Show simple item record

Current-Dependent Lithium Metal Growth Modes in “Anode-Free” Solid-State Batteries at the Cu|LLZO Interface

dc.contributor.authorFuchs, Till
dc.contributor.authorBecker, Juri
dc.contributor.authorHaslam, Catherine G.
dc.contributor.authorLerch, Christian
dc.contributor.authorSakamoto, Jeff
dc.contributor.authorRichter, Felix H.
dc.contributor.authorJanek, Jürgen
dc.date.accessioned2023-02-01T18:56:59Z
dc.date.available2024-02-01 13:56:57en
dc.date.available2023-02-01T18:56:59Z
dc.date.issued2023-01
dc.identifier.citationFuchs, Till; Becker, Juri; Haslam, Catherine G.; Lerch, Christian; Sakamoto, Jeff; Richter, Felix H.; Janek, Jürgen (2023). "Current- Dependent Lithium Metal Growth Modes in - Anode- Free- Solid- State Batteries at the Cu|LLZO Interface." Advanced Energy Materials 13(1): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/175734
dc.description.abstractControlling the lithium growth morphology in lithium reservoir-free cells (RFCs), so-called “anode-free” solid-state batteries, is of key interest to ensure stable battery operation. Despite several benefits of RFCs like improved energy density and easier fabrication, issues during the charging of the cell hinder the transition from lithium metal batteries with a lithium reservoir layer to RFCs. In RFCs, the lithium metal anode is plated during the first charging step at the interface between a metal current collector and the solid electrolyte, which is prone to highly heterogeneous growth instead of the desired homogeneous film-like growth. Herein, the lithium morphology during the first charging step in RFCs is explored as a function of current density and current collector thickness. Using operando scanning electron microscopy, an increase in the lithium particle density is observed with increasing current density at the Cu|Li6.25Al0.25La3Zr2O12 interface. This observation is then applied to improve the area coverage of lithium by pulsed plating. It is also shown that thin current collectors (d = 100 nm) are unsuited for RFCs, as lithium whiskers penetrate them, resulting in highly heterogeneous interfaces. This suggests the use of thicker metal layers (several µm) to mitigate whisker penetration and facilitate homogeneous lithium plating.This work demonstrates a novel operando scanning electron microscopy (SEM) technique to visualize the lithium growth at the Cu|LLZO interface within so-called “anode-free” cell designs. Detailed SEM and image analysis shows a clear dependence of the growth morphology on applied current density and current collector thickness.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheranode-free-cell
dc.subject.othermorphology
dc.subject.otherLi-metal
dc.subject.otherkinetics
dc.subject.otheroperando SEM
dc.titleCurrent-Dependent Lithium Metal Growth Modes in “Anode-Free” Solid-State Batteries at the Cu|LLZO Interface
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175734/1/aenm202203174_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175734/2/aenm202203174-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175734/3/aenm202203174.pdf
dc.identifier.doi10.1002/aenm.202203174
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceJ. D. LaCoste, A. Zakutayev, L. Fei, J. Phys. Chem. C 2021, 125, 3651.
dc.identifier.citedreferenceA. J. Louli, M. Genovese, R. Weber, S. G. Hames, E. R. Logan, J. R. Dahn, J. Electrochem. Soc. 2019, 166, A1291.
dc.identifier.citedreferenceR. Weber, M. Genovese, A. J. Louli, S. Hames, C. Martin, I. G. Hill, J. R. Dahn, Nat. Energy 2019, 4, 683.
dc.identifier.citedreferenceA. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett.. 2017, 17, 1132.
dc.identifier.citedreferenceM. Motoyama, M. Hirota, T. Yamamoto, Y. Iriyama, ACS Appl. Mater. Interfaces 2020, 12, 38045.
dc.identifier.citedreferenceT. Fuchs, B. Mogwitz, S. Otto, S. Passerini, F. H. Richter, J. Janek, Batteries Supercaps 2021, 4, 1145.
dc.identifier.citedreferenceT. Krauskopf, B. Mogwitz, C. Rosenbach, W. G. Zeier, J. Janek, Adv. Energy Mater. 2019, 9, 1902568.
dc.identifier.citedreferenceJ. K. Eckhardt, P. J. Klar, J. Janek, C. Heiliger, ACS Appl. Mater. Interfaces 2022, 14, 35545.
dc.identifier.citedreferenceJ. K. Eckhardt, T. Fuchs, S. Burkhardt, P. J. Klar, J. Janek, C. Heiliger, ACS Appl. Mater. Interfaces 2022, 14, 42757.
dc.identifier.citedreferenceY. Zhu, J. G. Connell, S. Tepavcevic, P. Zapol, R. Garcia-Mendez, N. J. Taylor, J. Sakamoto, B. J. Ingram, L. A. Curtiss, J. W. Freeland, D. D. Fong, N. M. Markovic, Adv. Energy Mater. 2019, 9, 1.
dc.identifier.citedreferenceJ. G. Connell, T. Fuchs, H. Hartmann, T. Krauskopf, Y. Zhu, J. Sann, R. Garcia-mendez, J. Sakamoto, S. Tepavcevic, J. Janek, Chem. Mater. 2020, 32, 10207.
dc.identifier.citedreferenceW. Klemm, B. Volavsek, Z. Anorg. Allg. Chem. 1958, 296, 184.
dc.identifier.citedreferenceK. Peppler, M. Pölleth, S. Meiss, M. Rohnke, J. Janek, Z. Phys. Chem. 2006, 220, 1507.
dc.identifier.citedreferenceS. H. Jung, U. H. Kim, J. H. Kim, S. Jun, C. S. Yoon, Y. S. Jung, Y. K. Sun, Adv. Energy Mater. 2020, 10, 1903360.
dc.identifier.citedreferenceR. Koerver, W. Zhang, L. De Biasi, S. Schweidler, A. O. Kondrakov, S. Kolling, T. Brezesinski, P. Hartmann, W. G. Zeier, J. Janek, Energy Environ. Sci. 2018, 11, 2142.
dc.identifier.citedreferenceP. Bai, J. Li, F. R. Brushett, M. Z. Bazant, Energy Environ. Sci. 2016, 9, 3221.
dc.identifier.citedreferenceS. Lv, T. Verhallen, A. Vasileiadis, F. Ooms, Y. Xu, Z. Li, Z. Li, M. Wagemaker, Nat. Commun. 2018, 9, 1.
dc.identifier.citedreferenceH. Okamoto, J. Phase Equilib. Diffus. 2011, 32, 172.
dc.identifier.citedreferenceR. Rupp, B. Caerts, A. Vantomme, J. Fransaer, A. Vlad, J. Phys. Chem. Lett. 2019, 10, 5206.
dc.identifier.citedreferenceD. Rehnlund, Z. Wang, L. Nyholm, Adv. Mater. 2022, 34, 2108827.
dc.identifier.citedreferenceT. H. Loeber, B. Laegel, S. Wolff, S. Schuff, F. Balle, T. Beck, D. Eifler, J. H. Fitschen, G. Steidl, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2017, 35, 06GK01.
dc.identifier.citedreferenceS. Liu, L. Sun, J. Gao, K. Li, J. Microsc. 2018, 272, 3.
dc.identifier.citedreferenceD. P. Adams, T. M. Mayer, M. J. Vasile, K. Archuleta, Appl. Surf. Sci. 2006, 252, 2432.
dc.identifier.citedreferenceI. Koponen, M. Hautala, O. P. Sievänen, Phys. Rev. Lett. 1997, 78, 2612.
dc.identifier.citedreferenceZ. Ning, D. S. Jolly, G. Li, R. De Meyere, S. D. Pu, Y. Chen, J. Kasemchainan, J. Ihli, C. Gong, B. Liu, D. L. R. Melvin, A. Bonnin, O. Magdysyuk, P. Adamson, G. O. Hartley, C. W. Monroe, T. J. Marrow, P. G. Bruce, Nat. Mater. 2021, 20, 1121.
dc.identifier.citedreferenceB. Kinzer, A. L. Davis, T. Krauskopf, H. Hartmann, W. S. LePage, E. Kazyak, J. Janek, N. P. Dasgupta, J. Sakamoto, Matter 2021, 4, 1947.
dc.identifier.citedreferenceM. Motoyama, M. Ejiri, T. Yamamoto, Y. Iriyama, J. Electrochem. Soc. 2018, 165, A1338.
dc.identifier.citedreferenceE. Kazyak, M. J. Wang, K. Lee, S. Yadavalli, A. J. Sanchez, M. D. Thouless, J. Sakamoto, N. P. Dasgupta, Matter 2022, 5, 3912.
dc.identifier.citedreferenceJ. Janek, W. G. Zeier, Nat. Energy 2016, 1, 16141.
dc.identifier.citedreferenceS. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W. G. Zeier, F. H. Richter, J. Janek, Nat. Energy 2020, 5, 259.
dc.identifier.citedreferenceY. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, Nat. Energy 2020, 5, 299.
dc.identifier.citedreferenceT. Krauskopf, F. H. Richter, W. G. Zeier, J. Janek, Chem. Rev. 2020, 120, 7745.
dc.identifier.citedreferenceY. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685.
dc.identifier.citedreferenceY. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S. Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y. W. Mai, J. B. Goodenough, J. Li, Nature 2020, 578, 251.
dc.identifier.citedreferenceC. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J. G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551.
dc.identifier.citedreferenceS. K. Otto, Y. Moryson, T. Krauskopf, K. Peppler, J. Sann, J. Janek, A. Henss, Chem. Mater. 2021, 33, 859.
dc.identifier.citedreferenceT. Krauskopf, H. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2019, 11, 14463.
dc.identifier.citedreferenceA. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, Chem. Mater. 2017, 29, 7961.
dc.identifier.citedreferenceS. K. Otto, T. Fuchs, Y. Moryson, C. Lerch, B. Mogwitz, J. Sann, J. Janek, A. Henss, ACS Appl. Energy Mater. 2021, 4, 12798.
dc.identifier.citedreferenceF. Flatscher, M. Philipp, S. Ganschow, H. M. R. Wilkening, D. Rettenwander, J. Mater. Chem. A 2020, 8, 15782.
dc.identifier.citedreferenceN. J. Taylor, S. Stangeland-Molo, C. G. Haslam, A. Sharafi, T. Thompson, M. Wang, R. Garcia-Mendez, J. Sakamoto, J. Power Sources 2018, 396, 314.
dc.identifier.citedreferenceE. Kazyak, R. Garcia-mendez, W. S. Lepage, A. Sharafi, A. L. Davis, A. J. Sanchez, K. Chen, C. Haslam, J. Sakamoto, N. P. Dasgupta, Matter 2020, 2, 1025.
dc.identifier.citedreferenceM. J. Wang, E. Carmona, A. Gupta, P. Albertus, J. Sakamoto, Nat. Commun. 2020, 11, 1.
dc.identifier.citedreferenceT. Krauskopf, R. Dippel, H. Hartmann, K. Peppler, B. Mogwitz, F. H. Richter, W. G. Zeier, J. Janek, Joule 2019, 3, 2030.
dc.identifier.citedreferenceR. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier, J. Janek, Chem. Mater. 2017, 29, 5574.
dc.identifier.citedreferenceF. Strauss, L. de Biasi, A.-Y. Kim, J. Hertle, S. Schweidler, J. Janek, P. Hartmann, T. Brezesinski, ACS Mater. Lett. 2020, 2, 84.
dc.identifier.citedreferenceB. J. Neudecker, N. J. Dudney, J. B. Bates, J. Electrochem. Soc. 2000, 147, 517.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.