-021-01041-5
dc.identifier.citedreferenceGagnon F, Aïssi D, Carrié A, Morange PE, Trégouët DA. Robust validation of methylation levels association at CPT1A locus with lipid plasma levels. J Lipid Res. 2014; 55: 1189 - 1191.
dc.identifier.citedreferenceBarcelona V, Huang Y, Brown K, et al. Novel DNA methylation sites associated with cigarette smoking among African Americans. Epigenetics. 2019; 14: 383 - 391.
dc.identifier.citedreferenceCrusto CA, Barcelona de Mendoza V, Connell CM, Sun YV, Taylor JY. The Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure Study (InterGEN): design and methods for recruitment and psychological measures. Nurs Res. 2016; 65: 331 - 338.
dc.identifier.citedreferenceBahlo M, Stankovich J, Danoy P, et al. Saliva-derived DNA performs well in large-scale, high-density single-nucleotide polymorphism microarray studies. Cancer Epidemiol Biomarkers Prev. 2010; 19: 794 - 798.
dc.identifier.citedreferenceTaylor JY, Wright ML, Crusto CA, Sun YV. The Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure (InterGEN) study: design and methods for complex DNA analysis. Biol Res Nurs. 2016; 18: 521 - 530.
dc.identifier.citedreferenceFortin JP, Triche TJ Jr, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017; 33: 558 - 560.
dc.identifier.citedreferenceDaniels PR, Kardia SL, Hanis CL, et al. Familial aggregation of hypertension treatment and control in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Am J Med. 2004; 116: 676 - 681.
dc.identifier.citedreferenceFortin JP, Fertig E, Hansen K. shinyMethyl: interactive quality control of illumina 450k DNA methylation arrays in R. F1000Res. 2014; 3: 175. doi: 10.12688/f1000research.4680.2
dc.identifier.citedreferenceXu Z, Niu L, Li L, Taylor JA. ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res. 2016; 44: e20. doi: 10.1093/nar/gkv907
dc.identifier.citedreferenceAryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014; 30: 1363 - 1369.
dc.identifier.citedreferenceNiu L, Xu Z, Taylor JA. RCP: a novel probe design bias correction method for Illumina Methylation BeadChip. Bioinformatics. 2016; 32: 2659 - 2663.
dc.identifier.citedreferenceChen C, Grennan K, Badner J, et al. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One. 2011; 6: e17238. doi: 10.1371/journal.pone.0017238
dc.identifier.citedreferenceJohnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007; 8: 118 - 127.
dc.identifier.citedreferenceHouseman EA, Kile ML, Christiani DC, Ince TA, Kelsey KT, Marsit CJ. Reference-free deconvolution of DNA methylation data and mediation by cell composition effects. BMC Bioinformatics. 2016; 17: 259. doi: 10.1186/s12859-016-1140-4
dc.identifier.citedreferenceHouseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics. 2014; 30: 1431 - 1439.
dc.identifier.citedreferenceKlebaner D, Huang Y, Hui Q, et al. X chromosome-wide analysis identifies DNA methylation sites influenced by cigarette smoking. Clin Epigenetics. 2016; 8: 20. doi: 10.1186/s13148-016-0189-2
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995; 57: 289 - 300.
dc.identifier.citedreferenceWiller CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010; 26: 2190 - 2191.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.