Show simple item record

Experimental validation of Monte Carlo dosimetry for therapeutic beta emitters with radiochromic film in a 3D-printed phantom

dc.contributor.authorVan, Benjamin
dc.contributor.authorDewaraja, Yuni K.
dc.contributor.authorNiedbala, Jeremy T.
dc.contributor.authorRosebush, Gerrid
dc.contributor.authorKazmierski, Matthew
dc.contributor.authorHubers, David
dc.contributor.authorMikell, Justin K.
dc.contributor.authorWilderman, Scott J.
dc.date.accessioned2023-02-01T18:58:18Z
dc.date.available2024-02-01 13:58:16en
dc.date.available2023-02-01T18:58:18Z
dc.date.issued2023-01
dc.identifier.citationVan, Benjamin; Dewaraja, Yuni K.; Niedbala, Jeremy T.; Rosebush, Gerrid; Kazmierski, Matthew; Hubers, David; Mikell, Justin K.; Wilderman, Scott J. (2023). "Experimental validation of Monte Carlo dosimetry for therapeutic beta emitters with radiochromic film in a 3D-printed phantom." Medical Physics 50(1): 540-556.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/175766
dc.description.abstractPurposeValidation of dosimetry software, such as Monte Carlo (MC) radiation transport codes used for patient-specific absorbed dose estimation, is critical prior to their use in clinical decision making. However, direct experimental validation in the clinic is generally not performed for low/medium-energy beta emitters used in radiopharmaceutical therapy (RPT) due to the challenges of measuring energy deposited by short-range particles. Our objective was to design a practical phantom geometry for radiochromic film (RF)-based absorbed dose measurements of beta-emitting radionuclides and perform experiments to directly validate our in-house developed Dose Planning Method (DPM) MC code dedicated to internal dosimetry.MethodsThe experimental setup was designed for measuring absorbed dose from beta emitters that have a range sufficiently penetrating to ∼200 μm in water as well as to capture any photon contributions to absorbed dose. Assayed 177Lu and 90Y liquid sources, 13–450 MBq estimated to deliver 0.5–10 Gy to the sensitive layer of the RF, were injected into the cavity of two 3D-printed half-cylinders that had been sealed with 12.7 μm or 25.4 μm thick Kapton Tape. A 3.8 × 6 cm strip of GafChromic EBT3 RF was sandwiched between the two taped half-cylinders. After 2–48 h exposures, films were retrieved and wipe tested for contamination. Absorbed dose to the RF was measured using a commercial triple-channel dosimetry optimization method and a calibration generated via 6 MV photon beam. Profiles were analyzed across the central 1 cm2 area of the RF for validation. Eleven experiments were completed with 177Lu and nine with 90Y both in saline and a bone equivalent solution. Depth dose curves were generated for 177Lu and 90Y stacking multiple RF strips between a single filled half-cylinder and an acrylic backing. All experiments were modeled in DPM to generate voxelized MC absorbed dose estimates. We extended our study to benchmark general purpose MC codes MCNP6 and EGSnrc against the experimental results as well.ResultsA total of 20 experiments showed that both the 3D-printed phantoms and the final absorbed dose values were reproducible. The agreement between the absorbed dose estimates from the RF measurements and DPM was on average −4.0% (range −10.9% to 3.2%) for all single film 177Lu experiments and was on average −1.0% (range −2.7% to 0.7%) for all single film 90Y experiments. Absorbed depth dose estimates by DPM agreed with RF on average 1.2% (range −8.0% to 15.2%) across all depths for 177Lu and on average 4.0% (range −5.0% to 9.3%) across all depths for 90Y. DPM absorbed dose estimates agreed with estimates from EGSnrc and MCNP across the board, within 4.7% and within 3.4% for 177Lu and 90Y respectively, for all geometries and across all depths. MC showed that absorbed dose to RF from betas was greater than 92% of the total (betas + other radiations) for 177Lu, indicating measurement of dominant beta contribution with our design.ConclusionsThe reproducible results with a RF insert in a simple phantom designed for liquid sources demonstrate that this is a reliable setup for experimentally validating dosimetry algorithms used in therapies with beta-emitting unsealed sources. Absorbed doses estimated with the DPM MC code showed close agreement with RF measurement and with results from two general purpose MC codes, thereby validating the use of this algorithms for clinical RPT dosimetry.
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press, Taylor & Francis Group
dc.subject.otherradiopharmaceutical therapy
dc.subject.othermonte carlo
dc.subject.otherdosimetry
dc.titleExperimental validation of Monte Carlo dosimetry for therapeutic beta emitters with radiochromic film in a 3D-printed phantom
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175766/1/mp15926.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175766/2/mp15926_am.pdf
dc.identifier.doi10.1002/mp.15926
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceBergeron DE, Cessna JT. An update on ‘dose calibrator’ settings for nuclides used in nuclear medicine. Nucl Med Commun. 2018; 39 ( 6 ): 500 - 504. doi: 10.1097/mnm.0000000000000833
dc.identifier.citedreferenceFilm QA Pro. FilmQA Pro Users Guide. Accessed July 16, 2021. www.gafchromic.com/filmqa-software/filmqapro/
dc.identifier.citedreferenceChetty IJ, Moran JM, McShan DL, Fraass BA, Wilderman SJ, Bielajew AF. Benchmarking of the dose planning method (DPM) Monte Carlo code using electron beams from a racetrack microtron. Med Phys. 2002; 29 ( 6 ): 1035 - 1041. doi: 10.1118/1.1481512
dc.identifier.citedreferenceChetty IJ, Moran JM, Nurushev TS, et al. Experimental validation of the DPM Monte Carlo code using minimally scattered electron beams in heterogeneous media. Phys Med Biol. 2002; 47 ( 11 ): 1837 - 1851. doi: 10.1088/0031-9155/47/11/301
dc.identifier.citedreferenceWilderman SJ, Dewaraja YK. Method for fast CT/SPECT-based 3D Monte Carlo absorbed dose computations in internal emitter therapy. IEEE Trans Nucl Sci. 2007; 54 ( 1 ): 146 - 151. doi: 10.1109/tns.2006.889164
dc.identifier.citedreferenceDewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasandy K, Kaminiski MS. Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med. 2005; 46 ( 5 ): 840 - 9.
dc.identifier.citedreferenceDewaraja YK, Schipper MJ, Shen J, et al. Tumor-absorbed dose predicts progression-free survival following 131I-tositumomab radioimmunotherapy. J Nucl Med. 2014; 55 ( 7 ): 1047 - 1053. doi: 10.2967/jnumed.113.136044
dc.identifier.citedreferenceSisson JC, Dewaraja YK, Wizauer EJ, Giordano TJ, Avram AM. Thyroid carcinoma metastasis to skull with infringement of brain: treatment with radioiodine. Thyroid. 2009; 19 ( 3 ): 297 - 303. doi: 10.1089/thy.2008.0426
dc.identifier.citedreferenceDewaraja YK, Devasia T, Kaza RK, et al. Prediction of tumor control in 90Y radioembolization by logit models with PET/CT-based dose metrics. J Nucl Med. 2019; 61 ( 1 ): 104 - 111. doi: 10.2967/jnumed.119.226472
dc.identifier.citedreferenceDewaraja YK, Mirando DM, Peterson A, et al. A pipeline for automated voxel dosimetry: application in patients with multi-SPECT/CT imaging following 177lu peptide receptor radionuclide therapy. J Nucl Med. Published online April 14, 2022. doi: 10.2967/jnumed.121.263738
dc.identifier.citedreferenceGoorley T, James M, Booth T, et al. Initial MCNP6 release overview. Nucl Technol. 2012; 180 ( 3 ): 298 - 315. doi: 10.13182/nt11-135
dc.identifier.citedreferenceKawrakow I, Rogers D, Mainegra-Hing E, Tessier F, Townson R, Walters B. EGSnrc toolkit for Monte Carlo simulation of ionizing radiation transport, doi: 10.4224/40001303 [release v2021], 2000.
dc.identifier.citedreferenceDuPont Kapton HN polyimide film datasheet. Accessed May 25, 2021. https://www.dupont.com/content/dam/dupont/amer/us/en/products/ei-transformation/documents/DEC-Kapton-HN-datasheet.pdf
dc.identifier.citedreferenceZimmerman BE, Cessna JT, Millican MA. Experimental determination of calibration settings for plastic syringes containing solutions of 90Y using commercial radionuclide calibrators. Appl Radiat Isotopes. 2004; 60 ( 2-4 ): 511 - 517. doi: 10.1016/j.apradiso.2003.11.068
dc.identifier.citedreferenceDas IJ. Radiochromic Film: Role and Applications in Radiation Dosimetry. CRC Press, Taylor & Francis Group; 2018.
dc.identifier.citedreferencede Dreuille O, Strijckmans V, Ameida P, Loc’h C, Bendriem B. Bone equivalent liquid solution to assess accuracy of transmission measurements in SPECT and Pet. IEEE Trans Nucl Sci. 1997; 44 ( 3 ): 1186 - 1190. doi: 10.1109/23.596985
dc.identifier.citedreferencePark M-A, Mahmood A, Zimmerman RE, Limpa-Amara N, Makrigiorgos GM, Moore SC. Adsorption of metallic radionuclides on plastic phantom walls. Med Phys. 2008; 35 ( 4 ): 1606 - 1610. doi: 10.1118/1.2871191
dc.identifier.citedreferenceMicke A, Lewis DF, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys. 2011; 38 ( 5 ): 2523 - 2534. doi: 10.1118/1.3576105
dc.identifier.citedreferencePalmer AL, Bradley D, Nisbet A. Evaluation and implementation of triple-channel Radiochromic Film Dosimetry in Brachytherapy. J Appl Clin Med Physics. 2014; 15 ( 4 ): 280 - 296. doi: 10.1120/jacmp.v15i4.4854
dc.identifier.citedreferenceLewis D, Micke A, Yu X, Chan MF. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys. 2012; 39 ( 10 ): 6339 - 6350. doi: 10.1118/1.4754797
dc.identifier.citedreferenceMicke A. Gafchromic protocol. GafChromic Protocol Workshops Europe. Accessed January 18, 2022. http://www.gafchromic.com/documents/Micke_GafChromic_Protocol_Europe_201502%20C.pdf
dc.identifier.citedreferenceDetwiler RS, McConn RJ, Grimes TF, Upton SA, Engel EJ. Compendium of material composition data for Radiation Transport Modeling. 2021. doi: 10.2172/1782721
dc.identifier.citedreferenceMougeot X. Erratum: Reliability of usual assumptions in the calculation OFΒANDΝSPECTRA [phys. rev. C91, 055504 (2015)]. Physical Review C. 2015; 92 ( 5 ): 055504. doi: 10.1103/physrevc.92.059902
dc.identifier.citedreferenceNational Nuclear Data Center NuDat (Nuclear Structure and Decay Data). NuDat 3. Accessed December 18, 2021. https://www.nndc.bnl.gov/nudat3/
dc.identifier.citedreferenceKock AL. STC-18-042-licensing of lutetium-177. LICENSING OF LUTETIUM-177 (STC-18-042) (2018). Accessed August 6, 2021. https://www.nrc.gov/docs/ML1815/ML18156A589.pdf
dc.identifier.citedreferenceWike JS, Guyer CE, Ramey DW, Phillips BP. Chemistry for commercial scale production of yttrium-90 for Medical Research. Int J Radiat Appl Instrum Part A Appl Radiat Isotopes. 1990; 41 ( 9 ): 861 - 865. doi: 10.1016/0883-2889(90)90064-n
dc.identifier.citedreferenceSutherland JG, Rogers DW. Monte Carlo calculated absorbed-dose energy dependence of EBT and EBT2 film. Med Phys. 2010; 37 ( 3 ): 1110 - 1116. doi: 10.1118/1.3301574
dc.identifier.citedreferenceTrichter S, Soares CG, Zaider M, DeWyngaert JK, DeWerd LA, Kleiman NJ. 15 years of 106 Ru Eye plaque dosimetry at Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical Center using radiochromic film in a solid water phantom. Biomedical Physics & Engineering Express. 2018; 4 ( 4 ): 045017. doi: 10.1088/2057-1976/aab674
dc.identifier.citedreferenceMalcolm J, Falzone N, Lee B, Vallis K. Targeted radionuclide therapy: new advances for improvement of patient management and response. Cancers. 2019; 11 ( 2 ): 268. doi: 10.3390/cancers11020268
dc.identifier.citedreferenceSt James S, Bednarz B, Benedict S, et al. Current status of radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys. 2021; 109 ( 4 ): 891 - 901. doi: 10.1016/j.ijrobp.2020.08.035
dc.identifier.citedreferenceYu EY, Laidley D, Pouliot F, et al. A multicenter, randomized, controlled phase II study: Efficacy and safety of PSMA-targeted Radioligand Therapy I-131-1095 (1095) plus enzalutamide (ENZA) in 18F-DCFPYL PSMA scan avid, metastatic castration-resistant prostate cancer (mcrpc) patients post-abiraterone (ABI) progression (arrow). J Clin Oncol. 2020; 38 ( 6 _suppl). doi: 10.1200/jco.2020.38.6_suppl.tps260
dc.identifier.citedreferenceStabin MG, Sharkey RM, Siegel JA. Radar commentary: evolution and current status of dosimetry in nuclear medicine. J Nucl Med. 2011; 52 ( 7 ): 1156 - 1161. doi: 10.2967/jnumed.111.088666
dc.identifier.citedreferenceAlmond PR, Biggs PJ, Coursey BM, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999; 26 ( 9 ): 1847 - 1870. doi: 10.1118/1.598691
dc.identifier.citedreferenceRivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM Task Group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004; 31 ( 3 ): 633 - 674. doi: 10.1118/1.1646040
dc.identifier.citedreferenceMassillon-JL G, Minniti R, Mitch MG, Maryanski MJ, Soares CG. The use of gel dosimetry to measure the 3D dose distribution of A90SR/90y intravascular brachytherapy seed. Phys Med Biol. 2009; 54 ( 6 ): 1661 - 1672. doi: 10.1088/0031-9155/54/6/017
dc.identifier.citedreferenceNiroomand-Rad A, Chiu-Tsao ST, Grams MP, et al. Report of AAPM Task Group 235 radiochromic film dosimetry: an update to TG-55. Med Phys. 2020; 47 ( 12 ): 5986 - 6025. doi: 10.1002/mp.14497
dc.identifier.citedreferenceSgouros G, Bolch WE, Chiti A, et al. ICRU report 96, dosimetry-guided radiopharmaceutical therapy. J ICRU. 2022; 21 ( 1 ): 1 - 212. doi: 10.1177/14736691211060117
dc.identifier.citedreferenceTiwari A, Sunderland J, Graves SA, Strand S, Flynn R. Absorbed dose distributions from beta-decaying radionuclides: experimental validation of Monte Carlo Tools for radiopharmaceutical dosimetry. Med Phys. 2020; 47 ( 11 ): 5779 - 5790. doi: 10.1002/mp.14463
dc.identifier.citedreferenceJan S, Santin G, Strul D, et al. Gate: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004; 49 ( 19 ): 4543 - 4561. doi: 10.1088/0031-9155/49/19/007
dc.identifier.citedreferenceKassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008; 38 ( 5 ): 358 - 366. doi: 10.1053/j.semnuclmed.2008.05.002
dc.identifier.citedreferenceE Villarreal-Barajas J, Ferro-Flores G, Hernandez-Oviedo O. Experimental validation of Monte Carlo depth-dose calculations using radiochromic dye film dosimetry for a beta-gamma 153SM radionuclide applied to the treatment of rheumatoid arthritis. Radiat Prot Dosim. 2002; 101 ( 1 ): 439 - 444. doi: 10.1093/oxfordjournals.rpd.a006021
dc.identifier.citedreferenceZaidi H. Monte Carlo Calculations in Nuclear Medicine. 2nd ed. IOP Publishing; 2022.
dc.identifier.citedreferenceBolch WE, Bouchet LG, Robertson JS, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med. 1999; 40 ( 1 ): 11S - 36S.
dc.identifier.citedreferenceTiwari A, Gravesa SA, Sunderland J. The impact of tissue type and density on dose point kernels for patient-specific voxel-wise dosimetry: a Monte Carlo Investigation. Radiat Res. 2020; 193 ( 6 ): 531. doi: 10.1667/rr15563.1
dc.identifier.citedreferenceSempau J, Wilderman SJ, Bielajew AF. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000; 45 ( 8 ): 2263 - 2291. doi: 10.1088/0031-9155/45/8/315
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.