Show simple item record

Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration

dc.contributor.authorHalperin-Sternfeld, Michal
dc.contributor.authorPokhojaev, Ariel
dc.contributor.authorGhosh, Moumita
dc.contributor.authorRachmiel, Dana
dc.contributor.authorKannan, Raha
dc.contributor.authorGrinberg, Itzhak
dc.contributor.authorAsher, Moshe
dc.contributor.authorAviv, Moran
dc.contributor.authorMa, Peter X.
dc.contributor.authorBinderman, Itzhak
dc.contributor.authorSarig, Rachel
dc.contributor.authorAdler-Abramovich, Lihi
dc.date.accessioned2023-02-01T18:56:54Z
dc.date.available2024-03-01 13:56:48en
dc.date.available2023-02-01T18:56:54Z
dc.date.issued2023-02
dc.identifier.citationHalperin-Sternfeld, Michal ; Pokhojaev, Ariel; Ghosh, Moumita; Rachmiel, Dana; Kannan, Raha; Grinberg, Itzhak; Asher, Moshe; Aviv, Moran; Ma, Peter X.; Binderman, Itzhak; Sarig, Rachel; Adler-Abramovich, Lihi (2023). "Immunomodulatory fibrous hyaluronic acid- Fmoc- diphenylalanine- based hydrogel induces bone regeneration." Journal of Clinical Periodontology 50(2): 200-219.
dc.identifier.issn0303-6979
dc.identifier.issn1600-051X
dc.identifier.urihttps://hdl.handle.net/2027.42/175732
dc.description.abstractAimTo investigate the potential of an ultrashort aromatic peptide hydrogelator integrated with hyaluronic acid (HA) to serve as a scaffold for bone regeneration.Materials and MethodsFluorenylmethyloxycarbonyl-diphenylalanine (FmocFF)/HA hydrogel was prepared and characterized using microscopy and rheology. Osteogenic differentiation of MC3T3-E1 preosteoblasts was investigated using Alizarin red, alkaline phosphatase and calcium deposition assays. In vivo, 5-mm-diameter calvarial critical-sized defects were prepared in 20 Sprague–Dawley rats and filled with either FmocFF/HA hydrogel, deproteinized bovine bone mineral, FmocFF/Alginate hydrogel or left unfilled. Eight weeks after implantation, histology and micro-computed tomography analyses were performed. Immunohistochemistry was performed in six rats to assess the hydrogel’s immunomodulatory effect.ResultsA nanofibrous FmocFF/HA hydrogel with a high storage modulus of 46 KPa was prepared. It supported osteogenic differentiation of MC3T3-E1 preosteoblasts and facilitated calcium deposition. In vivo, the hydrogel implantation resulted in approximately 93% bone restoration. It induced bone deposition not only around the margins, but also generated bony islets along the defect. Elongated M2 macrophages lining at the periosteum–hydrogel interface were observed 1 week after implantation. After 3 weeks, these macrophages were dispersed through the regenerating tissue surrounding the newly formed bone.ConclusionsFmocFF/HA hydrogel can serve as a cell-free, biomimetic, immunomodulatory scaffold for bone regeneration.
dc.publisherWiley Periodicals, Inc.
dc.publisherBlackwell Publishing Ltd
dc.subject.otherhyaluronic acid
dc.subject.otherimmunomodulation
dc.subject.otherself-assembling peptides
dc.subject.otherbone regeneration
dc.subject.otherbiomaterials
dc.titleImmunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175732/1/jcpe13725_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175732/2/jcpe13725.pdf
dc.identifier.doi10.1111/jcpe.13725
dc.identifier.sourceJournal of Clinical Periodontology
dc.identifier.citedreferenceShao, A., Ling, Y., Xu, L., Liu, S., Fan, C., Wang, Z., Xu, B., & Wang, C. ( 2018 ). Xenogeneic bone matrix immune risk assessment using GGTA1 knockout mice. Artificial Cells, Nanomedicine, and Biotechnology, 46, S359 – S369.
dc.identifier.citedreferenceRuppert, S. M., Hawn, T. R., Arrigoni, A., Wight, T. N., & Bollyky, P. L. ( 2014 ). Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunologic Research, 58, 186 – 192.
dc.identifier.citedreferenceSeib, F. P., Prewitz, M., Werner, C., & Bornhauser, M. ( 2009 ). Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). Biochemical and Biophysical Research Communications, 389, 663 – 667.
dc.identifier.citedreferenceSilber, J. S., Anderson, D. G., Daffner, S. D., Brislin, B. T., Leland, J. M., Hilibrand, A. S., Vaccaro, A. R., & Albert, T. J. ( 2003 ). Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine, 28, 134 – 139.
dc.identifier.citedreferenceSmith, A. M., Williams, R. J., Tang, C., Coppo, P., Collins, R. F., Turner, M. L., Saiani, A., & Ulijn, R. V. ( 2008 ). Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Advanced Materials, 20, 37 – 41.
dc.identifier.citedreferenceSohn, J.-Y., Park, J.-C., Um, Y.-J., Jung, U.-W., Kim, C.-S., Cho, K.-S., & Choi, S.-H. ( 2010 ). Spontaneous healing capacity of rabbit cranial defects of various sizes. Journal of Periodontal & Implant Science, 40, 180 – 187.
dc.identifier.citedreferenceStevens, M. M. ( 2008 ). Biomaterials for bone tissue engineering. Materials Today, 11, 18 – 25.
dc.identifier.citedreferenceSudo, H., Kodama, H. A., Amagai, Y., Yamamoto, S., & Kasai, S. ( 1983 ). In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. The Journal of Cell Biology, 96, 191 – 198.
dc.identifier.citedreferenceTikhonova, T., Rovnyagina, N., Arnon, Z., Yakimov, B., Efremov, Y., Cohen-Gerassi, D., Kosheleva, N., Drachev, V., Svistunov, A., Timashev, P., Adler-Abramovich, L., Shirshin, E., & Halperin-Sternfeld, M. ( 2021 ). Mechanical enhancement and kinetics regulation of Fmoc-diphenylalanine hydrogels by thioflavin T. Angewandte Chemie (International Ed. in English), 60, 25339 – 25345.
dc.identifier.citedreferenceTiwari, S., & Bahadur, P. ( 2019 ). Modified hyaluronic acid based materials for biomedical applications. International Journal of Biological Macromolecules, 121, 556 – 571.
dc.identifier.citedreferenceTournier, P., Guicheux, J., Paré, A., Maltezeanu, A., Blondy, T., Veziers, J., Vignes, C., André, M., Lesoeur, J., Barbeito, A., Bardonnet, R., Blanquart, C., Corre, P., Geoffroy, V., Weiss, P., & Gaudin, A. ( 2021 ). A partially demineralized allogeneic bone graft: In vitro osteogenic potential and preclinical evaluation in two different intramembranous bone healing models. Scientific Reports, 11, 4907.
dc.identifier.citedreferenceTurley, E. A., Noble, P. W., & Bourguignon, L. Y. ( 2002 ). Signaling properties of hyaluronan receptors. The Journal of Biological Chemistry, 277, 4589 – 4592.
dc.identifier.citedreferenceVacanti, J. P., & Langer, R. ( 1999 ). Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet, 354 ( Suppl. 1 ), SI32 – SI34.
dc.identifier.citedreferenceVegners, R., Shestakova, I., Kalvinsh, I., Ezzell, R. M., & Janmey, P. A. ( 1995 ). Use of a gel-forming dipeptide derivative as a carrier for antigen presentation. Journal of Peptide Science, 1, 371 – 378.
dc.identifier.citedreferenceWang, L., Gong, C., Yuan, X., & Wei, G. ( 2019 ). Controlling the self-assembly of biomolecules into functional nanomaterials through internal interactions and external stimulations: A review. Nanomaterials, 9, 285.
dc.identifier.citedreferenceWang, Y., Zhang, Z., Xu, L., Li, X., & Chen, H. ( 2013 ). Hydrogels of halogenated Fmoc-short peptides for potential application in tissue engineering. Colloids and Surfaces. B, Biointerfaces, 104, 163 – 168.
dc.identifier.citedreferenceWende, F. J., Gohil, S., Mojarradi, H., Gerfaud, T., Nord, L. I., Karlsson, A., Boiteau, J.-G., Kenne, A. H., & Sandström, C. ( 2016 ). Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods. Carbohydrate Polymers, 136, 1348 – 1357.
dc.identifier.citedreferenceWitzler, M., Buchner, D., Shoushrah, S. H., Babczyk, P., Baranova, J., Witzleben, S., Tobiasch, E., & Schulze, M. ( 2019 ). Polysaccharide-based systems for targeted stem cell differentiation and bone regeneration. Biomolecules, 9, 840.
dc.identifier.citedreferenceWoo, K. M., Chen, V. J., & Ma, P. X. ( 2003 ). Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. Journal of Biomedical Materials Research. Part A, 67, 531 – 537.
dc.identifier.citedreferenceWoo, K. M., Jun, J. H., Chen, V. J., Seo, J., Baek, J. H., Ryoo, H. M., Kim, G. S., Somerman, M. J., & Ma, P. X. ( 2007 ). Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials, 28, 335 – 343.
dc.identifier.citedreferenceYadav, N., Chauhan, M. K., & Chauhan, V. S. ( 2020 ). Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomaterials Science, 8, 84 – 100.
dc.identifier.citedreferenceYamamoto, H., Tobisawa, Y., Inubushi, T., Irie, F., Ohyama, C., & Yamaguchi, Y. ( 2017 ). A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell-surface hyaluronidase. The Journal of Biological Chemistry, 292, 7304 – 7313.
dc.identifier.citedreferenceYang, H. C., Park, H. C., Quan, H., & Kim, Y. ( 2018 ). Immunomodulation of biomaterials by controlling macrophage polarization. Adv. Exp. Med. Biol., 1064, 197 – 206.
dc.identifier.citedreferenceYoshida, H., Nagaoka, A., Kusaka-Kikushima, A., Tobiishi, M., Kawabata, K., Sayo, T., Sakai, S., Sugiyama, Y., Enomoto, H., & Okada, Y. ( 2013 ). KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. PNAS, 110, 5612 – 5617.
dc.identifier.citedreferenceZhai, P., Peng, X., Li, B., Liu, Y., Sun, H., & Li, X. ( 2020 ). The application of hyaluronic acid in bone regeneration. International Journal of Biological Macromolecules, 151, 1224 – 1239.
dc.identifier.citedreferenceZhang, H., Yang, L., Yang, X. G., Wang, F., Feng, J. T., Hua, K. C., Li, Q., & Hu, Y. C. ( 2019 ). Demineralized bone matrix carriers and their clinical applications: An overview. Orthopaedic Surgery, 11, 725 – 737.
dc.identifier.citedreferenceZhang, R., & Ma, P. X. ( 2000 ). Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. Journal of Biomedical Materials Research. Part A, 52, 430 – 438.
dc.identifier.citedreferenceZhang, S. ( 2003 ). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21, 1171 – 1178.
dc.identifier.citedreferenceZhang, S., Marini, D. M., Hwang, W., & Santoso, S. ( 2002 ). Design of nanostructured biological materials through self-assembly of peptides and proteins. Current Opinion in Chemical Biology, 6, 865 – 871.
dc.identifier.citedreferenceZhang, Y., Gu, H., Yang, Z., & Xu, B. ( 2003 ). Supramolecular hydrogels respond to ligand-receptor interaction. Journal of the American Chemical Society, 125, 13680 – 13681.
dc.identifier.citedreferenceZhao, X.-B., Chen, Y.-P., Tan, M., Zhao, L., Zhai, Y.-Y., Sun, Y.-L., Gong, Y., Feng, X.-Q., Du, J., & Fan, Y.-B. ( 2021 ). Extracellular matrix stiffness regulates DNA methylation by PKCα-dependent nuclear transport of DNMT3L. Advanced Healthcare Materials, 10, 2100821.
dc.identifier.citedreferenceZhou, M., Smith, A. M., Das, A. K., Hodson, N. W., Collins, R. F., Ulijn, R. V., & Gough, J. E. ( 2009 ). Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials, 30, 2523 – 2530.
dc.identifier.citedreferenceZuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. ( 2001 ). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7, 211 – 228.
dc.identifier.citedreferenceAdams, D. J., Butler, M. F., Frith, W. J., Kirkland, M., Mullen, L., & Sanderson, P. ( 2009 ). A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter, 5, 1856 – 1862.
dc.identifier.citedreferenceAdams, D. J., Mullen, L. M., Berta, M., Chen, L., & Frith, W. J. ( 2010 ). Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides. Soft Matter, 6, 1971 – 1980.
dc.identifier.citedreferenceAlakpa, E. V., Jayawarna, V., Lampel, A., Burgess, K. V., West, C. C., Bakker, S. C. J., Roy, S., Javid, N., Fleming, S., Lamprou, D. A., Yang, J., Miller, A., Urquhart, A. J., Frederix, P. W. J. M., Hunt, N. T., Péault, B., Ulijn, R. V., & Dalby, M. J. ( 2016 ). Tunable supramolecular hydrogels for selection of lineage-guiding metabolites in stem cell cultures. Chem, 1, 298 – 319.
dc.identifier.citedreferenceAviv, M., Halperin-Sternfeld, M., Grigoriants, I., Buzhansky, L., Mironi-Harpaz, I., Seliktar, D., Einav, S., Nevo, Z., & Adler-Abramovich, L. ( 2018 ). Improving the mechanical rigidity of hyaluronic acid by integration of a supramolecular peptide matrix. ACS Applied Materials & Interfaces, 10, 41883 – 41891.
dc.identifier.citedreferenceBai, X., Gao, M., Syed, S., Zhuang, J., Xu, X., & Zhang, X. Q. ( 2018 ). Bioactive hydrogels for bone regeneration. Bioactive Materials, 3, 401 – 417.
dc.identifier.citedreferenceBeniash, E., Hartgerink, J. D., Storrie, H., Stendahl, J. C., & Stupp, S. I. ( 2005 ). Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomaterialia, 1, 387 – 397.
dc.identifier.citedreferenceBoerckel, J. D., Uhrig, B. A., Willett, N. J., Huebsch, N., & Guldberg, R. E. ( 2011 ). Mechanical regulation of vascular growth and tissue regeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 108, E674 – E680.
dc.identifier.citedreferenceBrito, A., Abul-Haija, Y. M., da Costa, D. S., Novoa-Carballal, R., Reis, R. L., Ulijn, R. V., Pires, R. A., & Pashkuleva, I. ( 2019 ). Minimalistic supramolecular proteoglycan mimics by co-assembly of aromatic peptide and carbohydrate amphiphiles. Chemical Science, 10, 2385 – 2390.
dc.identifier.citedreferenceBrown, B. N., Ratner, B. D., Goodman, S. B., Amar, S., & Badylak, S. F. ( 2012 ). Macrophage polarization: An opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials, 33, 3792 – 3802.
dc.identifier.citedreferenceCelik, E., Bayram, C., Akcapinar, R., Turk, M., & Denkbas, E. B. ( 2016 ). The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks. Materials Science & Engineering. C, Materials for Biological Applications, 66, 221 – 229.
dc.identifier.citedreferenceChakraborty, P., Roy, B., Bairi, P., & Nandi, A. K. ( 2012 ). Improved mechanical and photophysical properties of chitosan incorporated folic acid gel possessing the characteristics of dye and metal ion absorption. Journal of Materials Chemistry, 22, 20291 – 20298.
dc.identifier.citedreferenceCheng, W., Ding, Z., Zheng, X., Lu, Q., Kong, X., Zhou, X., Lu, G., & Kaplan, D. L. ( 2020 ). Injectable hydrogel systems with multiple biophysical and biochemical cues for bone regeneration. Biomaterials Science, 8, 2537 – 2548.
dc.identifier.citedreferenceChircov, C., Grumezescu, A. M., & Bejenaru, L. E. ( 2018 ). Hyaluronic acid-based scaffolds for tissue engineering. Romanian Journal of Morphology and Embryology, 59, 71 – 76.
dc.identifier.citedreferenceCsoka, A. B., Frost, G. I., & Stern, R. ( 2001 ). The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biology, 20, 499 – 508.
dc.identifier.citedreferenceDebnath, S., Roy, S., Abul-Haija, Y. M., Frederix, P., Ramalhete, S. M., Hirst, A. R., Javid, N., Hunt, N. T., Kelly, S. M., Angulo, J., Khimyak, Y. Z., & Ulijn, R. V. ( 2019 ). Tunable supramolecular gel properties by varying thermal history. Chemistry, 25, 7881 – 7887.
dc.identifier.citedreferenceDeidda, G., Jonnalagadda, S. V. R., Spies, J. W., Ranella, A., Mossou, E., Forsyth, V. T., Mitchell, E. P., Bowler, M. W., Tamamis, P., & Mitraki, A. ( 2017 ). Self-assembled amyloid peptides with Arg-Gly-asp (RGD) motifs as scaffolds for tissue engineering. ACS Biomaterials Science & Engineering, 3, 1404 – 1416.
dc.identifier.citedreferenceDerkus, B., Okesola, B. O., Barrett, D. W., D’Este, M., Chowdhury, T. T., Eglin, D., & Mata, A. ( 2020 ). Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro. Acta Biomaterialia, 109, 82 – 94.
dc.identifier.citedreferenceDi Foggia, M., Taddei, P., Torreggiani, A., Dettin, M., & Tinti, A. ( 2011 ). Self-assembling peptides for biomedical applications: IR and Raman spectroscopies for the study of secondary structure. Proteomics Research Journal, 2, 231.
dc.identifier.citedreferenceDiaferia, C., Gianolio, E., & Accardo, A. ( 2019 ). Peptide-based building blocks as structural elements for supramolecular Gd-containing MRI contrast agents. Journal of Peptide Science, 25, e3157.
dc.identifier.citedreferenceDiaferia, C., Morelli, G., & Accardo, A. ( 2019 ). Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. Journal of Materials Chemistry B, 7, 5142 – 5155.
dc.identifier.citedreferenceDiaferia, C., Netti, F., Ghosh, M., Sibillano, T., Giannini, C., Morelli, G., Adler-Abramovich, L., & Accardo, A. ( 2020 ). Bi-functional peptide-based 3D hydrogel-scaffolds. Soft Matter, 16, 7006 – 7017.
dc.identifier.citedreferenceDou, X. Q., & Feng, C. L. ( 2017 ). Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture. Advanced Materials, 29, 1604062.
dc.identifier.citedreferenceDraper, E. R., & Adams, D. J. ( 2019 ). Controlling the assembly and properties of low-molecular-weight hydrogelators. Langmuir, 35, 6506 – 6521.
dc.identifier.citedreferenceDuchamp de Lageneste, O., Julien, A., Abou-Khalil, R., Frangi, G., Carvalho, C., Cagnard, N., Cordier, C., Conway, S. J., & Colnot, C. ( 2018 ). Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nature Communications, 9, 773.
dc.identifier.citedreferenceEliezer, M., Imber, J. C., Sculean, A., Pandis, N., & Teich, S. ( 2019 ). Hyaluronic acid as adjunctive to non-surgical and surgical periodontal therapy: A systematic review and meta-analysis. Clinical Oral Investigations, 23, 3423 – 3435.
dc.identifier.citedreferenceEngler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. ( 2006 ). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677 – 689.
dc.identifier.citedreferenceFichman, G., & Gazit, E. ( 2014 ). Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomaterialia, 10, 1671 – 1682.
dc.identifier.citedreferenceFranz, S., Rammelt, S., Scharnweber, D., & Simon, J. C. ( 2011 ). Immune responses to implants – A review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 32, 6692 – 6709.
dc.identifier.citedreferenceGallo, E., Diaferia, C., Gregorio, E. D., Morelli, G., Gianolio, E., & Accardo, A. ( 2020 ). Peptide-based soft hydrogels modified with gadolinium complexes as MRI contrast agents. Pharmaceuticals, 13, 19.
dc.identifier.citedreferenceGhosh, M., Halperin-Sternfeld, M., Grigoriants, I., Lee, J., Nam, K. T., & Adler-Abramovich, L. ( 2017 ). Arginine-presenting peptide hydrogels decorated with hydroxyapatite as biomimetic scaffolds for bone regeneration. Biomacromolecules, 18, 3541 – 3550.
dc.identifier.citedreferenceGhosh, M., Halperin-Sternfeld, M., Grinberg, I., & Adler-Abramovich, L. ( 2019 ). Injectable alginate-peptide composite hydrogel as a scaffold for bone tissue regeneration. Nanomaterials, 9, 497.
dc.identifier.citedreferenceGong, X., Branford-White, C., Tao, L., Li, S., Quan, J., Nie, H., & Zhu, L. ( 2016 ). Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel. Materials Science & Engineering. C, Materials for Biological Applications, 58, 478 – 486.
dc.identifier.citedreferenceHalperin-Sternfeld, M., Ghosh, M., Sevostianov, R., Grigoriants, I., & Adler-Abramovich, L. ( 2017 ). Molecular co-assembly as a strategy for synergistic improvement of the mechanical properties of hydrogels. Chemical Communications, 53, 9586 – 9589.
dc.identifier.citedreferenceHalperin-Sternfeld, M., Netanel Liberman, G., Kannan, R., Netti, F., Ma, P. X., Arad, S. M., & Adler-Abramovich, L. ( 2022 ). Thixotropic red microalgae sulfated polysaccharide-peptide composite hydrogels as scaffolds for tissue engineering. Biomedicine, 10, 1388.
dc.identifier.citedreferenceHao, S., Meng, J., Zhang, Y., Liu, J., Nie, X., Wu, F., Yang, Y., Wang, C., Gu, N., & Xu, H. ( 2017 ). Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials, 140, 16 – 25.
dc.identifier.citedreferenceHartgerink, J. D., Beniash, E., & Stupp, S. I. ( 2002 ). Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proceedings of the National Academy of Sciences of the United States of America, 99, 5133 – 5138.
dc.identifier.citedreferenceHemshekhar, M., Thushara, R. M., Chandranayaka, S., Sherman, L. S., Kemparaju, K., & Girish, K. S. ( 2016 ). Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 86, 917 – 928.
dc.identifier.citedreferenceHeslop, J. A., Hammond, T. G., Santeramo, I., Tort Piella, A., Hopp, I., Zhou, J., Baty, R., Graziano, E. I., Proto Marco, B., Caron, A., Skold, P., Andrews, P. W., Baxter, M. A., Hay, D. C., Hamdam, J., Sharpe, M. E., Patel, S., Jones, D. R., Reinhardt, J., … Park, B. K. ( 2015 ). Concise review: Workshop review: Understanding and assessing the risks of stem cell-based therapies. Stem Cells Translational Medicine, 4, 389 – 400.
dc.identifier.citedreferenceHolzwarth, J. M., & Ma, P. X. ( 2011 ). Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials, 32, 9622 – 9629.
dc.identifier.citedreferenceHuang, R., Qi, W., Feng, L., Su, R., & He, Z. ( 2011 ). Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter, 7, 6222 – 6230.
dc.identifier.citedreferenceIschakov, R., Adler-Abramovich, L., Buzhansky, L., Shekhter, T., & Gazit, E. ( 2013 ). Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorganic & Medicinal Chemistry, 21, 3517 – 3522.
dc.identifier.citedreferenceJayawarna, V., Ali, M., Jowitt, T. A., Miller, A. F., Saiani, A., Gough, J. E., & Ulijn, R. V. ( 2006 ). Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl–dipeptides. Advanced Materials, 18, 611 – 614.
dc.identifier.citedreferenceJayawarna, V., Richardson, S. M., Hirst, A. R., Hodson, N. W., Saiani, A., Gough, J. E., & Ulijn, R. V. ( 2009 ). Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomaterialia, 5, 934 – 943.
dc.identifier.citedreferenceKhadeja, L., Grigoriants, I., Halperin-Sternfeld, M., Yona, A., & Adler-Abramovich, L. ( 2019 ). Sonochemical functionalization of cotton and non-woven fabrics with bio-inspired self-assembled nanostructures. Israel Journal of Chemistry, 60, 1190 – 1196.
dc.identifier.citedreferenceKisiday, J., Jin, M., Kurz, B., Hung, H., Semino, C., Zhang, S., & Grodzinsky, A. J. ( 2002 ). Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proceedings of the National Academy of Sciences of the United States of America, 99, 9996 – 10001.
dc.identifier.citedreferenceKobayashi, T., Chanmee, T., & Itano, N. ( 2020 ). Hyaluronan: Metabolism and function. Biomolecules, 10, 1525.
dc.identifier.citedreferenceKong, J., & Yu, S. ( 2007 ). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39, 549 – 559.
dc.identifier.citedreferenceKretsinger, J. K., Haines, L. A., Ozbas, B., Pochan, D. J., & Schneider, J. P. ( 2005 ). Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials, 26, 5177 – 5186.
dc.identifier.citedreferenceKübler, N., & Urist, M. R. ( 1990 ). Bone morphogenetic protein-mediated interaction of periosteum and diaphysis. Citric acid and other factors influencing the generation of parosteal bone. Clinical Orthopaedics and Related Research, 258, 279 – 294.
dc.identifier.citedreferenceLiu, M., Tolg, C., & Turley, E. ( 2019 ). Dissecting the dual nature of hyaluronan in the tumor microenvironment. Frontiers in Immunology, 10, 947.
dc.identifier.citedreferenceLöffler, J., Sass, F. A., Filter, S., Rose, A., Ellinghaus, A., Duda, G. N., & Dienelt, A. ( 2019 ). Compromised bone healing in aged rats is associated with impaired M2 macrophage function. Frontiers in Immunology, 10, 2443.
dc.identifier.citedreferenceMahler, A., Reches, M., Rechter, M., Cohen, S., & Gazit, E. ( 2006 ). Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Advanced Materials, 18, 1365 – 1370.
dc.identifier.citedreferenceMcCloskey, A. P., Draper, E. R., Gilmore, B. F., & Laverty, G. ( 2017 ). Ultrashort self-assembling Fmoc-peptide gelators for anti-infective biomaterial applications. Journal of Peptide Science, 23, 131 – 140.
dc.identifier.citedreferenceMcWhorter, F. Y., Wang, T., Nguyen, P., Chung, T., & Liu, W. F. ( 2013 ). Modulation of macrophage phenotype by cell shape. Proceedings. National Academy of Sciences. United States of America, 110, 17253 – 17258.
dc.identifier.citedreferenceMonzon, M. E., Fregien, N., Schmid, N., Falcon, N. S., Campos, M., Casalino-Matsuda, S. M., & Forteza, R. M. ( 2010 ). Reactive oxygen species and hyaluronidase 2 regulate airway epithelial hyaluronan fragmentation. The Journal of Biological Chemistry, 285, 26126 – 26134.
dc.identifier.citedreferenceMosser, D. M., & Edwards, J. P. ( 2008 ). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8, 958 – 969.
dc.identifier.citedreferenceMurray, P. J., & Wynn, T. A. ( 2011 ). Protective and pathogenic functions of macrophage subsets. Nature Reviews. Immunology, 11, 723 – 737.
dc.identifier.citedreferenceNadernezhad, A., Forster, L., Netti, F., Adler-Abramovich, L., Teßmar, J., & Groll, J. ( 2020 ). Rheological analysis of the interplay between the molecular weight and concentration of hyaluronic acid in formulations of supramolecular HA/FmocFF hybrid hydrogels. Polymer Journal, 52, 1007 – 1012.
dc.identifier.citedreferenceNetti, F., Aviv, M., Dan, Y., Rudnick-Glick, S., Halperin-Sternfeld, M., & Adler-Abramovich, L. ( 2022 ). Stabilizing gelatin-based bioinks under physiological conditions by incorporation of ethylene-glycol-conjugated Fmoc-FF peptides. Nanoscale, 14, 8525 – 8533.
dc.identifier.citedreferenceNi, M., Zhuo, S., Iliescu, C., So, P. T. C., Mehta, J. S., Yu, H., & Hauser, C. A. E. ( 2019 ). Self-assembling amyloid-like peptides as exogenous second harmonic probes for bioimaging applications. Journal of Biophotonics, 12, e201900065.
dc.identifier.citedreferencePark, J. W., Jang, J. H., Bae, S. R., An, C. H., & Suh, J. Y. ( 2009 ). Bone formation with various bone graft substitutes in critical-sized rat calvarial defect. Clinical Oral Implants Research, 20, 372 – 378.
dc.identifier.citedreferencePek, Y. S., Wan, A. C., & Ying, J. Y. ( 2010 ). The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials, 31, 385 – 391.
dc.identifier.citedreferencePelham, R. J., Jr., & Wang, Y. ( 1997 ). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America, 94, 13661 – 13665.
dc.identifier.citedreferenceQiu, P., Li, M., Chen, K., Fang, B., Chen, P., Tang, Z., Lin, X., & Fan, S. ( 2020 ). Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials, 227, 119552.
dc.identifier.citedreferenceRachmiel, D., Anconina, I., Rudnick-Glick, S., Halperin-Sternfeld, M., Adler-Abramovich, L., & Sitt, A. ( 2021 ). Hyaluronic acid and a short peptide improve the performance of a PCL electrospun fibrous scaffold designed for bone tissue engineering applications. International Journal of Molecular Sciences, 22, 2425.
dc.identifier.citedreferenceRaeburn, J., Pont, G., Chen, L., Cesbron, Y., Lévy, R., & Adams, D. J. ( 2012 ). Fmoc-diphenylalanine hydrogels: Understanding the variability in reported mechanical properties. Soft Matter, 8, 1168 – 1174.
dc.identifier.citedreferenceRodon Fores, J., Bigo-Simon, A., Wagner, D., Payrastre, M., Damestoy, C., Blandin, L., Boulmedais, F., Kelber, J., Schmutz, M., Rabineau, M., Criado-Gonzalez, M., Schaaf, P., & Jierry, L. ( 2021 ). Localized enzyme-assisted self-assembly in the presence of hyaluronic acid for hybrid supramolecular hydrogel coating. Polymers, 13, 1793.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.