Show simple item record

Determining the Timing of Driver Influences on 1.8–3.5 MeV Electron Flux at Geosynchronous Orbit Using ARMAX Methodology and Stepwise Regression

dc.contributor.authorSimms, L. E.
dc.contributor.authorEngebretson, M. J.
dc.contributor.authorReeves, G. D.
dc.date.accessioned2023-02-01T18:57:20Z
dc.date.available2024-02-01 13:57:18en
dc.date.available2023-02-01T18:57:20Z
dc.date.issued2023-01
dc.identifier.citationSimms, L. E.; Engebretson, M. J.; Reeves, G. D. (2023). "Determining the Timing of Driver Influences on 1.8–3.5 MeV Electron Flux at Geosynchronous Orbit Using ARMAX Methodology and Stepwise Regression." Journal of Geophysical Research: Space Physics 128(1): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/175744
dc.description.abstractAlthough lagged correlations have suggested influences of solar wind velocity (V) and number density (N), Bz, ultralow frequency (ULF) wave power, and substorms (as measured by the auroral electrojet (AE) index) on MeV electron flux at geosynchronous orbit over an impressive number of hours and days, a satellite’s diurnal cycle can inflate correlations, associations between drivers may produce spurious effects, and correlations between all previous time steps may create an appearance of additive influence over many hours. Autoregressive-moving average transfer function (ARMAX) multiple regressions incorporating previous hours simultaneously can eliminate cycles and assess the impact of parameters, at each hour, while others are controlled. ARMAX influences are an order of magnitude lower than correlations uncorrected for time behavior. Most influence occurs within a few hours, not the many hours suggested by correlation. A log transformation accounts for nonlinearities. Over all hours, solar wind velocity (V) and number density (N) show an initial negative impact, with longer term positive influences over the 9 (V) or 27 (N) hr. Bz is initially a positive influence, with a longer term (6 hr) negative effect. ULF waves impact flux in the first (positive) and second (negative) hour before the flux measurement, with further negative influences in the 12–24 hr before. AE (representing electron injection by substorms) shows only a short term (1 hr) positive influence. However, when only recovery and after-recovery storm periods are considered (using stepwise regression), there are positive influences of ULF waves, AE, and V, with negative influences of N and Bz.Plain Language SummaryThe influence of solar wind, waves, and substorms on high energy electrons at geosynchronous orbit can appear to occur over a number of hours and days. However, these long duration correlations may be due to diurnal cycles in satellite data, associations between the driving parameters, or correlations of each variable with itself over previous time steps. These extraneous correlations can be corrected for using autoregressive-moving average multiple regression models including previous hours simultaneously. Once these are controlled, the correlations between possible driving parameters and high energy electrons are both lower and influential only over a few hours.Key PointsAutoregressive-moving average transfer function models show drivers of relativistic electron flux are influential only within a few hours or a day of flux changesContrary to simple correlation findings, influences are lower in magnitude and act more immediatelyStepwise multiple regression shows less cumulative effects of drivers in after-storm periods than simple correlation would suggest
dc.publisherOTexts, Heathmont
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectron flux at geosynchronous orbit
dc.subject.otherARMAX models
dc.subject.otherstepwise regression
dc.subject.otherULF waves
dc.subject.othersubstorms
dc.subject.othersolar wind and IMF drivers
dc.titleDetermining the Timing of Driver Influences on 1.8–3.5 MeV Electron Flux at Geosynchronous Orbit Using ARMAX Methodology and Stepwise Regression
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175744/1/jgra57587_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175744/2/jgra57587.pdf
dc.identifier.doi10.1029/2022JA030963
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSimms, L. E., Engebretson, M. J., Pilipenko, V., Reeves, G. D., & Clilverd, M. ( 2016 ). Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 3181 – 3197. https://doi.org/10.1002/2016JA022414
dc.identifier.citedreferenceOsmane, A., Savola, M., Kilpua, E., Koskinen, H., Borovsky, J. E., & Kalliokoski, M. ( 2022 ). Quantifying the non-linear dependence of energetic electron fluxes in the Earth’s radiation belts with radial diffusion drivers. Annales Geophysicae, 40 ( 1 ), 37 – 53. https://doi.org/10.5194/angeo-40-37-2022
dc.identifier.citedreferencePankratz, A. ( 1991 ). Forecasting with dynamic regression models (p. 386 ). John Wiley & Sons Inc.
dc.identifier.citedreferencePotapov, A. S. ( 2017 ). Relativistic electrons of the outer radiation belt and methods of their forecast (review). Solar-Terrestrial Physics, 3 ( 1 ), 57 – 72. https://doi.org/10.12737/article_58f9703837c248.84596315
dc.identifier.citedreferenceReeves, G. D., Baker, D. N., Belian, R. D., Blake, J. B., Cayton, T. E., Fennell, J. F., et al. ( 1998 ). The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud. Geophysical Research Letters, 25 ( 17 ), 3265 – 3268. https://doi.org/10.1029/98gl02509
dc.identifier.citedreferenceReeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., et al. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research, 116 ( A2 ), A02213. https://doi.org/10.1029/2010JA015735
dc.identifier.citedreferenceRomanova, N., & Pilipenko, V. ( 2009 ). ULF wave indices to characterize the solar wind-magnetosphere interaction and relativistic electron dynamics. Acta Geophysica, 57 ( 1 ), 158 – 170. https://doi.org/10.2478/s11600-008-0064-4
dc.identifier.citedreferenceRostoker, G., Skone, S., & Baker, D. N. ( 1998 ). On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophysical Research Letters, 25 ( 19 ), 3701 – 3704. https://doi.org/10.1029/98gl02801
dc.identifier.citedreferenceSakaguchi, K., Nagatsuma, T., Reeves, G. D., & Spence, H. E. ( 2015 ). Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models. Space Weather, 13 ( 12 ), 853 – 867. https://doi.org/10.1002/2015SW001254
dc.identifier.citedreferenceShprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N., & Kanekal, S. G. ( 2006 ). Outward radial diffusion driven by losses at magnetopause. Journal of Geophysical Research, 111 ( A11 ), A11214. https://doi.org/10.1029/2006JA011657
dc.identifier.citedreferenceSimms, L., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J., & Reeves, G. ( 2018 ). A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs. Journal of Geophysical Research: Space Physics, 123 ( 5 ), 3646 – 3671. https://doi.org/10.1029/2017JA025002
dc.identifier.citedreferenceSimms, L. E., Engebretson, M. J., Rodger, C. J., Gjerloev, J. W., & Reeves, G. D. ( 2019 ). Predicting lower band chorus with autoregressive-moving average transfer function (ARMAX) models. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 5692 – 5708. https://doi.org/10.1029/2019JA026726
dc.identifier.citedreferenceSimms, L. E., Ganushkina, N. Y., van de Kamp, M., Liemohn, M. W., & Dubyagin, S. ( 2022 ). Using ARMAX models to determine the drivers of 40-150 keV GOES electron fluxes. Journal of Geophysical Research: Space Physics, 127 ( 9 ), e2022JA030538. https://doi.org/10.1029/2022JA030538
dc.identifier.citedreferenceSimms, L. E., Pilipenko, V. A., Engebretson, M. J., Reeves, G. D., Smith, A. J., & Clilverd, M. ( 2014 ). Prediction of relativistic electron flux following storms at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7297 – 7318. https://doi.org/10.1002/2014JA019955
dc.identifier.citedreferenceSimms, L. E., Engebretson, M. J., & Reeves, G. D. ( 2022 ). Removing diurnal signals and longer term trends from electron flux and ULF correlations: A comparison of spectral subtraction, simple differencing, and ARIMAX models. Journal of Geophysical Research: Space Physics, 127, 2. https://doi.org/10.1029/2021JA030021
dc.identifier.citedreferenceSPSS. ( 2020 ). IBM SPSS Statistics for Windows (version 27.0). IBM Corp.
dc.identifier.citedreferenceStaples, F. A., Kellerman, A., Murphy, K. R., Rae, I. J., Sandhu, J. K., & Forsyth, C. ( 2022 ). Resolving magnetopause shadowing using multimission measurements of phase space density. Journal of Geophysical Research: Space Physics, 127 ( 2 ), e2021JA029298. https://doi.org/10.1029/2021JA029298
dc.identifier.citedreferenceStepanov, N. A., Sergeev, V. A., Sormakov, D. A., Andreeva, V. A., Dubyagin, S. V., Ganushkina, N., et al. ( 2021 ). Superthermal proton and electron fluxes in the plasma sheet transition region and their dependence on solar wind parameters. Journal of Geophysical Research: Space Physics, 126 ( 4 ), e2020JA028580. https://doi.org/10.1029/2020JA028580
dc.identifier.citedreferenceSu, Y.-J., Quinn, J. M., Johnston, W. R., McCollough, J. P., & Starks, M. J. ( 2014 ). Specification of>2MeV electron flux as a function of local time and geomagnetic activity at geosynchronous orbit. Space Weather, 12 ( 7 ), 470 – 486. https://doi.org/10.1002/2014SW001069
dc.identifier.citedreferenceSummers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., Heynderickx, D., & Anderson, R. R. ( 2002 ). Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophysical Research Letters, 29 ( 24 ), 27-1 – 27-4. https://doi.org/10.1029/2002GL016039
dc.identifier.citedreferenceTakahashi, K., & Ukhorskiy, A. Y. ( 2007 ). Solar wind control of Pc5 pulsation power at geosynchronous orbit. Journal of Geophysical Research, 112 ( A11 ), A11205. https://doi.org/10.1029/2007JA012483
dc.identifier.citedreferenceTu, W., Xiang, Z., & Morley, S. K. ( 2019 ). Modeling the magnetopause shadowing loss during the June 2015 dropout event. Geophysical Research Letters, 46 ( 16 ), 9388 – 9396. https://doi.org/10.1029/2019GL084419
dc.identifier.citedreferenceWing, S., Johnson, J. R., Camporeale, E., & Reeves, G. D. ( 2016 ). Information theoretical approach to discovering solar wind drivers of the outer radiation belt. Journal of Geophysical Research: Space Physics, 121 ( 10 ), 9378 – 9399. https://doi.org/10.1002/2016JA022711
dc.identifier.citedreferenceWing, S., Johnson, J. R., Turner, D. L., Ukhorskiy, A. Y., & Boyd, A. J. ( 2022 ). Untangling the solar wind and magnetospheric drivers of the radiation belt electrons. Journal of Geophysical Research: Space Physics, 127 ( 4 ), e2021JA030246. https://doi.org/10.1029/2021JA030246
dc.identifier.citedreferenceBaker, D. N., Pulkkinen, T., Li, X., Kanekal, S., Ogilvie, K., Lepping, R., et al. ( 1998 ). A strong CME-related magnetic cloud interaction with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophysical Research Letters, 25 ( 15 ), 2975 – 2978. https://doi.org/10.1029/98GL01134
dc.identifier.citedreferenceBalikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. ( 2011 ). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38 ( 18 ), L18105. https://doi.org/10.1029/2011GL048980
dc.identifier.citedreferenceBirn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., & Belian, R. D. ( 1997 ). Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. Journal of Geophysical Research, 102 ( A2 ), 2309 – 2324. https://doi.org/10.1029/96JA02870
dc.identifier.citedreferenceBorovsky, J. E. ( 2017 ). Time-integral correlations of multiple variables with the relativistic-electron flux at geosynchronous orbit: The strong roles of substorm-injected electrons and the ion plasma sheet. Journal of Geophysical Research: Space Physics, 122 ( 12 ), 11961 – 11990. https://doi.org/10.1002/2017JA024476
dc.identifier.citedreferenceBorovsky, J. E., & Denton, M. H. ( 2014 ). Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind-driven magnetosphere. Journal of Geophysical Research: Space Physics, 119 ( 6 ), 4307 – 4334. https://doi.org/10.1002/2014JA019876
dc.identifier.citedreferenceBoyd, A. J., Spence, H. E., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Baker, D. N., et al. ( 2014 ). Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event. Geophysical Research Letters, 41 ( 7 ), 2275 – 2281. https://doi.org/10.1002/2014GL059626
dc.identifier.citedreferenceBoynton, R. J., Amariutei, O. A., Shprits, Y. Y., & Balikhin, M. A. ( 2019 ). The system science development of local time-dependent 40-keV electron flux models for geostationary orbit. Space Weather, 17 ( 6 ), 894 – 906. https://doi.org/10.1029/2018SW002128
dc.identifier.citedreferenceBoynton, R. J., Balikhin, M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., et al. ( 2013 ). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 118 ( 4 ), 1500 – 1513. https://doi.org/10.1002/jgra.50192
dc.identifier.citedreferenceBurton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204 – 4214. https://doi.org/10.1029/JA080i031p04204
dc.identifier.citedreferenceElkington, S. R., Hudson, M. K., & Chan, A. A. ( 2003 ). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. Journal of Geophysical Research, 108 ( A3 ), 1116. https://doi.org/10.1029/2001JA009202
dc.identifier.citedreferenceFriedel, R. H. W., Reeves, G. D., & Obara, T. ( 2002 ). Relativistic electron dynamics in the inner magnetosphere — A review. Journal of Atmospheric and Solar-Terrestrial Physics, 64 ( 2 ), 265 – 282. https://doi.org/10.1016/S1364-6826(01)00088-8
dc.identifier.citedreferenceHolm, S. ( 1979 ). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6 ( 2 ), 65 – 70. https://doi.org/10.2307/4615733
dc.identifier.citedreferenceHwang, J. A., Lee, D.-Y., Lyons, L. R., Smith, A. J., Zou, S., Min, K. W., et al. ( 2007 ). Statistical significance of association between whistler-mode chorus enhancements and enhanced convection periods during highspeed streams. Journal of Geophysical Research, 112 ( A9 ), A09213. https://doi.org/10.1029/2007JA012388
dc.identifier.citedreferenceHyndman, R. J., & Athanasopoulos, G. ( 2018 ). Forecasting: Principles and practice ( 2nd ed., p. 291 ). OTexts, Heathmont.
dc.identifier.citedreferenceJaynes, A. N., Ali, A. F., Elkington, S. R., Malaspina, D. M., Baker, D. N., Li, X., et al. ( 2018 ). Fast diffusion of ultrarelativistic electrons in the outer radiation belt: 17 March 2015 storm event. Geophysical Research Letters, 45 ( 20 ), 10874 – 10882. https://doi.org/10.1029/2018GL079786
dc.identifier.citedreferenceJaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’aniu, T. M., Ali, A. F., et al. ( 2015 ). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 7240 – 7254. https://doi.org/10.1002/2015JA021234
dc.identifier.citedreferenceKozyreva, O., Pilipenko, V., Engebretson, M. J., Yumoto, K., Watermann, J., & Romanova, N. ( 2007 ). In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planetary and Space Science, 55 ( 6 ), 755 – 769. https://doi.org/10.1016/j.pss.2006.03.013
dc.identifier.citedreferenceLam, H.-L. ( 2004 ). On the prediction of relativistic electron fluence based on its relationship with geomagnetic activity over a solar cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 66 ( 2004 ), 1703 – 1714. https://doi.org/10.1016/j.jastp.2004.08.002
dc.identifier.citedreferenceLoto’aniu, T. M., Singer, H. J., Waters, C. L., Angelopoulos, V., Mann, I. R., Elkington, S. R., & Bonnell, J. W. ( 2010 ). Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. Journal of Geophysical Research, 115 ( A12 ), A12245. https://doi.org/10.1029/2010JA015755
dc.identifier.citedreferenceLyatsky, W., & Khazanov, G. V. ( 2008 ). Effect of geomagnetic disturbances and solar wind density on relativistic electrons at geostationary orbit. Journal of Geophysical Research, 113 ( A8 ), A08224. https://doi.org/10.1029/2008JA013048
dc.identifier.citedreferenceMakridakis, S. G., Wheelwright, S. C., & Hyndman, R. J. ( 1998 ). Forecasting: Methods and applications ( 3rd ed., p. 652 ). John Wiley and Sons.
dc.identifier.citedreferenceMathie, R. A., & Mann, I. R. ( 2000 ). A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophysical Research Letters, 27 ( 20 ), 3261 – 3264. https://doi.org/10.1029/2000GL003822
dc.identifier.citedreferenceMATLAB. ( 2021 ). MATLAB version: 9.11.0.1809720 (R2021b) Update 1. The MathWorks Inc.
dc.identifier.citedreferenceNeter, J., Wasserman, W., & Kutner, M. ( 1985 ). Applied linear statistical models ( 2 nd ed., p. 112 ). Richard D. Irwin, Inc.
dc.identifier.citedreferenceO’Brien, T. P., & McPherron, R. L. ( 2003 ). An empirical dynamic equation for energetic electrons at geosynchronous orbit. Journal of Geophysical Research, 108 ( A3 ), 1137. https://doi.org/10.1029/2002JA009324
dc.identifier.citedreferenceO’Brien, T. P., McPherron, R. L., Sornette, D., Reeves, G. D., Friedel, R., & Singer, H. J. ( 2001 ). Which magnetic storms produce relativistic electrons at geosynchronous orbit? Journal of Geophysical Research, 106 ( A8 ), 15533 – 15544. https://doi.org/10.1029/2001JA000052
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.