Show simple item record

ISPAD Clinical Practice Consensus Guidelines 2022: Microvascular and macrovascular complications in children and adolescents with diabetes

dc.contributor.authorBjornstad, Petter
dc.contributor.authorDart, Allison
dc.contributor.authorDonaghue, Kim C.
dc.contributor.authorDost, Axel
dc.contributor.authorFeldman, Eva L.
dc.contributor.authorTan, Gavin S.
dc.contributor.authorWadwa, R. Paul
dc.contributor.authorZabeen, Bedowra
dc.contributor.authorMarcovecchio, M. Loredana
dc.date.accessioned2023-01-11T16:29:13Z
dc.date.available2024-01-11 11:29:11en
dc.date.available2023-01-11T16:29:13Z
dc.date.issued2022-12
dc.identifier.citationBjornstad, Petter; Dart, Allison; Donaghue, Kim C.; Dost, Axel; Feldman, Eva L.; Tan, Gavin S.; Wadwa, R. Paul; Zabeen, Bedowra; Marcovecchio, M. Loredana (2022). "ISPAD Clinical Practice Consensus Guidelines 2022: Microvascular and macrovascular complications in children and adolescents with diabetes." Pediatric Diabetes 23(8): 1432-1450.
dc.identifier.issn1399-543X
dc.identifier.issn1399-5448
dc.identifier.urihttps://hdl.handle.net/2027.42/175549
dc.publisherJohn Wiley & Sons A/S
dc.titleISPAD Clinical Practice Consensus Guidelines 2022: Microvascular and macrovascular complications in children and adolescents with diabetes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175549/1/pedi13444_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175549/2/pedi13444.pdf
dc.identifier.doi10.1111/pedi.13444
dc.identifier.sourcePediatric Diabetes
dc.identifier.citedreferenceTang M, Donaghue KC, Cho YH, Craig ME. Autonomic neuropathy in young people with type 1 diabetes: a systematic review. Pediatr Diabetes. 2013; 14 ( 4 ): 239 - 248. doi: 10.1111/pedi.12039
dc.identifier.citedreferenceValerio G, Mozzillo E, Zito E, et al. Alcohol consumption or cigarette smoking and cardiovascular disease risk in youth with type 1 diabetes. Acta Diabetol. 2019; 56 ( 12 ): 1315 - 1321. doi: 10.1007/s00592-019-01415-5
dc.identifier.citedreferenceBjornstad P, Pyle L, Nguyen N, et al. Achieving International Society for Pediatric and Adolescent Diabetes and American Diabetes Association clinical guidelines offers cardiorenal protection for youth with type 1 diabetes. Pediatr Diabetes. 2015; 16 ( 1 ): 22 - 30. doi: 10.1111/pedi.12252
dc.identifier.citedreferenceFlynn JT, Kaelber DC, Baker-Smith CM, et al. Clinical practice guideline for screening and Management of High Blood Pressure in children and adolescents. Pediatrics. 2017; 140 ( 3 ):e20171904. doi: 10.1542/peds.2017-1904
dc.identifier.citedreferenceTheodore RF, Broadbent J, Nagin D, et al. Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension (Dallas, Tex: 1979). 2015; 66 ( 6 ): 1108 - 1115. doi: 10.1161/hypertensionaha.115.05831
dc.identifier.citedreferenceChen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008; 117 ( 25 ): 3171 - 3180. doi: 10.1161/circulationaha.107.730366
dc.identifier.citedreferenceSoergel M, Kirschstein M, Busch C, et al. Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1141 subjects. J Pediatr. 1997; 130 ( 2 ): 178 - 184. doi: 10.1016/s0022-3476(97)70340-8
dc.identifier.citedreferenceSiervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the dietary approach to stop hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr. 2015; 113 ( 1 ): 1 - 15. doi: 10.1017/s0007114514003341
dc.identifier.citedreferenceAsghari G, Yuzbashian E, Mirmiran P, Hooshmand F, Najafi R, Azizi F. Dietary approaches to stop hypertension (DASH) dietary pattern is associated with reduced incidence of metabolic syndrome in children and adolescents. J Pediatr. 2016; 174: 178 - 184.e1. doi: 10.1016/j.jpeds.2016.03.077
dc.identifier.citedreferenceWells T, Frame V, Soffer B, et al. A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of enalapril for children with hypertension. J Clin Pharmacol. 2002; 42 ( 8 ): 870 - 880. doi: 10.1177/009127002401102786
dc.identifier.citedreferenceSoffer B, Zhang Z, Miller K, Vogt BA, Shahinfar S. A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of lisinopril for children with hypertension. Am J Hypertens. 2003; 16 ( 10 ): 795 - 800. doi: 10.1016/s0895-7061(03)00900-2
dc.identifier.citedreferenceDoran B, Guo Y, Xu J, et al. Prognostic value of fasting versus nonfasting low-density lipoprotein cholesterol levels on long-term mortality: insight from the National Health and nutrition examination survey III (NHANES-III). Circulation. 2014; 130 ( 7 ): 546 - 553. doi: 10.1161/circulationaha.114.010001
dc.identifier.citedreferenceNordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration Cutpoints-a joint consensus statement from the European atherosclerosis society and European Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem. 2016; 62 ( 7 ): 930 - 946. doi: 10.1373/clinchem.2016.258897
dc.identifier.citedreferencede Ferranti SD, de Boer IH, Fonseca V, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2014; 37 ( 10 ): 2843 - 2863. doi: 10.2337/dc14-1720
dc.identifier.citedreferenceExpert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011; 128 ( (Suppl 5) ): S213 - S256. doi: 10.1542/peds.2009-2107C
dc.identifier.citedreferenceCadario F, Prodam F, Pasqualicchio S, et al. Lipid profile and nutritional intake in children and adolescents with type 1 diabetes improve after a structured dietician training to a Mediterranean-style diet. J Endocrinol Invest. 2012; 35 ( 2 ): 160 - 168. doi: 10.3275/7755
dc.identifier.citedreferenceSalem MA, AboElAsrar MA, Elbarbary NS, ElHilaly RA, Refaat YM. Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial. Diabetol Metab Syndr. 2010; 2 ( 1 ): 47. doi: 10.1186/1758-5996-2-47
dc.identifier.citedreferenceKearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet (London, England). 2008; 371 ( 9607 ): 117 - 125. doi: 10.1016/s0140-6736(08)60104-x
dc.identifier.citedreferenceCollins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet (London, England). 2003; 361 ( 9374 ): 2005 - 2016. doi: 10.1016/s0140-6736(03)13636-7
dc.identifier.citedreferenceWiegman A, Hutten BA, de Groot E, et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA. 2004; 292 ( 3 ): 331 - 337. doi: 10.1001/jama.292.3.331
dc.identifier.citedreferenceStein EA, Illingworth DR, Kwiterovich PO Jr, et al. Efficacy and safety of lovastatin in adolescent males with heterozygous familial hypercholesterolemia: a randomized controlled trial. JAMA. 1999; 281 ( 2 ): 137 - 144. doi: 10.1001/jama.281.2.137
dc.identifier.citedreferenceLangslet G, Breazna A, Drogari E. A 3-year study of atorvastatin in children and adolescents with heterozygous familial hypercholesterolemia. J Clin lipidol. 2016; 10 ( 5 ): 1153 - 1162.e3. doi: 10.1016/j.jacl.2016.05.010
dc.identifier.citedreferenceChiesa ST, Marcovecchio ML, Benitez-Aguirre P, et al. Vascular effects of ACE (angiotensin-converting enzyme) inhibitors and statins in adolescents with type 1 diabetes. Hypertension (Dallas, Tex: 1979). 2020; 76 ( 6 ): 1734 - 1743. doi: 10.1161/hypertensionaha.120.15721
dc.identifier.citedreferenceDiabetes Control and Complications Trial Research Group. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: diabetes control and complications trial. J Pediatr. 1994; 125 ( 2 ): 177 - 188. doi: 10.1016/s0022-3476(94)70190-3
dc.identifier.citedreferenceBojestig M, Arnqvist HJ, Hermansson G, Karlberg BE, Ludvigsson J. Declining incidence of nephropathy in insulin-dependent diabetes mellitus. N Engl J Med. 1994; 330 ( 1 ): 15 - 18. doi: 10.1056/nejm199401063300103
dc.identifier.citedreferenceDownie E, Craig ME, Hing S, Cusumano J, Chan AK, Donaghue KC. Continued reduction in the prevalence of retinopathy in adolescents with type 1 diabetes: role of insulin therapy and glycemic control. Diabetes Care. 2011; 34 ( 11 ): 2368 - 2373. doi: 10.2337/dc11-0102
dc.identifier.citedreferenceMajaliwa ES, Munubhi E, Ramaiya K, et al. Survey on acute and chronic complications in children and adolescents with type 1 diabetes at Muhimbili National Hospital in Dar es Salaam, Tanzania. Diabetes Care. 2007; 30 ( 9 ): 2187 - 2192. doi: 10.2337/dc07-0594
dc.identifier.citedreferenceUrbina EM, Isom S, Bell RA, et al. Burden of cardiovascular risk factors over time and arterial stiffness in youth with type 1 diabetes mellitus: the SEARCH for diabetes in youth study. J Am Heart Assoc. 2019; 8 ( 13 ): e010150. doi: 10.1161/JAHA.118.010150
dc.identifier.citedreferenceSandahl K, Nielsen LB, Svensson J, et al. Increased mortality in a Danish cohort of young people with type 1 diabetes mellitus followed for 24 years. Diabetic Med. 2017; 34 ( 3 ): 380 - 386. doi: 10.1111/dme.13124
dc.identifier.citedreferenceMayer-Davis EJ, Lawrence JM, Dabelea D, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017; 376 ( 15 ): 1419 - 1429. doi: 10.1056/NEJMoa1610187
dc.identifier.citedreferenceTönnies T, Saydah S, Isom S, et al. 156-OR: projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2060. Diabetes. 2021; 70 ( Supplement 1 ). doi: 10.2337/db21-156-OR
dc.identifier.citedreferenceRISE Consortium, RISE Consortium Investigators. Effects of treatment of impaired glucose tolerance or recently diagnosed type 2 diabetes with metformin alone or in combination with insulin glargine on beta-cell function: comparison of responses In youth and adults. Diabetes. 2019; 68 ( 8 ): 1670 - 1680. doi: 10.2337/db19-0299
dc.identifier.citedreferenceRISE Consortium. Impact of insulin and metformin versus metformin alone on beta-cell function in youth with impaired glucose tolerance or recently diagnosed type 2 diabetes. Diabetes Care. 2018; 41 ( 8 ): 1717 - 1725. doi: 10.2337/dc18-0787
dc.identifier.citedreferenceDabelea D, Stafford JM, Mayer-Davis EJ, et al. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and Young adulthood. Jama. 2017; 317 ( 8 ): 825 - 835. doi: 10.1001/jama.2017.0686
dc.identifier.citedreferenceTODAY Study Group. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the today clinical trial. Randomized controlled trial research support, N.I.H., extramural. Diabetes Care. 2013; 36 ( 6 ): 1735 - 1741. doi: 10.2337/dc12-2420
dc.identifier.citedreferenceAl-Saeed AH, Constantino MI, Molyneaux L, et al. An inverse relationship between age of type 2 diabetes onset and complication risk and mortality: the impact of youth-onset type 2 diabetes. Diabetes Care. 2016; 39 ( 5 ): 823 - 829. doi: 10.2337/dc15-0991
dc.identifier.citedreferenceRISE Consortium. Lack of durable improvements in beta-cell function following withdrawal of pharmacological interventions in adults with impaired glucose tolerance or recently diagnosed type 2 diabetes. Diabetes Care. 2019; 42 ( 9 ): 1742 - 1751. doi: 10.2337/dc19-0556
dc.identifier.citedreferenceBarrett T, Jalaludin MY, Turan S, Hafez M, Shehadeh N. Novo Nordisk pediatric type 2 diabetes global expert P. rapid progression of type 2 diabetes and related complications in children and young people-a literature review. Pediatr Diabetes. 2020; 21 ( 2 ): 158 - 172. doi: 10.1111/pedi.12953
dc.identifier.citedreferenceToday Study Group, Bjornstad P, Drews KL, et al. Long-term complications in youth-onset type 2 diabetes. N Engl J Med. 2021; 385 ( 5 ): 416 - 426. doi: 10.1056/NEJMoa2100165
dc.identifier.citedreferenceNathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329 ( 14 ): 977 - 986. doi: 10.1056/nejm199309303291401
dc.identifier.citedreferenceLachin JM, Genuth S, Cleary P, Davis MD, Nathan DM. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000; 342 ( 6 ): 381 - 389. doi: 10.1056/nejm200002103420603
dc.identifier.citedreferenceSustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the epidemiology of diabetes interventions and complications (EDIC) study. Jama. 2003; 290 ( 16 ): 2159 - 2167. doi: 10.1001/jama.290.16.2159
dc.identifier.citedreferenceWhite NH, Sun W, Cleary PA, et al. Effect of prior intensive therapy in type 1 diabetes on 10-year progression of retinopathy in the DCCT/EDIC: comparison of adults and adolescents. Diabetes. 2010; 59 ( 5 ): 1244 - 1253. doi: 10.2337/db09-1216
dc.identifier.citedreferenceNathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005; 353 ( 25 ): 2643 - 2653. doi: 10.1056/NEJMoa052187
dc.identifier.citedreferenceIntensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016; 39 ( 5 ): 686 - 693. doi: 10.2337/dc15-1990
dc.identifier.citedreferenceSauder KA, Stafford JM, Mayer-Davis EJ, et al. Co-occurrence of early diabetes-related complications in adolescents and young adults with type 1 diabetes: an observational cohort study. Lancet Child Adolesc Health. 2019; 3 ( 1 ): 35 - 43. doi: 10.1016/S2352-4642(18)30309-2
dc.identifier.citedreferenceLind M, Pivodic A, Svensson AM, Olafsdottir AF, Wedel H, Ludvigsson J. HbA1c level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes: Swedish population based cohort study. BMJ. 2019; 366: l4894. doi: 10.1136/bmj.l4894
dc.identifier.citedreferenceAmin R, Widmer B, Prevost AT, et al. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ. 2008; 336 ( 7646 ): 697 - 701. doi: 10.1136/bmj.39478.378241.BE
dc.identifier.citedreferenceBenitez-Aguirre P, Craig ME, Cass HG, et al. Sex differences in retinal microvasculature through puberty in type 1 diabetes: are girls at greater risk of diabetic microvascular complications? Invest Ophthalmol Vis Sci. 2014; 56 ( 1 ): 571 - 577. doi: 10.1167/iovs.14-15147
dc.identifier.citedreferenceDonaghue KC, Fairchild JM, Craig ME, et al. Do all prepubertal years of diabetes duration contribute equally to diabetes complications? Diabetes Care. 2003; 26 ( 4 ): 1224 - 1229. doi: 10.2337/diacare.26.4.1224
dc.identifier.citedreferenceCho YH, Craig ME, Donaghue KC. Puberty as an accelerator for diabetes complications. Pediatr Diabetes. 2014; 15 ( 1 ): 18 - 26. doi: 10.1111/pedi.12112
dc.identifier.citedreferenceDonaghue KC, Craig ME, Chan AK, et al. Prevalence of diabetes complications 6 years after diagnosis in an incident cohort of childhood diabetes. Diabetic Med. 2005; 22 ( 6 ): 711 - 718. doi: 10.1111/j.1464-5491.2005.01527.x
dc.identifier.citedreferenceMargeirsdottir HD, Larsen JR, Brunborg C, Overby NC, Dahl-Jørgensen K. High prevalence of cardiovascular risk factors in children and adolescents with type 1 diabetes: a population-based study. Diabetologia. 2008; 51 ( 4 ): 554 - 561. doi: 10.1007/s00125-007-0921-8
dc.identifier.citedreferenceWood JR, Miller KM, Maahs DM, et al. Most youth with type 1 diabetes in the T1D exchange clinic registry do not meet American Diabetes Association or International Society for Pediatric and Adolescent Diabetes clinical guidelines. Diabetes Care. 2013; 36 ( 7 ): 2035 - 2037. doi: 10.2337/dc12-1959
dc.identifier.citedreferenceJones S, Khanolkar AR, Gevers E, Stephenson T, Amin R. Cardiovascular risk factors from diagnosis in children with type 1 diabetes mellitus: a longitudinal cohort study. BMJ Open Diabetes Res Care. 2019; 7 ( 1 ): e000625. doi: 10.1136/bmjdrc-2018-000625
dc.identifier.citedreferenceKim G, Divers J, Fino NF, et al. Trends in prevalence of cardiovascular risk factors from 2002 to 2012 among youth early in the course of type 1 and type 2 diabetes. The SEARCH for diabetes in youth study. Pediatr Diabetes. 2019; 20 ( 6 ): 693 - 701. doi: 10.1111/pedi.12846
dc.identifier.citedreferenceShah AS, Dabelea D, Talton JW, et al. Smoking and arterial stiffness in youth with type 1 diabetes: the SEARCH cardiovascular disease study. J Pediatr. 2014; 165 ( 1 ): 110 - 116. doi: 10.1016/j.jpeds.2014.02.024
dc.identifier.citedreferenceGay EC, Cai Y, Gale SM, et al. Smokers with IDDM experience excess morbidity the Colorado IDDM Registry. Diabetes Care. 1992; 15 ( 8 ): 947 - 952. doi: 10.2337/diacare.15.8.947
dc.identifier.citedreferenceLurbe E, Redon J, Kesani A, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002; 347 ( 11 ): 797 - 805. doi: 10.1056/NEJMoa013410
dc.identifier.citedreferenceMarcovecchio ML, Dalton RN, Schwarze CP, et al. Ambulatory blood pressure measurements are related to albumin excretion and are predictive for risk of microalbuminuria in young people with type 1 diabetes. Diabetologia. 2009; 52 ( 6 ): 1173 - 1181. doi: 10.1007/s00125-009-1327-6
dc.identifier.citedreferenceGallego PH, Craig ME, Hing S, Donaghue KC. Role of blood pressure in development of early retinopathy in adolescents with type 1 diabetes: prospective cohort study. BMJ. 2008; 337: a918. doi: 10.1136/bmj.a918
dc.identifier.citedreferenceStamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993; 16 ( 2 ): 434 - 444. doi: 10.2337/diacare.16.2.434
dc.identifier.citedreferenceHansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the hypertension optimal treatment (HOT) randomised trial HOT Study Group. Lancet (London, England). 1998; 351 ( 9118 ): 1755 - 1762. doi: 10.1016/s0140-6736(98)04311-6
dc.identifier.citedreferenceMarcovecchio ML, Dalton RN, Prevost AT, et al. Prevalence of abnormal lipid profiles and the relationship with the development of microalbuminuria in adolescents with type 1 diabetes. Diabetes Care. 2009; 32 ( 4 ): 658 - 663. doi: 10.2337/dc08-1641
dc.identifier.citedreferenceRaile K, Galler A, Hofer S, et al. Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care. 2007; 30 ( 10 ): 2523 - 2528. doi: 10.2337/dc07-0282
dc.identifier.citedreferenceJenkins AJ, Lyons TJ, Zheng D, et al. Lipoproteins in the DCCT/EDIC cohort: associations with diabetic nephropathy. Kidney Int. 2003; 64 ( 3 ): 817 - 828. doi: 10.1046/j.1523-1755.2003.00164.x
dc.identifier.citedreferenceSeaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989; 320 ( 18 ): 1161 - 1165. doi: 10.1056/nejm198905043201801
dc.identifier.citedreferenceMarcovecchio ML, Tossavainen PH, Acerini CL, et al. Maternal but not paternal association of ambulatory blood pressure with albumin excretion in young offspring with type 1 diabetes. Diabetes Care. 2010; 33 ( 2 ): 366 - 371. doi: 10.2337/dc09-1152
dc.identifier.citedreferenceMarcovecchio ML, Tossavainen PH, Owen K, et al. Clustering of cardio-metabolic risk factors in parents of adolescents with type 1 diabetes and microalbuminuria. Pediatr Diabetes. 2017; 18 ( 8 ): 947 - 954. doi: 10.1111/pedi.12515
dc.identifier.citedreferenceStone ML, Craig ME, Chan AK, Lee JW, Verge CF, Donaghue KC. Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care. 2006; 29 ( 9 ): 2072 - 2077. doi: 10.2337/dc06-0239
dc.identifier.citedreferencede Boer IH, Sibley SD, Kestenbaum B, et al. Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol. 2007; 18 ( 1 ): 235 - 243. doi: 10.1681/ASN.2006040394
dc.identifier.citedreferenceDorchy H, Claes C, Verougstraete C. Risk factors of developing proliferative retinopathy in type 1 diabetic patients: role of BMI. Diabetes Care. 2002; 25 ( 4 ): 798 - 799. doi: 10.2337/diacare.25.4.798
dc.identifier.citedreferenceDe Block CE, De Leeuw IH, Van Gaal LF. Impact of overweight on chronic microvascular complications in type 1 diabetic patients. Diabetes Care. 2005; 28 ( 7 ): 1649 - 1655. doi: 10.2337/diacare.28.7.1649
dc.identifier.citedreferencePurnell JQ, Braffett BH, Zinman B, et al. Impact of excessive weight gain on cardiovascular outcomes in type 1 diabetes: results from the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Care. 2017; 40 ( 12 ): 1756 - 1762. doi: 10.2337/dc16-2523
dc.identifier.citedreferenceTommerdahl KL, Baumgartner K, Schafer M, et al. Impact of obesity on measures of cardiovascular and kidney health in youth with type 1 diabetes as compared with youth with type 2 diabetes. Diabetes Care. 2021; 44 ( 3 ): 795 - 803. doi: 10.2337/dc20-1879
dc.identifier.citedreferenceMoy CS, Songer TJ, LaPorte RE, et al. Insulin-dependent diabetes mellitus, physical activity, and death. Am J Epidemiol. 1993; 137 ( 1 ): 74 - 81. doi: 10.1093/oxfordjournals.aje.a116604
dc.identifier.citedreferencePham-Short A, Donaghue KC, Ambler G, et al. Early elevation of albumin excretion rate is associated with poor gluten-free diet adherence in young people with coeliac disease and diabetes. Diabetic Med. 2014; 31 ( 2 ): 208 - 212. doi: 10.1111/dme.12329
dc.identifier.citedreferenceRohrer TR, Wolf J, Liptay S, et al. Microvascular complications in childhood-onset type 1 diabetes and celiac disease: a multicenter longitudinal analysis of 56,514 patients from the German-Austrian DPV database. Diabetes Care. 2015; 38 ( 5 ): 801 - 807. doi: 10.2337/dc14-0683
dc.identifier.citedreferenceOrchard TJ, Secrest AM, Miller RG, Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh epidemiology of diabetes complications study. Diabetologia. 2010; 53 ( 11 ): 2312 - 2319. doi: 10.1007/s00125-010-1860-3
dc.identifier.citedreferenceGroop PH, Thomas MC, Moran JL, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009; 58 ( 7 ): 1651 - 1658. doi: 10.2337/db08-1543
dc.identifier.citedreferenceLivingstone SJ, Levin D, Looker HC, et al. Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. JAMA. 2015; 313 ( 1 ): 37 - 44. doi: 10.1001/jama.2014.16425
dc.identifier.citedreferenceMogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983; 32 ( Suppl 2 ): 64 - 78. doi: 10.2337/diab.32.2.s64
dc.identifier.citedreferenceMogensen CE, Keane WF, Bennett PH, et al. Prevention of diabetic renal disease with special reference to microalbuminuria. Lancet (London, England). 1995; 346 ( 8982 ): 1080 - 1084. doi: 10.1016/s0140-6736(95)91747-0
dc.identifier.citedreferenceKidney disease: improving global outcomes diabetes work G. KDIGO 2020 clinical practice guideline for diabetes Management in Chronic Kidney Disease. Kidney Int. 2020; 98 ( 4 S ): S1 - S115. doi: 10.1016/j.kint.2020.06.019
dc.identifier.citedreferenceColombo M, McGurnaghan SJ, Bell S, et al. Predicting renal disease progression in a large contemporary cohort with type 1 diabetes mellitus. Diabetologia. 2020; 63 ( 3 ): 636 - 647. doi: 10.1007/s00125-019-05052-z
dc.identifier.citedreferenceHelve J, Sund R, Arffman M, et al. Incidence of end-stage renal disease in patients with type 1 diabetes. Diabetes Care. 2018; 41 ( 3 ): 434 - 439. doi: 10.2337/dc17-2364
dc.identifier.citedreferenceCostacou T, Orchard TJ. Cumulative kidney complication risk by 50 years of type 1 diabetes: the effects of sex, age, and calendar year at onset. Diabetes Care. 2018; 41 ( 3 ): 426 - 433. doi: 10.2337/dc17-1118
dc.identifier.citedreferenceMaahs DM, Snively BM, Bell RA, et al. Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for diabetes in youth study. Diabetes Care. 2007; 30 ( 10 ): 2593 - 2598. doi: 10.2337/dc07-0450
dc.identifier.citedreferenceKahkoska AR, Isom S, Divers J, et al. The early natural history of albuminuria in young adults with youth-onset type 1 and type 2 diabetes. J Diabetes Complications. 2018; 32 ( 12 ): 1160 - 1168. doi: 10.1016/j.jdiacomp.2018.09.018
dc.identifier.citedreferenceSteinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M. The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes. 2005; 54 ( 7 ): 2164 - 2171. doi: 10.2337/diabetes.54.7.2164
dc.identifier.citedreferenceCioana M, Deng J, Hou M, et al. Prevalence of hypertension and albuminuria in pediatric type 2 diabetes: a systematic review and meta-analysis. JAMA Netw Open. 2021; 4 ( 4 ): e216069. doi: 10.1001/jamanetworkopen.2021.6069
dc.identifier.citedreferenceWicklow BA, Sellers EAC, Sharma AK, et al. Association of Gestational Diabetes and Type 2 diabetes exposure In utero with the development of type 2 diabetes in first nations and non-first nations offspring. JAMA Pediatr. 2018; 172 ( 8 ): 724 - 731. doi: 10.1001/jamapediatrics.2018.1201
dc.identifier.citedreferenceNelson RG, Morgenstern H, Bennett PH. Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes. 1998; 47 ( 9 ): 1489 - 1493. doi: 10.2337/diabetes.47.9.1489
dc.identifier.citedreferenceHuria T, Pitama SG, Beckert L, et al. Reported sources of health inequities in indigenous peoples with chronic kidney disease: a systematic review of quantitative studies. BMC Public Health. 2021; 21 ( 1 ): 1447. doi: 10.1186/s12889-021-11180-2
dc.identifier.citedreferenceDart A. Sociodemographic determinants of chronic kidney disease in indigenous children. Pediatr Nephrol. 2022; 37 ( 3 ): 547 - 553. doi: 10.1007/s00467-021-05110-y
dc.identifier.citedreferenceNarva AS. The spectrum of kidney disease in American Indians. Kidney Int Suppl. 2003; 83: S3 - S7. doi: 10.1046/j.1523-1755.63.s83.2.x
dc.identifier.citedreferenceFiorentino M, Bolignano D, Tesar V, et al. Renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol Dial Transplant. 2017; 32 ( 1 ): 97 - 110. doi: 10.1093/ndt/gfw070
dc.identifier.citedreferenceSellers EA, Blydt-Hansen TD, Dean HJ, Gibson IW, Birk PE, Ogborn M. Macroalbuminuria and renal pathology in first nation youth with type 2 diabetes. Diabetes Care. 2009; 32 ( 5 ): 786 - 790. doi: 10.2337/dc08-1828
dc.identifier.citedreferenceGorman D, Sochett E, Daneman D. The natural history of microalbuminuria in adolescents with type 1 diabetes. J Pediatr. 1999; 134 ( 3 ): 333 - 337. doi: 10.1016/s0022-3476(99)70459-2
dc.identifier.citedreferencede Boer IH, Gao X, Cleary PA, et al. Albuminuria changes and cardiovascular and renal outcomes in type 1 diabetes: the DCCT/EDIC study. Clin J Am Soc Nephrol CJASN. 2016; 11 ( 11 ): 1969 - 1977. doi: 10.2215/cjn.02870316
dc.identifier.citedreferenceFox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet (London, England). 2012; 380 ( 9854 ): 1662 - 1673. doi: 10.1016/s0140-6736(12)61350-6
dc.identifier.citedreferenceSchultz CJ, Neil HA, Dalton RN, Dunger DB. Risk of nephropathy can be detected before the onset of microalbuminuria during the early years after diagnosis of type 1 diabetes. Diabetes Care. 2000; 23 ( 12 ): 1811 - 1815. doi: 10.2337/diacare.23.12.1811
dc.identifier.citedreferenceCho YH, Craig ME, Hing S, et al. Microvascular complications assessment in adolescents with 2- to 5-yr duration of type 1 diabetes from 1990 to 2006. Pediatr Diabetes. 2011; 12: 682 - 689. doi: 10.1111/j.1399-5448.2011.00762.x
dc.identifier.citedreferenceZabeen B, Nahar J, Islam N, Azad K, Donaghue K. Risk factors associated with microalbuminuria in children and adolescents with diabetes in Bangladesh. Indian J Endocrinol metabol. 2018; 22 ( 1 ): 85 - 88. doi: 10.4103/ijem.IJEM_269_17
dc.identifier.citedreferenceMarcovecchio ML, Woodside J, Jones T, et al. Adolescent type 1 diabetes cardio-renal intervention trial (AdDIT): urinary screening and baseline biochemical and cardiovascular assessments. Diabetes Care. 2014; 37 ( 3 ): 805 - 813. doi: 10.2337/dc13-1634
dc.identifier.citedreferenceMarcovecchio ML, Chiesa ST, Armitage J, et al. Renal and cardiovascular risk according to tertiles of urinary albumin-to-creatinine ratio: the adolescent type 1 diabetes cardio-renal intervention trial (AdDIT). Diabetes Care. 2018; 41 ( 9 ): 1963 - 1969. doi: 10.2337/dc18-1125
dc.identifier.citedreferenceBenitez-Aguirre PZ, Marcovecchio ML, Chiesa ST, et al. Urinary albumin/creatinine ratio tertiles predict risk of diabetic retinopathy progression: a natural history study from the adolescent cardio-renal intervention trial (AdDIT) observational cohort. Diabetologia. 2022; 65 ( 5 ): 872 - 878. doi: 10.1007/s00125-022-05661-1
dc.identifier.citedreferenceLambers Heerspink HJ, Gansevoort RT, Brenner BM, et al. Comparison of different measures of urinary protein excretion for prediction of renal events. J Am Soc Nephrol. 2010; 21 ( 8 ): 1355 - 1360. doi: 10.1681/asn.2010010063
dc.identifier.citedreferenceViberti G. Etiology and prognostic significance of albuminuria in diabetes. Diabetes Care. 1988; 11 ( 10 ): 840 - 845. doi: 10.2337/diacare.11.10.840
dc.identifier.citedreferenceMogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984; 310 ( 6 ): 356 - 360. doi: 10.1056/nejm198402093100605
dc.identifier.citedreferenceKrolewski AS, Niewczas MA, Skupien J, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014; 37 ( 1 ): 226 - 234. doi: 10.2337/dc13-0985
dc.identifier.citedreferencePenno G, Russo E, Garofolo M, et al. Evidence for two distinct phenotypes of chronic kidney disease in individuals with type 1 diabetes mellitus. Diabetologia. 2017; 60 ( 6 ): 1102 - 1113. doi: 10.1007/s00125-017-4251-1
dc.identifier.citedreferencePerkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1. Diabetes. 2003; 348 ( 23 ): 2285 - 2293. doi: 10.1056/NEJMoa021835
dc.identifier.citedreferenceBoettcher C, Utsch B, Galler A, et al. Estimated glomerular filtration rates calculated by new and old equations in children and adolescents with type 1 diabetes-what to do with the results? Front Endocrinol (Lausanne). 2020; 11: 52. doi: 10.3389/fendo.2020.00052
dc.identifier.citedreferencePierce CB, Muñoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int. 2021; 99 ( 4 ): 948 - 956. doi: 10.1016/j.kint.2020.10.047
dc.identifier.citedreferenceGaebe K, White CA, Mahmud FH, et al. Evaluation of novel glomerular filtration rate estimation equations in adolescents and young adults with type 1 diabetes. J Diabetes Complications. 2022; 36 ( 1 ): 108081. doi: 10.1016/j.jdiacomp.2021.108081
dc.identifier.citedreferenceDart AB, McGavock J, Sharma A, Chateau D, Schwartz GJ, Blydt-Hansen T. Estimating glomerular filtration rate in youth with obesity and type 2 diabetes: the iCARE study equation. Pediatr Nephrol. 2019; 34 ( 9 ): 1565 - 1574. doi: 10.1007/s00467-019-04250-6
dc.identifier.citedreferenceBakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation hypertension and diabetes Executive committees working group. Am J Kidney Dis. 2000; 36 ( 3 ): 646 - 661. doi: 10.1053/ajkd.2000.16225
dc.identifier.citedreferenceParving HH, Andersen AR, Smidt UM, Hommel E, Mathiesen ER, Svendsen PA. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J (Clin Res Ed). 1987; 294 ( 6585 ): 1443 - 1447. doi: 10.1136/bmj.294.6585.1443
dc.identifier.citedreferenceAndrésdóttir G, Jensen ML, Carstensen B, et al. Improved prognosis of diabetic nephropathy in type 1 diabetes. Kidney Int. 2015; 87 ( 2 ): 417 - 426. doi: 10.1038/ki.2014.206
dc.identifier.citedreferenceLv J, Perkovic V, Foote CV, Craig ME, Craig JC, Strippoli GF. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev. 2012; 12: Cd004136. doi: 10.1002/14651858.CD004136.pub3
dc.identifier.citedreferenceStrippoli GF, Craig M, Craig JC. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev. 2005;( 4 ): Cd004136. doi: 10.1002/14651858.CD004136.pub2
dc.identifier.citedreferenceWu HY, Huang JW, Lin HJ, et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and bayesian network meta-analysis. BMJ. 2013; 347: f6008. doi: 10.1136/bmj.f6008
dc.identifier.citedreferenceStrippoli GF, Bonifati C, Craig M, Navaneethan SD, Craig JC. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev. 2006; 2006 ( 4 ): Cd006257. doi: 10.1002/14651858.Cd006257
dc.identifier.citedreferenceMauer M, Zinman B, Gardiner R, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009; 361 ( 1 ): 40 - 51.
dc.identifier.citedreferenceBangalore S, Fakheri R, Toklu B, Messerli FH. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ. 2016; 352: i438. doi: 10.1136/bmj.i438
dc.identifier.citedreferenceShould all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med. 2001; 134 ( 5 ): 370 - 379. doi: 10.7326/0003-4819-134-5-200103060-00009
dc.identifier.citedreferenceIzzo JL Jr, Weir MR. Angiotensin-converting enzyme inhibitors. J Clin Hypertens (Greenwich). 2011; 13 ( 9 ): 667 - 675. doi: 10.1111/j.1751-7176.2011.00508.x
dc.identifier.citedreferenceStrippoli GF, Craig M, Deeks JJ, Schena FP, Craig JC. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ. 2004; 329 ( 7470 ): 828. doi: 10.1136/bmj.38237.585000.7C
dc.identifier.citedreferenceBullo M, Tschumi S, Bucher BS, Bianchetti MG, Simonetti GD. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: a systematic review. Hypertension (Dallas, Tex: 1979). 2012; 60 ( 2 ): 444 - 450. doi: 10.1161/hypertensionaha.112.196352
dc.identifier.citedreferenceMarcovecchio ML, Chiesa ST, Bond S, et al. ACE inhibitors and statins in adolescents with type 1 diabetes. N Engl J Med. 2017; 377 ( 18 ): 1733 - 1745. doi: 10.1056/NEJMoa1703518
dc.identifier.citedreferenceBhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2020; 384: 129 - 139. doi: 10.1056/NEJMoa2030186
dc.identifier.citedreferenceNeuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019; 7 ( 11 ): 845 - 854. doi: 10.1016/S2213-8587(19)30256-6
dc.identifier.citedreferenceMann JFE, Orsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017; 377 ( 9 ): 839 - 848. doi: 10.1056/NEJMoa1616011
dc.identifier.citedreferenceWanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016; 375 ( 4 ): 323 - 334. doi: 10.1056/NEJMoa1515920
dc.identifier.citedreferenceKlein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008; 115 ( 11 ): 1859 - 1868. doi: 10.1016/j.ophtha.2008.08.023
dc.identifier.citedreferenceDonaghue KC, Wadwa RP, Dimeglio LA, et al. ISPAD clinical practice consensus guidelines 2014. Microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes. 2014; 15 ( Suppl 20 ): 257 - 269. doi: 10.1111/pedi.12180
dc.identifier.citedreferenceWilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003; 110 ( 9 ): 1677 - 1682. doi: 10.1016/s0161-6420(03)00475-5
dc.identifier.citedreferenceWong TY, Cheung CM, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers. 2016; 2: 16012. doi: 10.1038/nrdp.2016.12
dc.identifier.citedreferenceLeCaire TJ, Palta M, Klein R, Klein BE, Cruickshanks KJ. Assessing progress in retinopathy outcomes in type 1 diabetes: comparing findings from the Wisconsin diabetes registry study and the Wisconsin epidemiologic study of diabetic retinopathy. Diabetes Care. 2013; 36 ( 3 ): 631 - 637. doi: 10.2337/dc12-0863
dc.identifier.citedreferenceElgemai E, Zeriban N, Soliman S. Prevalence of diabetic retinopathy among children with type 1 diabetes mellitus treated by insulin. Delta J Opthalmol. 2018; 19 ( 3 ): 196 - 200. doi: 10.4103/djo.Djo_15_18
dc.identifier.citedreferenceFerm ML, DeSalvo DJ, Prichett LM, Sickler JK, Wolf RM, Channa R. Clinical and demographic factors associated with diabetic retinopathy among Young patients with diabetes. JAMA Netw Open. 2021; 4 ( 9 ): e2126126. doi: 10.1001/jamanetworkopen.2021.26126
dc.identifier.citedreferenceZabeen B, Khaled MZ, Husain L, et al. Risk factors associated with retinopathy in young people with type 1 diabetes in Bangladesh. Endocrinol Diabetes Metabol. 2021; 4 ( 2 ): e00197. doi: 10.1002/edm2.197
dc.identifier.citedreferenceBratina N, Auzanneau M, Birkebaek N, et al. Differences in retinopathy prevalence and associated risk factors across 11 countries in three continents: a cross-sectional study of 156,090 children and adolescents with type 1 diabetes. Pediatr Diabetes. 2022; 23: 1656 - 1664.
dc.identifier.citedreferenceHuo B, Steffen AT, Swan K, Sikes K, Weinzimer SA, Tamborlane WV. Clinical outcomes and cost-effectiveness of retinopathy screening in youth with type 1 diabetes. Diabetes Care. 2007; 30 ( 2 ): 362 - 363. doi: 10.2337/dc06-1824
dc.identifier.citedreferenceGeloneck MM, Forbes BJ, Shaffer J, Ying GS, Binenbaum G. Ocular complications in children with diabetes mellitus. Ophthalmology. 2015; 122 ( 12 ): 2457 - 2464. doi: 10.1016/j.ophtha.2015.07.010
dc.identifier.citedreferenceBeauchamp G, Boyle CT, Tamborlane WV, et al. Treatable diabetic retinopathy is extremely rare among pediatric T1D exchange clinic registry participants. Diabetes Care. 2016; 39 ( 12 ): e218 - e219. doi: 10.2337/dc16-1691
dc.identifier.citedreferenceWang SY, Andrews CA, Herman WH, Gardner TW, Stein JD. Incidence and risk factors for developing diabetic retinopathy among youths with type 1 or type 2 diabetes throughout the United States. Ophthalmology. 2017; 124 ( 4 ): 424 - 430. doi: 10.1016/j.ophtha.2016.10.031
dc.identifier.citedreferenceWang SY, Andrews CA, Gardner TW, Wood M, Singer K, Stein JD. Ophthalmic screening patterns among youths with diabetes enrolled in a large US managed care network. JAMA Ophthalmol. 2017; 135 ( 5 ): 432 - 438. doi: 10.1001/jamaophthalmol.2017.0089
dc.identifier.citedreferenceScanlon PH, Stratton IM, Bachmann MO, Jones C, Leese GP. Risk of diabetic retinopathy at first screen in children at 12 and 13 years of age. Diabet Med. 2016; 33 ( 12 ): 1655 - 1658. doi: 10.1111/dme.13263
dc.identifier.citedreferenceEarly worsening of diabetic retinopathy in the diabetes control and complications trial. Arch Ophthalmol (Chicago, Ill: 1960). 1998; 116 ( 7 ): 874 - 886. doi: 10.1001/archopht.116.7.874
dc.identifier.citedreferenceDaneman D, Drash AL, Lobes LA, Becker DJ, Baker LM, Travis LB. Progressive retinopathy with improved control in diabetic dwarfism (Mauriac’s syndrome). Diabetes Care. 1981; 4 ( 3 ): 360 - 365. doi: 10.2337/diacare.4.3.360
dc.identifier.citedreferenceAxer-Siegel R, Hod M, Fink-Cohen S, et al. Diabetic retinopathy during pregnancy. Ophthalmology. 1996; 103 ( 11 ): 1815 - 1819. doi: 10.1016/s0161-6420(96)30421-1
dc.identifier.citedreferenceBest RM, Chakravarthy U. Diabetic retinopathy in pregnancy. Br J Ophthalmol. 1997; 81 ( 3 ): 249 - 251. doi: 10.1136/bjo.81.3.249
dc.identifier.citedreferenceBragge P, Gruen RL, Chau M, Forbes A, Taylor HR. Screening for presence or absence of diabetic retinopathy: a meta-analysis. Arch Ophthalmol (Chicago, Ill: 1960). 2011; 129 ( 4 ): 435 - 444. doi: 10.1001/archophthalmol.2010.319
dc.identifier.citedreferenceSilva PS, Cavallerano JD, Haddad NM, et al. Peripheral lesions identified on Ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology. 2015; 122 ( 5 ): 949 - 956. doi: 10.1016/j.ophtha.2015.01.008
dc.identifier.citedreferenceDSW T, GSW T, Agrawal R, et al. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol. 2017; 135 ( 4 ): 306 - 312. doi: 10.1001/jamaophthalmol.2016.5877
dc.identifier.citedreferenceChua J, Sim R, Tan B, et al. Optical coherence tomography angiography in diabetes and diabetic retinopathy. J Clin Med. 2020; 9 ( 6 ):1723. doi: 10.3390/jcm9061723
dc.identifier.citedreferenceAllen DW, Liew G, Cho YH, et al. Thirty-year time trends in diabetic retinopathy and macular edema in youth with type 1 diabetes. Diabetes Care. 2022; 45: 2247 - 2254. doi: 10.2337/dc21-1652
dc.identifier.citedreferenceGraves LE, Pryke AF, Cho YH, et al. Sight-threatening retinopathy in nine adolescents with early onset type 1 diabetes. Pediatr Diabetes. 2021; 22 ( 8 ): 1129 - 1134. doi: 10.1111/pedi.13265
dc.identifier.citedreferenceDCCT EDIC Research Group, Nathan DM, Bebu I, et al. Frequency of evidence-based screening for retinopathy in type 1 diabetes. N Engl J Med. 2017; 376 ( 16 ): 1507 - 1516. doi: 10.1056/NEJMoa1612836
dc.identifier.citedreferenceJanuszewski AS, Velayutham V, Benitez-Aguirre PZ, et al. Optimal frequency of retinopathy screening in adolescents with type 1 diabetes-Markov modeling approach based on 30 years of data. Diabetes Care. 2022; 45: 2383 - 2390. doi: 10.2337/dc22-0071
dc.identifier.citedreferenceMohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. Jama. 2007; 298 ( 8 ): 902 - 916. doi: 10.1001/jama.298.8.902
dc.identifier.citedreferenceMitchell P, Foran S. Guidelines for the Management of Diabetic Retinopathy Australian Diabetes Society for the Department of Health and Ageing; 2008. https://www.optometry.org.au/wp-content/uploads/Professional_support/Guidelines/nhmrc_diabetic_guidelines.pdf
dc.identifier.citedreferencePhotocoagulation treatment of proliferative diabetic retinopathy. Clinical application of diabetic retinopathy study (DRS) findings, DRS report number 8. The diabetic retinopathy study research group. Ophthalmology. 1981; 88 ( 7 ): 583 - 600.
dc.identifier.citedreferenceFerris F. Early photocoagulation in patients with either type I or type II diabetes. Trans Am Ophthalmol Soc. 1996; 94: 505 - 537.
dc.identifier.citedreferenceSivaprasad S, Prevost AT, Vasconcelos JC, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet (London, England). 2017; 389 ( 10085 ): 2193 - 2203. doi: 10.1016/s0140-6736(17)31193-5
dc.identifier.citedreferenceGross JG, Glassman AR, Liu D, et al. Five-year outcomes of Panretinal photocoagulation vs Intravitreous Ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol. 2018; 136 ( 10 ): 1138 - 1148. doi: 10.1001/jamaophthalmol.2018.3255
dc.identifier.citedreferenceMaguire MG, Liu D, Glassman AR, et al. Visual field changes over 5 years in patients treated with Panretinal photocoagulation or Ranibizumab for proliferative diabetic retinopathy. JAMA Ophthalmol. 2020; 138 ( 3 ): 285 - 293. doi: 10.1001/jamaophthalmol.2019.5939
dc.identifier.citedreferenceDiabetic Retinopathy Clinical Research Network, Wells JA, Glassman AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015; 372 ( 13 ): 1193 - 1203. doi: 10.1056/NEJMoa1414264
dc.identifier.citedreferenceTan GS, Cheung N, Simo R, Cheung GC, Wong TY. Diabetic macular oedema. Lancet Diabetes Endocrinol. 2017; 5 ( 2 ): 143 - 155. doi: 10.1016/S2213-8587(16)30052-3
dc.identifier.citedreferenceBoyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014; 121 ( 10 ): 1904 - 1914. doi: 10.1016/j.ophtha.2014.04.024
dc.identifier.citedreferenceŠimunović M, Paradžik M, Škrabić R, Unić I, Bućan K, Škrabić V. Cataract as early ocular complication in children and adolescents with type 1 diabetes mellitus. Int J Endocrinol. 2018; 2018: 6763586. doi: 10.1155/2018/6763586
dc.identifier.citedreferenceFeldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019; 5 ( 1 ): 41. doi: 10.1038/s41572-019-0092-1
dc.identifier.citedreferenceFeldman EL, Nave KA, Jensen TS, Bennett DLH. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron. 2017; 93 ( 6 ): 1296 - 1313. doi: 10.1016/j.neuron.2017.02.005
dc.identifier.citedreferenceCallaghan BC, Gallagher G, Fridman V, Feldman EL. Diabetic neuropathy: what does the future hold? Diabetologia. 2020; 63 ( 5 ): 891 - 897. doi: 10.1007/s00125-020-05085-9
dc.identifier.citedreferenceJensen TS, Karlsson P, Gylfadottir SS, et al. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain. 2021; 144 ( 6 ): 1632 - 1645. doi: 10.1093/brain/awab079
dc.identifier.citedreferenceAkinci G, Savelieff MG, Gallagher G, Callaghan BC, Feldman EL. Diabetic neuropathy in children and youth: new and emerging risk factors. Pediatr Diabetes. 2021; 22 ( 2 ): 132 - 147. doi: 10.1111/pedi.13153
dc.identifier.citedreferenceNelson D, Mah JK, Adams C, et al. Comparison of conventional and non-invasive techniques for the early identification of diabetic neuropathy in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2006; 7 ( 6 ): 305 - 310. doi: 10.1111/j.1399-5448.2006.00208.x
dc.identifier.citedreferenceMeh D, Denislic M. Subclinical neuropathy in type I diabetic children. Electroencephalogr Clin Neurophysiol. 1998; 109 ( 3 ): 274 - 280. doi: 10.1016/s0924-980x(98)00017-4
dc.identifier.citedreferenceMaser RE, Steenkiste AR, Dorman JS, et al. Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh epidemiology of diabetes complications study. Diabetes. 1989; 38 ( 11 ): 1456 - 1461. doi: 10.2337/diab.38.11.1456
dc.identifier.citedreferenceTesfaye S, Stevens LK, Stephenson JM, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM complications study. Diabetologia. 1996; 39 ( 11 ): 1377 - 1384. doi: 10.1007/s001250050586
dc.identifier.citedreferenceJaiswal M, Divers J, Dabelea D, et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes: SEARCH for diabetes in youth study. Diabetes Care. 2017; 40 ( 9 ): 1226 - 1232. doi: 10.2337/dc17-0179
dc.identifier.citedreferencePettitt DJ, Talton J, Dabelea D, et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014; 37 ( 2 ): 402 - 408. doi: 10.2337/dc13-1838
dc.identifier.citedreferenceHamman RF, Bell RA, Dabelea D, et al. The SEARCH for diabetes in youth study: rationale, findings, and future directions. Diabetes Care. 2014; 37 ( 12 ): 3336 - 3344. doi: 10.2337/dc14-0574
dc.identifier.citedreferenceDabelea D, Mayer-Davis EJ, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. Jama. 2014; 311 ( 17 ): 1778 - 1786. doi: 10.1001/jama.2014.3201
dc.identifier.citedreferenceRisk factors for diabetic peripheral neuropathy in adolescents and Young adults with type 2 diabetes: results from the TODAY study. Diabetes Care. 2021;45(5):1065-1072. doi: 10.2337/dc21-1074
dc.identifier.citedreferencePop-Busui R, Low PA, Waberski BH, et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the diabetes control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC). Circulation. 2009; 119 ( 22 ): 2886 - 2893. doi: 10.1161/circulationaha.108.837369
dc.identifier.citedreferenceVinik AI, Casellini C, Parson HK, Colberg SR, Nevoret ML. Cardiac autonomic neuropathy in diabetes: a predictor of Cardiometabolic events. Front Neurosci. 2018; 12: 591. doi: 10.3389/fnins.2018.00591
dc.identifier.citedreferenceJaiswal M, Urbina EM, Wadwa RP, et al. Reduced heart rate variability among youth with type 1 diabetes: the SEARCH CVD study. Diabetes Care. 2013; 36 ( 1 ): 157 - 162. doi: 10.2337/dc12-0463
dc.identifier.citedreferenceJaiswal M, Divers J, Urbina EM, et al. Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: the SEARCH for diabetes in youth cohort study. Pediatr Diabetes. 2018; 19 ( 4 ): 680 - 689. doi: 10.1111/pedi.12633
dc.identifier.citedreferenceVistisen D, Andersen GS, Hulman A, et al. A validated prediction model for end-stage kidney disease in type 1 diabetes. Diabetes Care. 2021; 44 ( 4 ): 901 - 907. doi: 10.2337/dc20-2586
dc.identifier.citedreference13. Children and adolescents: standards of medical Care in Diabetes-2020. Diabetes Care. 2020; 43 ( Suppl 1 ): S163 - s182. doi: 10.2337/dc20-S013
dc.identifier.citedreferenceDonaghue KC, Marcovecchio ML, Wadwa RP, et al. ISPAD clinical practice consensus guidelines 2018: microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes. 2018; 19 ( Suppl 27 ): 262 - 274. doi: 10.1111/pedi.12742
dc.identifier.citedreferencePop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017; 40 ( 1 ): 136 - 154. doi: 10.2337/dc16-2042
dc.identifier.citedreferenceHirschfeld G, von Glischinski M, Blankenburg M, Zernikow B. Screening for peripheral neuropathies in children with diabetes: a systematic review. Pediatrics. 2014; 133 ( 5 ): e1324 - e1330. doi: 10.1542/peds.2013-3645
dc.identifier.citedreferenceBraffett BH, Gubitosi-Klug RA, Albers JW, et al. Risk factors for diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2020; 69 ( 5 ): 1000 - 1010. doi: 10.2337/db19-1046
dc.identifier.citedreferenceFeldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994; 17 ( 11 ): 1281 - 1289. doi: 10.2337/diacare.17.11.1281
dc.identifier.citedreferenceBlankenburg M, Boekens H, Hechler T, et al. Reference values for quantitative sensory testing in children and adolescents: developmental and gender differences of somatosensory perception. Pain. 2010; 149 ( 1 ): 76 - 88. doi: 10.1016/j.pain.2010.01.011
dc.identifier.citedreferenceBlankenburg M, Kraemer N, Hirschfeld G, et al. Childhood diabetic neuropathy: functional impairment and non-invasive screening assessment. DiabetMed. 2012; 29 ( 11 ): 1425 - 1432. doi: 10.1111/j.1464-5491.2012.03685.x
dc.identifier.citedreferenceBowling FL, Abbott CA, Harris WE, Atanasov S, Malik RA, Boulton AJ. A pocket-sized disposable device for testing the integrity of sensation in the outpatient setting. Diabet Med. 2012; 29 ( 12 ): 1550 - 1552. doi: 10.1111/j.1464-5491.2012.03730.x
dc.identifier.citedreferenceHöliner I, Haslinger V, Lütschg J, et al. Validity of the neurological examination in diagnosing diabetic peripheral neuropathy. Pediatr Neurol. 2013; 49 ( 3 ): 171 - 177. doi: 10.1016/j.pediatrneurol.2013.03.014
dc.identifier.citedreferenceWalter-Höliner I, Barbarini DS, Lütschg J, et al. High prevalence and incidence of diabetic peripheral neuropathy in children and adolescents with type 1 diabetes mellitus: results from a five-year prospective cohort study. Pediatr Neurol. 2018; 80: 51 - 60. doi: 10.1016/j.pediatrneurol.2017.11.017
dc.identifier.citedreferenceLee SS, Han HS, Kim H. A 5-yr follow-up nerve conduction study for the detection of subclinical diabetic neuropathy in children with newly diagnosed insulin-dependent diabetes mellitus. Pediatr Diabetes. 2010; 11 ( 8 ): 521 - 528. doi: 10.1111/j.1399-5448.2009.00636.x
dc.identifier.citedreferenceHyllienmark L, Ludvigsson J, Brismar T. Normal values of nerve conduction in children and adolescents. Electroencephalogr Clin Neurophysiol. 1995; 97 ( 5 ): 208 - 214. doi: 10.1016/0013-4694(95)00092-d
dc.identifier.citedreferenceAgochukwu-Mmonu N, Pop-Busui R, Wessells H, Sarma AV. Autonomic neuropathy and urologic complications in diabetes. Auton Neurosci. 2020; 229: 102736. doi: 10.1016/j.autneu.2020.102736
dc.identifier.citedreferenceEyre EL, Fisher JP, Smith EC, Wagenmakers AJ, Matyka KA. Ethnicity and long-term heart rate variability in children. Arch Dis Child. 2013; 98 ( 4 ): 292 - 298. doi: 10.1136/archdischild-2012-302266
dc.identifier.citedreferenceSelvarajah D, Kar D, Khunti K, et al. Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019; 7 ( 12 ): 938 - 948. doi: 10.1016/s2213-8587(19)30081-6
dc.identifier.citedreferenceKrishnasamy S, Abell TL. Diabetic gastroparesis: principles and current trends in management. Diabetes Ther. 2018; 9 ( Suppl 1 ): 1 - 42. doi: 10.1007/s13300-018-0454-9
dc.identifier.citedreferenceSharma H, Lencioni M, Narendran P. Cardiovascular disease in type 1 diabetes. Cardiovasc Endocrinol Metab. 2019; 8: 28 - 34.
dc.identifier.citedreferenceBjornstad P, Donaghue KC, Maahs DM. Macrovascular disease and risk factors in youth with type 1 diabetes: time to be more attentive to treatment? Lancet Diabetes Endocrinol. 2018; 6 ( 10 ): 809 - 820. doi: 10.1016/S2213-8587(18)30035-4
dc.identifier.citedreferenceRawshani A, Sattar N, Franzén S, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet (London, England). 2018; 392 ( 10146 ): 477 - 486. doi: 10.1016/s0140-6736(18)31506-x
dc.identifier.citedreferenceGiannopoulou EZ, Doundoulakis I, Antza C, et al. Subclinical arterial damage in children and adolescents with type 1 diabetes: a systematic review and meta-analysis. Pediatr Diabetes. 2019; 20 ( 6 ): 668 - 677. doi: 10.1111/pedi.12874
dc.identifier.citedreferenceHarrington J, Peña AS, Gent R, Hirte C, Couper J. Aortic intima media thickness is an early marker of atherosclerosis in children with type 1 diabetes mellitus. J Pediatr. 2010; 156 ( 2 ): 237 - 241. doi: 10.1016/j.jpeds.2009.08.036
dc.identifier.citedreferenceJärvisalo MJ, Putto-Laurila A, Jartti L, et al. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes. 2002; 51 ( 2 ): 493 - 498. doi: 10.2337/diabetes.51.2.493
dc.identifier.citedreferenceJärvisalo MJ, Raitakari M, Toikka JO, et al. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004; 109 ( 14 ): 1750 - 1755. doi: 10.1161/01.Cir.0000124725.46165.2c
dc.identifier.citedreferenceLarsen J, Brekke M, Sandvik L, Arnesen H, Hanssen KF, Dahl-Jorgensen K. Silent coronary atheromatosis in type 1 diabetic patients and its relation to long-term glycemic control. Diabetes. 2002; 51 ( 8 ): 2637 - 2641.
dc.identifier.citedreferenceMaahs DM, Dabelea D, D’Agostino RB Jr, et al. Glucose control predicts 2-year change in lipid profile in youth with type 1 diabetes. J Pediatr. 2013; 162 ( 1 ): 101 - 7 e1. doi: 10.1016/j.jpeds.2012.06.006
dc.identifier.citedreferenceGuy J, Ogden L, Wadwa RP, et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for diabetes in youth case-control study. Diabetes Care. 2009; 32 ( 3 ): 416 - 420. doi: 10.2337/dc08-1775
dc.identifier.citedreferenceJenkins AJ, Lyons TJ, Zheng D, et al. Serum lipoproteins in the diabetes control and complications trial/epidemiology of diabetes intervention and complications cohort: associations with gender and glycemia. Diabetes Care. 2003; 26 ( 3 ): 810 - 818. doi: 10.2337/diacare.26.3.810
dc.identifier.citedreferenceIdzior-Walus B, Mattock MB, Solnica B, Stevens L, Fuller JH. Factors associated with plasma lipids and lipoproteins in type 1 diabetes mellitus: the EURODIAB IDDM complications study. Diabet Med. 2001; 18 ( 10 ): 786 - 796. doi: 10.1046/j.0742-3071.2001.00571.x
dc.identifier.citedreferenceEdqvist J, Rawshani A, Adiels M, et al. BMI, mortality, and cardiovascular outcomes in type 1 diabetes: findings against an obesity paradox. Diabetes Care. 2019; 42 ( 7 ): 1297 - 1304. doi: 10.2337/dc18-1446
dc.identifier.citedreferenceFlokas ME, Zeymo A, Mete M, Anhalt H, Rother KI, Gourgari E. Overweight and obese children with optimal control in the T1D exchange registry: how are they different from lean children with optimal control? J Diabetes Complications. 2020; 34 ( 4 ): 107513. doi: 10.1016/j.jdiacomp.2019.107513
dc.identifier.citedreferencePhelan H, Foster NC, Schwandt A, et al. Longitudinal trajectories of BMI z-score: an international comparison of 11,513 Australian, American and German/Austrian/Luxembourgian youth with type 1 diabetes. Pediatr Obes. 2020; 15 ( 2 ): e12582. doi: 10.1111/ijpo.12582
dc.identifier.citedreferenceAdeva-Andany MM, Martínez-Rodríguez J, González-Lucán M, Fernández-Fernández C. Insulin resistance is a cardiovascular risk factor in humans. Diabet Metabol Syndrome Clin Res Rev. 2019; 13: 1449 - 1455.
dc.identifier.citedreferenceMiller RG, Costacou T, Orchard TJ. Risk factor modeling for cardiovascular disease in type 1 diabetes in the Pittsburgh epidemiology of diabetes complications (EDC) study: a comparison with the diabetes control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC). Diabetes. 2019; 68 ( 2 ): 409 - 419. doi: 10.2337/db18-0515
dc.identifier.citedreferenceMarcovecchio ML, Dalton RN, Daneman D, et al. A new strategy for vascular complications in young people with type 1 diabetes mellitus. Nat Rev Endocrinol. 2019; 15 ( 7 ): 429 - 435. doi: 10.1038/s41574-019-0198-2
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.