Show simple item record

Formal Cycloadditions Driven by the Homolytic Opening of Strained, Saturated Ring Systems

dc.contributor.authorHarmata, Alexander S.
dc.contributor.authorRoldan, B. J.
dc.contributor.authorStephenson, Corey R. J.
dc.date.accessioned2023-02-01T18:57:47Z
dc.date.available2024-02-01 13:57:42en
dc.date.available2023-02-01T18:57:47Z
dc.date.issued2023-01-23
dc.identifier.citationHarmata, Alexander S.; Roldan, B. J.; Stephenson, Corey R. J. (2023). "Formal Cycloadditions Driven by the Homolytic Opening of Strained, Saturated Ring Systems." Angewandte Chemie 135(4): n/a-n/a.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/175753
dc.description.abstractThe field of strain-driven, radical formal cycloadditions is experiencing a surge in activity motivated by a renaissance in free radical chemistry and growing demand for sp3-rich ring systems. The former has been driven in large part by the rise of photoredox catalysis, and the latter by adoption of the “Escape from Flatland” concept in medicinal chemistry. In the years since these broader trends emerged, dozens of formal cycloadditions, including catalytic, asymmetric variants, have been developed that operate via radical mechanisms. While cyclopropanes have been studied most extensively, a variety of strained ring systems are amenable to the design of analogous reactions. Many of these processes generate lucrative, functionally decorated sp3-rich ring systems that are difficult to access by other means. Herein, we summarize recent efforts in this area and analyze the state of the field.Ring strain provides a driving force for the formation of reactive intermediates. Bonds of strained rings may undergo homolysis upon thermolysis, photolysis, radical addition, or following single electron transfer events. Regardless of homolytic method, intermediates competent in formal cycloaddition can be formed. Herein, we describe formal cycloadditions of strained systems operating via radical pathways.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherStrained Rings
dc.subject.otherCycloaddition
dc.subject.otherStrain-Driven
dc.subject.otherRadicals
dc.titleFormal Cycloadditions Driven by the Homolytic Opening of Strained, Saturated Ring Systems
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175753/1/ange202213003_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175753/2/ange202213003.pdf
dc.identifier.doi10.1002/ange.202213003
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceJ. Du, T. P. Yoon, J. Am. Chem. Soc. 2009, 131, 14604 – 14605.
dc.identifier.citedreferenceT. H. Nguyen, S. A. Morris, N. Zheng, Adv. Synth. Catal. 2014, 356, 2831 – 2837.
dc.identifier.citedreferenceB. Muriel, A. Gagnebin, J. Waser, Chem. Sci. 2019, 10, 10716 – 10722.
dc.identifier.citedreferenceJ. Wang, N. Zheng, Angew. Chem. Int. Ed. 2015, 54, 11424 – 11427; Angew. Chem. 2015, 127, 11586 – 11589.
dc.identifier.citedreferenceQ. Wang, N. Zheng, ACS Catal. 2017, 7, 4197 – 4201.
dc.identifier.citedreferenceT. Hashimoto, K. Takino, K. Hato, K. Maruoka, Angew. Chem. Int. Ed. 2016, 55, 8081 – 8085; Angew. Chem. 2016, 128, 8213 – 8217.
dc.identifier.citedreferenceJ. M. Ryss, A. K. Turek, S. J. Miller, Org. Lett. 2018, 20, 1621 – 1625; A. K. Turek, M. H. Sak, S. J. Miller, J. Am. Chem. Soc. 2021, 143, 16173 – 16183.
dc.identifier.citedreferenceD.-F. Chen, C. H. Chrisman, G. M. Miyake, ACS Catal. 2020, 10, 2609 – 2614.
dc.identifier.citedreferenceG. Archer, P. Cavalère, M. Médebielle, J. Merad, Angew. Chem. Int. Ed. 2022, 61, e202205596; Angew. Chem. 2022, 134, e202205596.
dc.identifier.citedreferenceQ.-Q. Zhao, X.-S. Zhou, S.-H. Xu, Y.-L. Wu, W.-J. Xiao, J.-R. Chen, Org. Lett. 2020, 22, 2470 – 2475.
dc.identifier.citedreferenceA. Luque, J. Groß, T. J. B. Zähringer, C. Kerzig, T. Opatz, Chem. Eur. J. 2022, 28, e202104329.
dc.identifier.citedreferenceZ. Lu, J. D. Parrish, T. P. Yoon, Tetrahedron 2014, 70, 4270 – 4278.
dc.identifier.citedreferenceZ. Lu, M. Shen, T. P. Yoon, J. Am. Chem. Soc. 2011, 133, 1162 – 1164.
dc.identifier.citedreferenceA. G. Amador, E. M. Sherbrook, Z. Lu, T. P. Yoon, Synthesis 2018, 50, 539 – 547; A. G. Amador, E. M. Sherbrook, T. P. Yoon, J. Am. Chem. Soc. 2016, 138, 4722 – 4725.
dc.identifier.citedreferenceT. H. Nguyen, S. Maity, N. Zheng, Beilstein J. Org. Chem. 2014, 10, 975 – 980.
dc.identifier.citedreferenceA. G. Amador, E. M. Sherbrook, T. P. Yoon, Asian J. Org. Chem. 2019, 8, 978 – 985.
dc.identifier.citedreferenceE. L. Tyson, E. P. Farney, T. P. Yoon, Org. Lett. 2012, 14, 1110 – 1113.
dc.identifier.citedreferenceX. Huang, J. Lin, T. Shen, K. Harms, M. Marchini, P. Ceroni, E. Meggers, Angew. Chem. Int. Ed. 2018, 57, 5454 – 5458; Angew. Chem. 2018, 130, 5552 – 5556.
dc.identifier.citedreferenceW. Hao, X. Wu, J. Z. Sun, J. C. Siu, S. N. MacMillan, S. Lin, J. Am. Chem. Soc. 2017, 139, 12141 – 12144.
dc.identifier.citedreferenceW. Hao, J. H. Harenberg, X. Wu, S. N. MacMillan, S. Lin, J. Am. Chem. Soc. 2018, 140, 3514 – 3517.
dc.identifier.citedreferenceS. G. Robinson, X. Wu, B. Jiang, M. S. Sigman, S. Lin, J. Am. Chem. Soc. 2020, 142, 18471 – 18482.
dc.identifier.citedreferenceS. Agasti, N. A. Beattie, J. J. W. McDouall, D. J. Procter, J. Am. Chem. Soc. 2021, 143, 3655 – 3661.
dc.identifier.citedreferenceS. Agasti, F. Beltran, E. Pye, N. Kaltsoyannis, G. Crisenza, D. Procter, ChemRxiv. Cambridge: Cambridge Open Engage 2022, DOI 10.26434/chemrxiv-2022-v93kv.
dc.identifier.citedreferenceR. Guo, Y.-C. Chang, L. Herter, C. Salome, S. E. Braley, T. C. Fessard, M. K. Brown, J. Am. Chem. Soc. 2022, 144, 7988 – 7994.
dc.identifier.citedreferenceA. Karadeolian, M. A. Kerr, J. Org. Chem. 2007, 72, 10251 – 10253.
dc.identifier.citedreferenceH. K. Hall, C. D. Smith, E. P. Blanchard, S. C. Cherkofsky, J. B. Sieja, J. Am. Chem. Soc. 1971, 93, 121 – 130.
dc.identifier.citedreferenceR. Kleinmans, T. Pinkert, S. Dutta, T. O. Paulisch, H. Keum, C. G. Daniliuc, F. Glorius, Nature 2022, 605, 477 – 482.
dc.identifier.citedreferenceA. Gansäuer, B. Rinker, M. Pierobon, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, Angew. Chem. Int. Ed. 2003, 42, 3687 – 3690; Angew. Chem. 2003, 115, 3815 – 3818.
dc.identifier.citedreferenceY. Li, F. Chen, S. Zhu, L. Chu, Org. Chem. Front. 2021, 8, 2196 – 2202.
dc.identifier.citedreferenceF. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752 – 6756; F. Lovering, MedChemComm 2013, 4, 515 – 519.
dc.identifier.citedreferenceG. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404 – 9432.
dc.identifier.citedreferenceT. F. Schneider, J. Kaschel, D. B. Werz, Angew. Chem. Int. Ed. 2014, 53, 5504 – 5523; Angew. Chem. 2014, 126, 5608 – 5628.
dc.identifier.citedreferenceP. G. Gassman, Acc. Chem. Res. 1971, 4, 128 – 136; A. D. Meijere, H. Wenck, F. Seyed-Mahdavi, H. G. Viehe, V. Gallez, I. Erden, Tetrahedron 1986, 42, 1291 – 1297.
dc.identifier.citedreferenceH.-M. Huang, M. H. Garduño-Castro, C. Morrill, D. J. Procter, Chem. Soc. Rev. 2019, 48, 4626 – 4638.
dc.identifier.citedreferenceS. T. Sivanandan, R. Bharath Krishna, T. V. Baiju, C. Mohan, Eur. J. Org. Chem. 2021, 6781 – 6805; M.-M. Wang, T. V. T. Nguyen, J. Waser, Chem. Soc. Rev. 2022, 51, 7344 – 7357.
dc.identifier.citedreferenceY. Takemoto, S.-i. Furuse, H. Koike, T. Ohra, C. Iwata, H. Ohishi, Tetrahedron Lett. 1995, 36, 4085 – 4088.
dc.identifier.citedreferenceT. Itoh, H. Ohara, K. Kubo, M. Nakamura, E. Nakamura, Heterocycles 2000, 52, 505 – 510.
dc.identifier.citedreferenceK. Wimalasena, H. B. Wickman, M. P. D. Mahindaratne, Eur. J. Org. Chem. 2001, 3811 – 3817; C. Madelaine, Y. Six, O. Buriez, Angew. Chem. Int. Ed. 2007, 46, 8046 – 8049; Angew. Chem. 2007, 119, 8192 – 8195; S. A. Morris, J. Wang, N. Zheng, Acc. Chem. Res. 2016, 49, 1957 – 1968; S. Budde, F. Goerdeler, J. Floß, P. Kreitmeier, E. F. Hicks, O. Moscovitz, P. H. Seeberger, H. M. L. Davies, O. Reiser, Org. Chem. Front. 2020, 7, 1789 – 1795.
dc.identifier.citedreferenceS. Maity, M. Zhu, R. S. Shinabery, N. Zheng, Angew. Chem. Int. Ed. 2012, 51, 222 – 226; Angew. Chem. 2012, 124, 226 – 230.
dc.identifier.citedreferenceY. Cai, J. Wang, Y. Zhang, Z. Li, D. Hu, N. Zheng, H. Chen, J. Am. Chem. Soc. 2017, 139, 12259 – 12266.
dc.identifier.citedreferenceQ. Wang, Q. Wang, Y. Zhang, Y. M. Mohamed, C. Pacheco, N. Zheng, R. N. Zare, H. Chen, Chem. Sci. 2021, 12, 969 – 975.
dc.identifier.citedreferenceY. Kuang, Y. Ning, J. Zhu, Y. Wang, Org. Lett. 2018, 20, 2693 – 2697; W. Liu, Y. Kuang, Z. Wang, J. Zhu, Y. Wang, Beilstein J. Org. Chem. 2019, 15, 542 – 550.
dc.identifier.citedreferenceM. Zhang, P. Xu, A. J. Vendola, C. Allais, A.-M. Dechert Schmitt, R. A. Singer, J. P. Morken, Angew. Chem. Int. Ed. 2022, 61, e202205454; Angew. Chem. 2022, 134, e202205454.
dc.identifier.citedreferenceY. Yin, Y. Li, T. P. Gonçalves, Q. Zhan, G. Wang, X. Zhao, B. Qiao, K.-W. Huang, Z. Jiang, J. Am. Chem. Soc. 2020, 142, 19451 – 19456.
dc.identifier.citedreferenceY. Dai, S. Liang, G. Zeng, H. Huang, X. Zhao, S. Cao, Z. Jiang, Chem. Sci. 2022, 13, 3787 – 3795.
dc.identifier.citedreferenceL. Mollari, M. A. Valle-Amores, A. M. Martínez-Gualda, L. Marzo, A. Fraile, J. Aleman, Chem. Commun. 2022, 58, 1334 – 1337.
dc.identifier.citedreferenceL. Barriault, M. Zidan, ChemRxiv. Cambridge: Cambridge Open Engage 2022, DOI 10.26434/chemrxiv-2022-tq6zk.
dc.identifier.citedreferenceJ. D. Ha, J. Lee, S. C. Blackstock, J. K. Cha, J. Org. Chem. 1998, 63, 8510 – 8514; Y. Takemoto, S. Yamagata, S.-i. Furuse, C. Iwata, Chem. Commun. 1998, 651 – 652.
dc.identifier.citedreferenceD. Staveness, T. M. Sodano, K. Li, E. A. Burnham, K. D. Jackson, C. R. J. Stephenson, Chem 2019, 5, 215 – 226.
dc.identifier.citedreferenceA. Allen, A. Tharp, C. Stephenson, ChemRxiv. Cambridge: Cambridge Open Engage 2022, DOI 10.26434/chemrxiv-2022-42h36.
dc.identifier.citedreferenceD. H. White, A. Noble, K. I. Booker-Milburn, V. K. Aggarwal, Org. Lett. 2021, 23, 3038 – 3042.
dc.identifier.citedreferenceD. Saha, I. M. Taily, N. Banerjee, P. Banerjee, Chem. Commun. 2022, 58, 5459 – 5462.
dc.identifier.citedreferenceM. Kumar, S. Verma, V. Mishra, O. Reiser, A. K. Verma, J. Org. Chem. 2022, 87, 6263 – 6272.
dc.identifier.citedreferenceD. Uraguchi, Y. Kimura, F. Ueoka, T. Ooi, J. Am. Chem. Soc. 2020, 142, 19462 – 19467.
dc.identifier.citedreferenceC. Wang, X. Ren, H. Xie, Z. Lu, Chem. Eur. J. 2015, 21, 9676 – 9680.
dc.identifier.citedreferenceD. Sampedro, ChemPhysChem 2006, 7, 2456 – 2459; A. Soldevilla, D. Sampedro, P. J. Campos, M. A. Rodríguez, J. Org. Chem. 2005, 70, 6976 – 6979; P. J. Campos, A. Soldevilla, D. Sampedro, M. A. Rodríguez, Org. Lett. 2001, 3, 4087 – 4089; D. Sampedro, A. Soldevilla, M. A. Rodríguez, P. J. Campos, M. Olivucci, J. Am. Chem. Soc. 2005, 127, 441 – 448.
dc.identifier.citedreferenceD. Staveness, J. L. Collins Iii, R. C. McAtee, C. R. J. Stephenson, Angew. Chem. Int. Ed. 2019, 58, 19000 – 19006; Angew. Chem. 2019, 131, 19176 – 19182.
dc.identifier.citedreferenceT. Kikuchi, K. Yamada, T. Yasui, Y. Yamamoto, Org. Lett. 2021, 23, 4710 – 4714.
dc.identifier.citedreferenceJ. L. Collins, D. Staveness, M. J. Sowden, C. R. J. Stephenson, Org. Lett. 2022, 24, 4344 – 4348.
dc.identifier.citedreferenceA. S. Harmata, T. E. Spiller, M. J. Sowden, C. R. J. Stephenson, J. Am. Chem. Soc. 2021, 143, 21223 – 21228.
dc.identifier.citedreferenceŁ. Woźniak, G. Magagnano, P. Melchiorre, Angew. Chem. Int. Ed. 2018, 57, 1068 – 1072; Angew. Chem. 2018, 130, 1080 – 1084.
dc.identifier.citedreferenceA. Hu, Y. Chen, J.-J. Guo, N. Yu, Q. An, Z. Zuo, J. Am. Chem. Soc. 2018, 140, 13580 – 13585.
dc.identifier.citedreferenceJ.-J. Guo, A. Hu, Y. Chen, J. Sun, H. Tang, Z. Zuo, Angew. Chem. Int. Ed. 2016, 55, 15319 – 15322; Angew. Chem. 2016, 128, 15545 – 15548.
dc.identifier.citedreferenceX. Gu, X. Li, Y. Qu, Q. Yang, P. Li, Y. Yao, Chem. Eur. J. 2013, 19, 11878 – 11882.
dc.identifier.citedreferenceD. A. Singleton, K. M. Church, J. Org. Chem. 1990, 55, 4780 – 4782; C. C. Huval, D. A. Singleton, J. Org. Chem. 1994, 59, 2020 – 2024; C. C. S. Huval, K. M. Church, D. A. Singleton, Synlett 1994, 1994, 273 – 274; D. A. Singleton, C. C. Huval, K. M. Church, E. S. Priestley, Tetrahedron Lett. 1991, 32, 5765 – 5768; C. C. Huval, D. A. Singleton, Tetrahedron Lett. 1994, 35, 689 – 690.
dc.identifier.citedreferenceK. S. Feldman, R. E. Ruckle, A. L. Romanelli, Tetrahedron Lett. 1989, 30, 5845 – 5848; K. S. Feldman, A. L. Romanelli, R. E. Ruckle, G. Jean, J. Org. Chem. 1992, 57, 100 – 110; K. S. Feldman, R. E. Simpson, Tetrahedron Lett. 1989, 30, 6985 – 6988; K. S. Feldman, R. E. Simpson, J. Am. Chem. Soc. 1989, 111, 4878 – 4886; K. Miura, K. Fugami, K. Oshima, K. Utimoto, Tetrahedron Lett. 1988, 29, 5135 – 5138.
dc.identifier.citedreferenceT. Hashimoto, Y. Kawamata, K. Maruoka, Nat. Chem. 2014, 6, 702 – 705.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.