Show simple item record

Habitat quality influences pollinator pathogen prevalence through both habitat–disease and biodiversity–disease pathways

dc.contributor.authorFearon, Michelle L.
dc.contributor.authorWood, Chelsea L.
dc.contributor.authorTibbetts, Elizabeth A.
dc.date.accessioned2023-02-01T18:57:31Z
dc.date.available2024-03-01 13:57:29en
dc.date.available2023-02-01T18:57:31Z
dc.date.issued2023-02
dc.identifier.citationFearon, Michelle L.; Wood, Chelsea L.; Tibbetts, Elizabeth A. (2023). "Habitat quality influences pollinator pathogen prevalence through both habitat–disease and biodiversity–disease pathways." Ecology 104(2): n/a-n/a.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/175749
dc.description.abstractThe dilution effect hypothesis posits that increasing biodiversity reduces infectious disease transmission. Here, we propose that habitat quality might modulate this negative biodiversity–disease relationship. Habitat may influence pathogen prevalence directly by affecting host traits like nutrition and immune response (we coined the term “habitat–disease relationship” to describe this phenomenon) or indirectly by changing host biodiversity (biodiversity–disease relationship). We used a path model to test the relative strength of links between habitat, biodiversity, and pathogen prevalence in a pollinator–virus system. High-quality habitat metrics were directly associated with viral prevalence, providing evidence for a habitat–disease relationship. However, the strength and direction of specific habitat effects on viral prevalence varied based on the characteristics of the habitat, host, and pathogen. In general, more natural area and richness of land-cover types were directly associated with increased viral prevalence, whereas greater floral density was associated with reduced viral prevalence. More natural habitat was also indirectly associated with reduced prevalence of two key viruses (black queen cell virus and deformed wing virus) via increased pollinator species richness, providing evidence for a habitat-mediated dilution effect on viral prevalence. Biodiversity–disease relationships varied across viruses, with the prevalence of sacbrood virus not being associated with any habitat quality or pollinator community metrics. Across all viruses and hosts, habitat–disease and biodiversity–disease paths had effects of similar magnitude on viral prevalence. Therefore, habitat quality is a key driver of variation in pathogen prevalence among communities via both direct habitat–disease and indirect biodiversity–disease pathways, though the specific patterns varied among different viruses and host species. Critically, habitat–disease relationships could either contribute to or obscure dilution effects in natural systems depending on the relative strength and direction of the habitat–disease and biodiversity–disease pathways in that host–pathogen system. Therefore, habitat may be an important driver in the complex interactions between hosts and pathogens.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othermultihost–multiparasite
dc.subject.othernative bees
dc.subject.othersacbrood virus
dc.subject.otherstructural equation models
dc.subject.otherblack queen cell virus
dc.subject.otherBombus impatiens
dc.subject.otherdeformed wing virus
dc.subject.otherdilution effect
dc.subject.otherfloral resources
dc.subject.otherhoney bees
dc.titleHabitat quality influences pollinator pathogen prevalence through both habitat–disease and biodiversity–disease pathways
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175749/1/ecy3933-sup-0002-Appendix_S2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175749/2/ecy3933-sup-0001-Appendix_S1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175749/3/ecy3933_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175749/4/ecy3933-sup-0003-Appendix_S3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175749/5/ecy3933.pdf
dc.identifier.doi10.1002/ecy.3933
dc.identifier.sourceEcology
dc.identifier.citedreferencePalmer-Young, E. C., C. O. Tozkar, R. S. Schwarz, Y. Chen, R. E. Irwin, L. S. Adler, and J. D. Evans. 2017. “ Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection.” Journal of Economic Entomology 110: 1959 – 72.
dc.identifier.citedreferenceKennedy, C. M., E. Lonsdorf, M. C. Neel, N. M. Williams, T. H. Ricketts, R. Winfree, R. Bommarco, et al. 2013. “ A Global Quantitative Synthesis of Local and Landscape Effects on Wild Bee Pollinators in Agroecosystems.” Ecology Letters 16: 584 – 99.
dc.identifier.citedreferenceKhalil, H., F. Ecke, M. Evander, M. Magnusson, and B. Hörnfeldt. 2016. “ Declining Ecosystem Health and the Dilution Effect.” Scientific Reports 6: 1 – 11.
dc.identifier.citedreferenceKoh, I., E. V. Lonsdorf, N. M. Williams, C. Brittain, R. Isaacs, J. Gibbs, and T. H. Ricketts. 2016. “ Modeling the Status, Trends, and Impacts of Wild Bee Abundance in the United States.” Proceedings of the National Academy of Sciences 113: 140 – 5.
dc.identifier.citedreferenceLanglois, J. P., L. Fahrig, G. Merriam, and H. Artsob. 2001. “ Landscape Structure Influences Continental Distribution of Hantavirus in Deer Mice.” Landscape Ecology 16: 255 – 66.
dc.identifier.citedreferenceLefcheck, J. S. 2019. “Structural Equation Modeling in R for Ecology and Evolution.” https://jslefche.github.io/sem_book/index.html.
dc.identifier.citedreferenceManley, R., B. Temperton, M. Boots, and L. Wilfert. 2019. “ Contrasting Impacts of a Novel Specialist Vector on Mulithost Viral Pathogen Epidemiology in Wild and Managed Bees.” Molecular Ecology 29: 380 – 93.
dc.identifier.citedreferenceManley, R., B. Temperton, T. Doyle, D. Gates, S. Hedges, M. Boots, and L. Wilfert. 2019. “ Knock-On Community Impacts of a Novel Vector: Spillover of Emerging DWV-B from Varroa-Infested Honeybees to Wild Bumblebees.” Ecology Letters 22: 1306 – 15.
dc.identifier.citedreferenceMcMahon, D. P., M. E. Natsopoulou, V. Doublet, M. A. Fürst, S. Weging, M. J. F. Brown, A. Gogol-Döring, and R. J. Paxton. 2016. “ Elevated Virulence of an Emerging Viral Genotype as a Driver of Honeybee Loss.” Proceedings of the Royal Society B: Biological Sciences 283: 443 – 9.
dc.identifier.citedreferenceMcNeil, D. J., E. McCormick, A. C. Heimann, M. Kammerer, M. R. Douglas, S. C. Goslee, C. M. Grozinger, and H. M. Hines. 2020. “ Bumble Bees in Landscapes with Abundant Floral Resources Have Lower Pathogen Loads.” Scientific Reports 10: 22306.
dc.identifier.citedreferenceNovotný, V., and Y. Basset. 2000. “ Rare Species in Communities of Tropical Insect Herbivores: Pondering the Mystery of Singletons.” Oikos 89: 564 – 72.
dc.identifier.citedreferenceOstfeld, R. S., and F. Keesing. 2000. “ Biodiversity and Disease Risk: The Case of Lyme Disease.” Conservation Biology 14: 722 – 8.
dc.identifier.citedreferencePenczykowski, R. M., B. C. P. Lemanski, R. D. Sieg, S. R. Hall, J. Housley Ochs, J. Kubanek, and M. A. Duffy. 2014. “ Poor Resource Quality Lowers Transmission Potential by Changing Foraging Behaviour.” Functional Ecology 28: 1245 – 55.
dc.identifier.citedreferencePonton, F., K. Wilson, A. J. Holmes, S. C. Cotter, D. Raubenheimer, and S. J. Simpson. 2013. “ Integrating Nutrition and Immunology: A New Frontier.” Journal of Insect Physiology 59: 130 – 7.
dc.identifier.citedreferenceRichardson, L. L., L. S. Adler, A. S. Leonard, K. Henry, W. Anthony, J. S. Manson, and R. E. Irwin. 2015. “ Secondary Metabolites in Floral Nectar Reduce Parasite Infections in Bumble Bees.” Proceedings of the Royal Society B: Biological Sciences 282: 20142471.
dc.identifier.citedreferenceRoberts, M. G., and J. A. P. Heesterbeek. 2018. “ Quantifying the Dilution Effect for Models in Ecological Epidemiology.” Journal of the Royal Society Interface 15: 20170791.
dc.identifier.citedreferenceSalkeld, D. J., K. A. Padgett, and J. H. Jones. 2013. “ A Meta-Analysis Suggesting that the Relationship between Biodiversity and Risk of Zoonotic Pathogen Transmission Is Idiosyncratic.” Ecology Letters 16: 679 – 86.
dc.identifier.citedreferenceSanticchia, F., C. Romeo, A. Martinoli, P. Lanfranchi, L. A. Wauters, and N. Ferrari. 2015. “ Effects of Habitat Quality on Parasite Abundance: Do Forest Fragmentation and Food Availability Affect Helminth Infection in the Eurasian Red Squirrel? ” Journal of Zoology 296: 38 – 44.
dc.identifier.citedreferenceSchwensow, N. I., A. C. Heni, J. Schmid, B. K. Montero, S. D. Brändel, T. K. Halczok, G. Mayer, et al. 2022. “ Disentangling Direct from Indirect Effects of Habitat Disturbance on Multiple Components of Biodiversity.” Journal of Animal Ecology 91: 1 – 15. https://doi.org/10.1111/1365-2656.13802.
dc.identifier.citedreferenceSmith, V. 2007. “ Host Resource Supplies Influence the Dynamics and Outcome of Infectious Disease.” Integrative and Comparative Biology 47: 310 – 6.
dc.identifier.citedreferenceTehel, A., T. Streicher, S. Tragust, and R. Paxton. 2020. “ Experimental Infection of Bumblebees with Honeybee-Associated Viruses: No Direct Fitness Costs but Potential Future Threats to Novel Wild Bee Hosts.” Royal Society Open Science 7: 200480.
dc.identifier.citedreferenceUSDA National Agricultural Statistics Service Cropland Data Layer. 2015 –2016. “Published Crop-Specific Data Layer.” Washington, DC: USDA-NASS. https://nassgeodata.gmu.edu/CropScape/.
dc.identifier.citedreferenceVaudo, A. D., H. M. Patch, D. A. Mortensen, J. F. Tooker, and C. M. Grozinger. 2016. “ Macronutrient Ratios in Pollen Shape Bumble Bee ( Bombus impatiens ) Foraging Strategies and Floral Preferences.” Proceedings of the National Academy of Sciences 113: E4035 – 42.
dc.identifier.citedreferenceWilkin, T. A., L. E. King, and B. C. Sheldon. 2009. “ Habitat Quality, Nestling Diet, and Provisioning Behaviour in Great Tits Parus major.” Journal of Avian Biology 40: 135 – 45.
dc.identifier.citedreferenceWood, C. L., and K. D. Lafferty. 2013. “ Biodiversity and Disease: A Synthesis of Ecological Perspectives on Lyme Disease Transmission.” Trends in Ecology & Evolution 28: 239 – 47.
dc.identifier.citedreferenceWood, C. L., K. D. Lafferty, G. DeLeo, H. S. Young, P. J. Hudson, and A. M. Kuris. 2014. “ Does Biodiversity Protect Humans against Infectious Disease? ” Ecology 95: 817 – 32.
dc.identifier.citedreferenceWood, C. L., A. McInterff, H. S. Young, D. Kim, and K. D. Lafferty. 2017. “ Human Infectious Disease Burdens Decrease with Urbanization but Not with Biodiversity.” Philosophical Transactions of the Royal Society B 372: 20160122.
dc.identifier.citedreferenceFearon, M. L., and E. A. Tibbetts. 2021. “ Pollinator Community Species Richness Dilutes Prevalence of Multiple Viruses within Multiple Host Species.” Ecology 102: e03305.
dc.identifier.citedreferenceFigueroa, L. L., H. Grab, W. H. Ng, C. R. Myers, Q. S. McFrederick, and S. H. McArt. 2020. “ Landscape Simplification Shapes Pathogen Prevalence in Plant-Pollinator Networks.” Ecology Letters 23: 1212 – 22.
dc.identifier.citedreferenceFoley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, et al. 2005. “ Global Consequences of Land Use.” Science 309: 570 – 4.
dc.identifier.citedreferenceAlaux, C., F. Ducloz, D. Crauser, and Y. Le Conte. 2010. “ Diet Effects on Honeybee Immunocompetence.” Biology Letters 6: 562 – 5.
dc.identifier.citedreferenceAlger, S. A., P. A. Burnham, H. F. Boncristiani, and A. K. Brody. 2019. “ RNA Virus Spillover from Managed Honeybees ( Apis mellifera ) to Wild Bumblebees ( Bombus spp.).” PLoS One 14: e0217822.
dc.identifier.citedreferenceAllan, B. F., F. Keesing, R. S. Ostfeld, B. F. Allan, F. Keesing, and R. S. Ostfeldt. 2003. “ Effect of Forest Fragmentation on Lyme Disease Risk.” Conservation Biology 17: 267 – 72.
dc.identifier.citedreferenceAscher, J. S., and J. Pickering. 2020. “Discover Life Bees Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila).” https://www.discoverlife.org/mp/20q?guide=Apoidea_species.
dc.identifier.citedreferenceBlaauw, B. R., and R. Isaacs. 2014. “ Larger Patches of Diverse Floral Resources Increase Insect Pollinator Density, Diversity, and their Pollination of Native Wildflowers.” Basic and Applied Ecology 15: 701 – 11.
dc.identifier.citedreferenceBrunner, F. S., P. Schmid-Hempel, and S. M. Barribeau. 2014. “ Protein-Poor Diet Reduces Host-Specific Immune Gene Expression in Bombus terrestris.” Proceedings of the Royal Society B: Biological Sciences 281: 20140128.
dc.identifier.citedreferenceCardinal, S., J. Straka, and B. N. Danforth. 2010. “ Comprehenisve Phylogeny of Apid Bees Reveals the Evolutionary Origins and Antiquity of Cleptparasitism.” Proceedings of the National Academy of Sciences 107: 16207 – 11.
dc.identifier.citedreferenceCivitello, D. J., J. Cohen, H. Fatima, N. T. Halstead, J. Liriano, T. A. McMahon, C. N. Ortega, et al. 2015. “ Biodiversity Inhibits Parasites: Broad Evidence for the Dilution Effect.” Proceedings of the National Academy of Sciences 112: 8667 – 71.
dc.identifier.citedreferenceCohen, H., G. P. Smith, H. Sardiñas, J. F. Zorn, Q. S. McFrederick, S. H. Woodard, and L. C. Ponisio. 2021. “ Mass-Flowering Monoculture Attracts Bees, Amplifying Parasite Prevalence.” Proceedings of the Royal Society B: Biological Sciences 288: 20211369.
dc.identifier.citedreferenceCotter, S. C., and E. Al Shareefi. 2022. “ Nutritional Ecology, Infection and Immune Defence — Exploring the Mechanisms.” Current Opinion in Insect Science 50: 100862.
dc.identifier.citedreferenceDearing, M. D., and L. Dizney. 2010. “ Ecology of Hantavirus in a Changing World.” Annals of the New York Academy of Sciences 1195: 99 – 112.
dc.identifier.citedreferenceDeGrandi-Hoffman, G., Y. Chen, E. Huang, and M. H. Huang. 2010. “ The Effect of Diet on Protein Concentration, Hypopharyngeal Gland Development and Virus Load in Worker Honey Bees ( Apis mellifera L.).” Journal of Insect Physiology 56: 1184 – 91.
dc.identifier.citedreferenceDemas, G. E., and R. J. Nelson. 1998. “ Photoperiod, Ambient Temperature, and Food Availability Interact to Affect Reproductive and Immune Function in Adult Male Deer Mice ( Peromyscus maniculatus ).” Journal of Biological Rhythms 13: 253 – 62.
dc.identifier.citedreferenceDi Pasquale, G., M. Salignon, Y. Le Conte, L. P. Belzunces, A. Decourtye, A. Kretzschmar, S. Suchail, J. L. Brunet, and C. Alaux. 2013. “ Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter? ” PLoS One 8: 1 – 13.
dc.identifier.citedreferenceDolezal, A. G., J. Carrillo-Tripp, T. M. Judd, W. Allen Miller, B. C. Bonning, and A. L. Toth. 2019. “ Interacting Stressors Matter: Diet Quality and Virus Infection in Honeybee Health.” Royal Society Open Science 6: 181803.
dc.identifier.citedreferenceDonkersley, P., G. Rhodes, R. W. Pickup, K. C. Jones, and K. Wilson. 2014. “ Honeybee Nutrition Is Linked to Landscape Composition.” Ecology and Evolution 4: 4195 – 206.
dc.identifier.citedreferenceEzenwa, V. O., M. S. Godsey, R. J. King, and S. C. Guptill. 2006. “ Avian Diversity and West Nile Virus: Testing Associations between Biodiversity and Infectious Disease Risk.” Proceedings of the Royal Society B: Biological Sciences 273: 109 – 17.
dc.identifier.citedreferenceFearon, M., C. Wood, and E. Tibbetts. 2022. “Data from: Habitat Quality Influences Pollinator Pathogen Prevalence through both Habitat–Disease and Biodiversity–Disease Pathways.” Dryad, data set. https://doi.org/10.5061/dryad.mkkwh710c.
dc.identifier.citedreferenceGherman, B. I., A. Denner, O. Bobiş, D. S. Dezmirean, L. A. Mărghitaş, H. Schlüns, R. F. A. Moritz, and S. Erler. 2014. “ Pathogen-Associated Self-Medication Behavior in the Honeybee Apis mellifera.” Behavioral Ecology and Sociobiology 68: 1777 – 84.
dc.identifier.citedreferenceGotelli, N. J., and R. K. Colwell. 2001. “ Quantifying Biodiversity: Procedures and Pitfalls in the Measurement and Comparison of Species Richness.” Ecology Letters 4: 379 – 91.
dc.identifier.citedreferenceGrace, J. B. 2020. “ A “Weight of Evidence” Approach to Evaluating Structural Equation Models.” One Ecosystem 5: e50452.
dc.identifier.citedreferenceGreenleaf, S. S., N. M. Williams, R. Winfree, and C. Kremen. 2007. “ Bee Foraging Ranges and their Relationship to Body Size.” Oecologia 153: 589 – 96.
dc.identifier.citedreferenceJha, S., and C. Kremen. 2013. “ Resource Diversity and Landscape-Level Homogeneity Drive Native Bee Foraging.” Proceedings of the National Academy of Sciences 110: 555 – 8.
dc.identifier.citedreferenceJohnson, P. T. J., D. L. Preston, J. T. Hoverman, and B. E. Lafonte. 2013. “ Host and Parasite Diversity Jointly Control Disease Risk in Complex Communities.” Proceedings of the National Academy of Sciences 110: 16916 – 21.
dc.identifier.citedreferenceKallio, E. R., L. Voutilainen, O. Vapalahti, A. Vaheri, H. Henttonen, E. Koskela, and T. Mappes. 2007. “ Endemic Hantavirus Infection Impairs the Winter Survival of its Rodent Host.” Ecology 88: 1911 – 6.
dc.identifier.citedreferenceKeesing, F., R. D. Holt, and R. S. Ostfeld. 2006. “ Effects of Species Diversity on Disease Risk.” Ecology Letters 9: 485 – 98.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.