Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument
dc.contributor.author | Martínez, G. M. | |
dc.contributor.author | Sebastián, E. | |
dc.contributor.author | Vicente-Retortillo, A. | |
dc.contributor.author | Smith, M. D. | |
dc.contributor.author | Johnson, J. R. | |
dc.contributor.author | Fischer, E. | |
dc.contributor.author | Savijärvi, H. | |
dc.contributor.author | Toledo, D. | |
dc.contributor.author | Hueso, R. | |
dc.contributor.author | Mora-Sotomayor, L. | |
dc.contributor.author | Gillespie, H. | |
dc.contributor.author | Munguira, A. | |
dc.contributor.author | Sánchez-Lavega, A. | |
dc.contributor.author | Lemmon, M. T. | |
dc.contributor.author | Gómez, F. | |
dc.contributor.author | Polkko, J. | |
dc.contributor.author | Mandon, L. | |
dc.contributor.author | Apéstigue, V. | |
dc.contributor.author | Arruego, I. | |
dc.contributor.author | Ramos, M. | |
dc.contributor.author | Conrad, P. | |
dc.contributor.author | Newman, C. E. | |
dc.contributor.author | Torre-Juarez, M. De La | |
dc.contributor.author | Jordan, F. | |
dc.contributor.author | Tamppari, L. K. | |
dc.contributor.author | McConnochie, T. H. | |
dc.contributor.author | Harri, A.-M. | |
dc.contributor.author | Genzer, M. | |
dc.contributor.author | Hieta, M. | |
dc.contributor.author | Zorzano, M.-P. | |
dc.contributor.author | Siegler, M. | |
dc.contributor.author | Prieto, O. | |
dc.contributor.author | Molina, A. | |
dc.contributor.author | Rodríguez-Manfredi, J. A. | |
dc.date.accessioned | 2023-02-01T18:57:35Z | |
dc.date.available | 2024-03-01 13:57:32 | en |
dc.date.available | 2023-02-01T18:57:35Z | |
dc.date.issued | 2023-02 | |
dc.identifier.citation | Martínez, G. M. ; Sebastián, E. ; Vicente-Retortillo, A. ; Smith, M. D.; Johnson, J. R.; Fischer, E.; Savijärvi, H. ; Toledo, D.; Hueso, R.; Mora-Sotomayor, L. ; Gillespie, H.; Munguira, A.; Sánchez-Lavega, A. ; Lemmon, M. T.; Gómez, F. ; Polkko, J.; Mandon, L.; Apéstigue, V. ; Arruego, I.; Ramos, M.; Conrad, P.; Newman, C. E.; Torre-Juarez, M. De La ; Jordan, F.; Tamppari, L. K.; McConnochie, T. H.; Harri, A.-M. ; Genzer, M.; Hieta, M.; Zorzano, M.-P. ; Siegler, M.; Prieto, O.; Molina, A.; Rodríguez-Manfredi, J. A. (2023). "Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument." Journal of Geophysical Research: Planets 128(2): n/a-n/a. | |
dc.identifier.issn | 2169-9097 | |
dc.identifier.issn | 2169-9100 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/175750 | |
dc.description.abstract | The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first-of-its-kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non-Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock-dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance’s traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground-truth to orbital measurements.Plain Language SummaryWe analyzed first-of-its-kind measurements from the weather station on board NASA’s Perseverance rover. These include the incident solar radiation and the amount that is reflected by the surface, as well as the thermal atmospheric forcing (greenhouse effect) and the thermal heat released by the surface. These measurements comprise the radiant energy budget, which is fundamental to understanding Mars’ weather through its impact on temperatures. From the solar measurements, we obtained the surface reflectance for a variety of illuminating and viewing geometries. We found that the thermal atmospheric forcing is weaker than expected from models, likely because of the strong diurnal variation in atmospheric aerosols observed by the rover, which is not accounted for by models. We also found that the surface reflectance is not uniform from all directions, but that it decreases when the Sun is highest in the sky (near noon) and increases when the Sun is directly behind the observer (sunset and sunrise), and thus the shadows cast by their roughness elements (e.g., pores and pits) are minimized. Because models neither consider diurnal variations in atmospheric aerosols nor in the surface reflectance, the results presented here are important to validate model predictions for future human exploration.Key PointsMars Environmental Monitoring Station (MEDA) allows the first in situ determination of the surface radiative budget on Mars, providing key constraints on numerical modelsMEDA allows the direct determination of thermal inertia and albedo, providing ground-truth to satellite retrievalsAlbedo shows a strong non-Lambertian behavior, with minimum values at noon and higher values toward sunrise and sunset | |
dc.publisher | Cambridge Atmos. Cambridge Univ. Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | climate | |
dc.subject.other | surface | |
dc.subject.other | radiation | |
dc.subject.other | Mars 2020 | |
dc.subject.other | albedo | |
dc.subject.other | thermal inertia | |
dc.subject.other | Mars | |
dc.title | Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175750/1/jgre22115.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175750/2/jgre22115_am.pdf | |
dc.identifier.doi | 10.1029/2022JE007537 | |
dc.identifier.source | Journal of Geophysical Research: Planets | |
dc.identifier.citedreference | Putzig, N. E., Mellon, M. T., Kretke, K. A., & Arvidson, R. E. ( 2005 ). Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173 ( 2 ), 325 – 341. https://doi.org/10.1016/j.icarus.2004.08.017 | |
dc.identifier.citedreference | Johnson, J. R., Grundy, W., Lemmon, M. T., Liang, W., Bell, J. F., III, Hayes, A. G., & Deen, R. G. ( 2021 ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 4. Final mission observations. Icarus, 357, 114261. https://doi.org/10.1016/j.icarus.2020.114261 | |
dc.identifier.citedreference | Johnson, J. R., Grundy, W., Lemmon, M. T., Liang, W., Bell, J. F., III, Hayes, A. G., & Deen, R. G. ( 2022 ). Spectrophotometric properties of materials observed by Mastcam on the Mars Science Laboratory at Gale Crater: 1. Bradbury landing to cooperstown. Planetary and Space Science, 222, 105563. https://doi.org/10.1016/j.pss.2022.105563 | |
dc.identifier.citedreference | Johnson, J. R., Grundy, W. M., Lemmon, M. T., Bell, J. F., III, Johnson, M. J., Deen, R. G., et al. ( 2006a ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 1. Spirit. Journal of Geophysical Research, 111 ( E2 ), E02S14. https://doi.org/10.1029/2005je002494 | |
dc.identifier.citedreference | Johnson, J. R., Grundy, W. M., Lemmon, M. T., Bell, J. F., III, Johnson, M. J., Deen, R., et al. ( 2006b ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 2. Opportunity. Journal of Geophysical Research, 111 ( E12 ), E12S16. https://doi.org/10.1029/2006je002762 | |
dc.identifier.citedreference | Johnson, J. R., Kirk, R., Soderblom, L. A., Gaddis, L., Reid, R. J., Britt, D. T., et al. ( 1999 ). Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars. Journal of Geophysical Research, 104 ( E4 ), 8809 – 8830. https://doi.org/10.1029/98je02247 | |
dc.identifier.citedreference | Kahre, M. A., Murphy, J. R., Chanover, N. J., Africano, J. L., Roberts, L. C., & Kervin, P. W. ( 2005 ). Observing the Martian surface albedo pattern: Comparing the AEOS and TES data sets. Icarus, 179 ( 1 ), 55 – 62. https://doi.org/10.1016/j.icarus.2005.06.011 | |
dc.identifier.citedreference | Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., & Palluconi, F. D. ( 1977 ). Thermal and albedo mapping of Mars during the Viking primary mission. Journal of Geophysical Research, 82 ( 28 ), 4249 – 4291. https://doi.org/10.1029/js082i028p04249 | |
dc.identifier.citedreference | Lemmon, M. T., Smith, M. D., Viúdez-Moreiras, D., de la Torre-Juarez, M., Vicente- Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active Martian storm in Jezero Crater. Geophysical Research Letters, 49 ( 17 ), e2022GL100126. https://doi.org/10.1029/2022gl100126 | |
dc.identifier.citedreference | Madeleine, J. B., Forget, F., Millour, E., Montabone, L., & Wolff, M. J. ( 2011 ). Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. Journal of Geophysical Research, 116 ( E11 ), E1101. https://doi.org/10.1029/2011je003855 | |
dc.identifier.citedreference | Maki, J., Thiessen, D., Pourangi, A., Kobzeff, P., Litwin, T., Scherr, L., et al. ( 2012 ). The Mars Science Laboratory engineering cameras. Space Science Reviews, 170 ( 1 ), 77 – 93. https://doi.org/10.1007/s11214-012-9882-4 | |
dc.identifier.citedreference | Maki, J. N., Bell, J. F., III, Herkenhoff, K. E., Squyres, S. W., Kiely, A., Klimesh, M., et al. ( 2003 ). Mars exploration rover engineering cameras. Journal of Geophysical Research, 108 ( E12 ), 8071. https://doi.org/10.1029/2003je002077 | |
dc.identifier.citedreference | Mandon, L., Quantin-Nataf, C., Thollot, P., Mangold, N., Lozac’h, L., Dromart, G., et al. ( 2020 ). Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars. Icarus, 336, 113436. https://doi.org/10.1016/j.icarus.2019.113436 | |
dc.identifier.citedreference | Martínez, G., Valero, F., & Vázquez, L. ( 2009 ). Characterization of the Martian surface layer. Journal of the Atmospheric Sciences, 66 ( 1 ), 187 – 198. https://doi.org/10.1175/2008jas2765.1 | |
dc.identifier.citedreference | Martínez, G. M. ( 2022 ). Downwelling LW flux and aerosol opacity at Jezero Crater, Mars, as derived from MEDA/TIRS. Retrieved from https://repository.hou.usra.edu/handle/20.500.11753/1839 | |
dc.identifier.citedreference | Martínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern near-surface Martian climate: A review of in-situ meteorological data from Viking to curiosity. Space Science Reviews, 212 ( 1–2 ), 295 – 338. https://doi.org/10.1007/s11214-017-0360-x | |
dc.identifier.citedreference | Martínez, G. M., Rennó, N., Fischer, E., Borlina, C. S., Hallet, B., De La Torre Juárez, M., et al. ( 2014 ). Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements. Journal of Geophysical Research: Planets, 119 ( 8 ), 1822 – 1838. https://doi.org/10.1002/2014je004618 | |
dc.identifier.citedreference | Martínez, G. M., Vicente-Retortillo, A., Vasavada, A. R., Newman, C. E., Fischer, E., Rennó, N. O., et al. ( 2021 ). The surface energy budget at gale crater during the first 2500 sols of the Mars Science Laboratory mission. Journal of Geophysical Research: Planets, 126 ( 9 ), e2020JE006804. https://doi.org/10.1029/2020je006804 | |
dc.identifier.citedreference | Mellon, M. T., Jakosky, B. M., Kieffer, H. H., & Christensen, P. R. ( 2000 ). High-resolution thermal inertia mapping from the Mars global surveyor thermal emission spectrometer. Icarus, 148 ( 2 ), 437 – 455. https://doi.org/10.1006/icar.2000.6503 | |
dc.identifier.citedreference | Monin, A. S., & Obukhov, A. M. ( 1954 ). Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnon sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz. Inst. AN SSSR, 24, 163 – 187. | |
dc.identifier.citedreference | Montmessin, F., Gondet, B., Bibring, J. P., Langevin, Y., Drossart, P., Forget, F., & Fouchet, T. ( 2007 ). Hyperspectral imaging of convective CO 2 ice clouds in the equatorial mesosphere of Mars. Journal of Geophysical Research, 112 ( E11 ), E11S90. https://doi.org/10.1029/2007je002944 | |
dc.identifier.citedreference | Munguira, A., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., Martinez, G. M., Newman, C., et al. ( 2022 ). Mars 2020 MEDA measurements of near surface atmospheric temperatures at Jezero. In Seventh international works hop on the Mars atmosphere: Modelling and observations (p. 1509 ). | |
dc.identifier.citedreference | Newman, C. E., Hueso, R., Lemmon, M. T., Munguira, A., Vicente-Retortillo, Á., Apestigue, V., et al. ( 2022 ). The dynamic atmospheric and aeolian environment of Jezero Crater, Mars. Science Advances, 8 ( 21 ), eabn3783. https://doi.org/10.1126/sciadv.abn3783 | |
dc.identifier.citedreference | Pérez-Izquierdo, J., Sebastián, E., Martínez, G. M., Bravo, A., Ramos, M., & Manfredi, J. A. R. ( 2018 ). The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis. Measurement, 122, 432 – 442. https://doi.org/10.1016/j.measurement.2017.12.004 | |
dc.identifier.citedreference | Piqueux, S., Müller, N., Grott, M., Siegler, M., Millour, E., Forget, F., et al. ( 2021 ). Soil thermophysical properties near the insight lander derived from 50 sols of radiometer measurements. Journal of Geophysical Research: Planets, 126 ( 8 ), e2021JE006859. https://doi.org/10.1029/2021je006859 | |
dc.identifier.citedreference | Presley, M. A., & Christensen, P. R. ( 1997 ). The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures. Journal of Geophysical Research, 102 ( E4 ), 9221 – 9229. https://doi.org/10.1029/97je00271 | |
dc.identifier.citedreference | Putzig, N. E., Barratt, E. M., Mellon, M. T., & Michaels, T. I. ( 2013 ). MARSTHERM: A web-based system providing thermophysical analysis tools for Mars research. In AGU Fall Meeting Abstracts, (Vol. 2013, p. P43C-2023 ). | |
dc.identifier.citedreference | Putzig, N. E., & Mellon, M. T. ( 2007 ). Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, 191 ( 1 ), 68 – 94. https://doi.org/10.1016/j.icarus.2007.05.013 | |
dc.identifier.citedreference | Rice, M. S., Reynolds, M., Studer-Ellis, G., Bell, J. F., III, Johnson, J. R., Herkenhoff, K. E., et al. ( 2018 ). The albedo of Mars: Six Mars years of observations from Pancam on the Mars exploration rovers and comparisons to MOC, CTX and HiRISE. Icarus, 314, 159 – 174. https://doi.org/10.1016/j.icarus.2018.05.017 | |
dc.identifier.citedreference | Rodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 perseverance rover Mars environmental Dynamics analyzer (MEDA) experiment data record (EDR) and reduced data record (RDR) data products archive bundle. PDS Atmospheres Node, 10, 1522849. https://doi.org/10.17189/1522849 | |
dc.identifier.citedreference | Rodríguez-Manfredi, J. A., De la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al. ( 2021 ). The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 1 – 86. https://doi.org/10.1007/s11214-021-00816-9 | |
dc.identifier.citedreference | Sánchez-Lavega, A., del Rio-Gaztelurrrutia, T., Hueso, R., de la Torre Juárez, M., Martínez, G. M., Harri, A. M., et al. ( 2022 ). Mars 2020 Perseverance rover studies of the Martian atmosphere over Jezero from 1 pressure measurements. Journal of Geophysical Research: Planets, 128 ( 1 ), e2022JE007480. https://doi.org/10.1029/2022JE007480 | |
dc.identifier.citedreference | Savijärvi, H., & Määttänen, A. ( 2010 ). Boundary-layer simulations for the Mars Phoenix lander site. Quarterly Journal of the Royal Meteorological Society, 136 ( 651 ), 1497 – 1505. https://doi.org/10.1002/qj.650 | |
dc.identifier.citedreference | Savijärvi, H., Martinez, G., Harri, A. M., & Paton, M. ( 2020 ). Curiosity observations and column model integrations for a Martian global dust event. Icarus, 337, 113515. https://doi.org/10.1016/j.icarus.2019.113515 | |
dc.identifier.citedreference | Savijärvi, H. I., & Harri, A. M. ( 2021 ). Water vapor adsorption on Mars. Icarus, 357, 114270. https://doi.org/10.1016/j.icarus.2020.114270 | |
dc.identifier.citedreference | Savijärvi, H. I., Martínez, G., & Harri, A.-M. ( 2022 ). Surface energy fluxes and temperatures at Jezero Crater, Mars. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2022je007438 | |
dc.identifier.citedreference | Sebastián, E., Armiens, C., Gomez-Elvira, J., Zorzano, M. P., Martinez-Frias, J., Esteban, B., & Ramos, M. ( 2010 ). The rover environmental monitoring station ground temperature sensor: A pyrometer for measuring ground temperature on Mars. Sensors, 10 ( 10 ), 9211 – 9231. https://doi.org/10.3390/s101009211 | |
dc.identifier.citedreference | Sebastián, E., Martínez, G., Ramos, M., Haenschke, F., Ferrándiz, R., Fernández, M., & Manfredi, J. A. R. ( 2020 ). Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA’s Mars 2020 mission. Measurement, 164, 107968. https://doi.org/10.1016/j.measurement.2020.107968 | |
dc.identifier.citedreference | Sebastián, E., Martínez, G., Ramos, M., Perez-Grande, I., Sobrado, J., & Manfredi, J. A. R. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006 | |
dc.identifier.citedreference | Shepard, M. K. ( 2017 ). Introduction to planetary photometry. Cambridge University Press. | |
dc.identifier.citedreference | Smith, M. D., Martínez, G. M., Sebastián, E., Lemmon, M. T., Wolff, M. J., Apéstigue, V., et al. ( 2022 ). Diurnal and seasonal variations of aerosol optical depth observed by MEDA/TIRS at Jezero Crater, Mars. Journal of Geophysical Research: Planets, e2022JE007560. https://doi.org/10.1029/2022je007560 | |
dc.identifier.citedreference | Smith, M. D., Wolff, M. J., Spanovich, N., Ghosh, A., Banfield, D., Christensen, P. R., et al. ( 2006 ). One Martian year of atmospheric observations using MER mini-TES. Journal of Geophysical Research, 111 ( E12 ), E12S13. https://doi.org/10.1029/2006je002770 | |
dc.identifier.citedreference | Spohn, T., Grott, M., Smrekar, S. E., Knollenberg, J., Hudson, T. L., Krause, C., et al. ( 2018 ). The Heat flow and physical properties package (HP3) for the InSight mission. Space Science Reviews, 214 ( 5 ), 33. https://doi.org/10.1007/s11214-018-0531-4 | |
dc.identifier.citedreference | Stull, R. ( 1988 ). An introduction to boundary layer meteorology (p. 670 ). Springer. | |
dc.identifier.citedreference | Sutton, J. L., Leovy, C. B., & Tillman, J. E. ( 1978 ). Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites. Journal of the Atmospheric Sciences, 35 ( 12 ), 2346 – 2355. https://doi.org/10.1175/1520-0469(1978)035<2346:dvotms>2.0.co;2 | |
dc.identifier.citedreference | Toledo, D., Apéstigue, V., Arruego, I., Lemmon, M., Gómez, L., de Montoro, F., et al. ( 2023 ). Dust devil frequency of occurrence and radiative effects at Jezero Crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). Journal of Geophysical Research: Planets. https://doi.org/10.1029/2022JE007494 | |
dc.identifier.citedreference | Vasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. ( 2017 ). Thermophysical properties along Curiosity’s traverse in Gale Crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372 – 386. https://doi.org/10.1016/j.icarus.2016.11.035 | |
dc.identifier.citedreference | Vicente-Retortillo, A., Martínez, G. M., Lemmon, M. T., Hueso, R., Sullivan, R., Newman, C. E., et al. ( 2022 ). Changes in surface albedo induced by dust devils and the MY 36 Ls 155 dust storm at Jezero Crater. In Seventh international workshop on the Mars atmosphere: Modelling and observations (p. 1512 ). | |
dc.identifier.citedreference | Vicente-Retortillo, Á., Martínez, G. M., Renno, N., Newman, C. E., Ordonez-Etxeberria, I., Lemmon, M. T., et al. ( 2018 ). Seasonal deposition and lifting of dust on Mars as observed by the Curiosity rover. Scientific Reports, 8 ( 1 ), 1 – 8. https://doi.org/10.1038/s41598-018-35946-8 | |
dc.identifier.citedreference | Vicente-Retortillo, A., Martínez, G. M., Rennó, N. O., Lemmon, M. T., de la Torre-Juárez, M., & Gómez-Elvira, J. ( 2020 ). In situ UV measurements by MSL/REMS: Dust deposition and angular response corrections. Space Science Reviews, 216 ( 5 ), 1 – 19. https://doi.org/10.1007/s11214-020-00722-6 | |
dc.identifier.citedreference | Vicente-Retortillo, Á., Valero, F., Vázquez, L., & Martínez, G. M. ( 2015 ). A model to calculate solar radiation fluxes on the Martian surface. Journal of Space Weather and Space Climate, 5, A33. https://doi.org/10.1051/swsc/2015035 | |
dc.identifier.citedreference | Vincendon, M., Audouard, J., Altieri, F., & Ody, A. ( 2015 ). Mars Express measurements of surface albedo changes over 2004–2010. Icarus, 251, 145 – 163. https://doi.org/10.1016/j.icarus.2014.10.029 | |
dc.identifier.citedreference | Viúdez-Moreiras, D., de la Torre, D., Gómez-Elvira, J., Lorenz, R. D., Apéstigue, V., Guzewich, S., et al. ( 2022 ). Winds at the Mars 2020 landing site. Part 2: Wind variability and turbulence. Journal of Geophysical Research: Planets. e2022JE007523. https://doi.org/10.1029/2022JE007523 | |
dc.identifier.citedreference | Viúdez-Moreiras, D., Lemmon, M., Newman, C. E., Guzewich, S., Mischna, M., Gómez-Elvira, J., et al. ( 2022 ). Winds at the Mars 2020 landing site. Part 1: Near-surface wind patterns at Jezero Crater. Journal of Geophysical Research: Planets. e2022JE007522. https://doi.org/10.1029/2022JE007522 | |
dc.identifier.citedreference | Wolff, M. J., Lopéz-Valverde, M. I. G. U. E. L., Madeleine, J. B., Wilson, R. J., Smith, M. D., Fouchet, T., & Delory, G. T. ( 2017 ). Radiative process: Techniques and applications. The Atmosphere and Climate of Mars, 18, 106. | |
dc.identifier.citedreference | Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115 ( E3 ), E00E14. https://doi.org/10.1029/2009je003420 | |
dc.identifier.citedreference | Zhang, Y. F., Wang, X. P., Hu, R., Pan, Y. X., & Zhang, H. ( 2014 ). Variation of albedo to soil moisture for sand dunes and biological soil crusts in arid desert ecosystems. Environmental Earth Sciences, 71 ( 3 ), 1281 – 1288. https://doi.org/10.1007/s12665-013-2532-7 | |
dc.identifier.citedreference | Apéstigue, V., Gonzalo, A., Jiménez, J. J., Boland, J., Lemmon, M., de Mingo, J. R., et al. ( 2022 ). Radiation and dust sensor for Mars environmental dynamic analyzer onboard M2020 rover. Sensors, 22 ( 8 ), 2907. https://doi.org/10.3390/s22082907 | |
dc.identifier.citedreference | Banfield, D., Spiga, A., Newman, C., Forget, F., Lemmon, M., Lorenz, R., et al. ( 2020 ). The atmosphere of Mars as observed by InSight. Nature Geoscience, 13 ( 3 ), 190 – 198. | |
dc.identifier.citedreference | Bell, J. F., III, Rice, M. S., Johnson, J. R., & Hare, T. M. ( 2008 ). Surface albedo observations at Gusev crater and Meridiani Planum, Mars. Journal of Geophysical Research, 113 ( E6 ), E06S18. https://doi.org/10.1029/2007je002976 | |
dc.identifier.citedreference | Chide, B., Bertrand, T., Lorenz, R. D., Munguira, A., Hueso, R., Sánchez-Lavega, A., et al. ( 2022 ). Acoustics reveals short-term air temperature fluctuations near Mars’ surface. Geophysical Research Letters, 49 ( 21 ), e2022GL100333. https://doi.org/10.1029/2022gl100333 | |
dc.identifier.citedreference | Christensen, P. R. ( 1988 ). Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion. Journal of Geophysical Research, 93 ( B7 ), 7611 – 7624. https://doi.org/10.1029/jb093ib07p07611 | |
dc.identifier.citedreference | Christensen, P. R., Banfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H., Titus, T. N., et al. ( 2001 ). Mars Global surveyor thermal emission spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106 ( E10 ), 23823 – 23871. https://doi.org/10.1029/2000je001370 | |
dc.identifier.citedreference | Christensen, P. R., Engle, E., Anwar, S., Dickenshied, S., Noss, D., Gorelick, N., & Weiss-Malik, M. ( 2009 ). JMARS-a planetary GIS. In AGU fall meeting Abstracts (Vol. 2009, p. IN22A-06 ). | |
dc.identifier.citedreference | Christian, J. R., Arvidson, R. E., O’Sullivan, J. A., Vasavada, A. R., & Weitz, C. M. ( 2022 ). CRISM-based high spatial resolution thermal inertia mapping along curiosity’s traverses in Gale Crater. Journal of Geophysical Research: Planets, 127 ( 5 ), e2021JE007076. https://doi.org/10.1029/2021je007076 | |
dc.identifier.citedreference | Creecy, E., Li, L., Jiang, X., Smith, M., Kass, D., Kleinböhl, A., & Martínez, G. ( 2022 ). Mars’ emitted energy and seasonal energy imbalance. Proceedings of the National Academy of Sciences of the United States of America, 119 ( 21 ), e2121084119. https://doi.org/10.1073/pnas.2121084119 | |
dc.identifier.citedreference | Edwards, C. S., Piqueux, S., Hamilton, V. E., Fergason, R. L., Herkenhoff, K. E., Vasavada, A. R., et al. ( 2018 ). The thermophysical properties of the Bagnold Dunes, Mars: Ground-truthing orbital data. Journal of Geophysical Research: Planets, 123 ( 5 ), 1307 – 1326. https://doi.org/10.1029/2017je005501 | |
dc.identifier.citedreference | Elsasser, W. M. ( 1942 ). Heat transfer by infrared radiation in the atmosphere. Harvard Meteor. Studies, 6, 107. | |
dc.identifier.citedreference | Farley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., et al. ( 2020 ). Mars 2020 mission overview. Space Science Reviews, 216 ( 8 ), 1 – 41. https://doi.org/10.1007/s11214-020-00762-y | |
dc.identifier.citedreference | Fenton, L. K., Geissler, P. E., & Haberle, R. M. ( 2007 ). Global warming and climate forcing by recent albedo changes on Mars. Nature, 446 ( 7136 ), 646 – 649. https://doi.org/10.1038/nature05718 | |
dc.identifier.citedreference | Fergason, R., Christensen, P., Golombek, M., & Parker, T. ( 2012 ). Surface properties of the Mars Science Laboratory candidate landing sites: Characterization from orbit and predictions. Space Science Reviews, 170 ( 1–4 ), 739 – 773. https://doi.org/10.1007/s11214-012-9891-3 | |
dc.identifier.citedreference | Fergason, R. L., Christensen, P. R., Bell, J. F., III, Golombek, M. P., Herkenhoff, K. E., & Kieffer, H. H. ( 2006 ). Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia. Journal of Geophysical Research, 111 ( E2 ), E02S21. https://doi.org/10.1029/2005JE002583 | |
dc.identifier.citedreference | Fergason, R. L., Christensen, P. R., & Kieffer, H. H. ( 2006 ). High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications. Journal of Geophysical Research, 111 ( E12 ), E12004. https://doi.org/10.1029/2006je002735 | |
dc.identifier.citedreference | Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. ( 1999 ). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104 ( E10 ), 24155 – 24175. https://doi.org/10.1029/1999je001025 | |
dc.identifier.citedreference | Garrat, J. R. ( 1992 ). The atmospheric boundary layer. Cambridge Atmos. Cambridge Univ. Press. | |
dc.identifier.citedreference | Geissler, P. E., Fenton, L. K., Enga, M. T., & Mukherjee, P. ( 2016 ). Orbital monitoring of Martian surface changes. Icarus, 278, 279 – 300. https://doi.org/10.1016/j.icarus.2016.05.023 | |
dc.identifier.citedreference | Grott, M., Spohn, T., Knollenberg, J., Krause, C., Hudson, T. L., Piqueux, S., et al. ( 2021 ). Thermal conductivity of the Martian soil at the InSight landing site from HP 3 active heating experiments. Journal of Geophysical Research: Planets, 126 ( 7 ), e2021JE006861. https://doi.org/10.1029/2021je006861 | |
dc.identifier.citedreference | Guinness, E. A., Arvidson, R. E., Clark, I. H., & Shepard, M. K. ( 1997 ). Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking lander sites. Journal of Geophysical Research, 102 ( E12 ), 28687 – 28703. https://doi.org/10.1029/97je03018 | |
dc.identifier.citedreference | Haberle, R. M., Houben, H. C., Hertenstein, R., & Herdtle, T. ( 1993 ). A boundary-layer model for Mars: Comparison with Viking lander and entry data. Journal of the Atmospheric Sciences, 50 ( 11 ), 1544 – 1559. https://doi.org/10.1175/1520-0469(1993)050<1544:ablmfm>2.0.co;2 | |
dc.identifier.citedreference | Hamilton, V. E., Vasavada, A. R., Sebastián, E., de la Torre Juárez, M., Ramos, M., Armiens, C., et al. ( 2014 ). Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research: Planets, 119 ( 4 ), 745 – 770. https://doi.org/10.1002/2013je004520 | |
dc.identifier.citedreference | Hébrard, E., Listowski, C., Coll, P., Marticorena, B., Bergametti, G., Määttänen, A., et al. ( 2012 ). An aerodynamic roughness length map derived from extended Martian rock abundance data. Journal of Geophysical Research, 117 ( E4 ), E04008. https://doi.org/10.1029/2011je003942 | |
dc.identifier.citedreference | Hieta, M., Polkko, J., Jaakonaho, I., Genzer, M., Harri, A. M., Martinez, G. M., et al. ( 2022 ). First results of the relative humidity sensor on board M2020 perseverance rover. In Seventh international workshop on the Mars atmosphere: Modelling and observations (p. 3519 ). | |
dc.identifier.citedreference | Hueso, R., Newman, C. E., del Rio-Gaztelurrutia, T., Munguira, A., Sanchez-Lavega, A., Toledo, D., et al. ( 2022 ). Convective vortices and dust devils detected and characterized by Mars 2020. Journal of Geophysical Research: Planets, e2022JE007516. https://doi.org/10.1029/2022JE007516. (under minor revisions; this issue). | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.