Show simple item record

Ultra-High Toughness Fibers Using Controlled Disorder of Assembled Aramid Nanofibers

dc.contributor.authorKim, Hyun Chan
dc.contributor.authorSodano, Henry Angelo
dc.date.accessioned2023-02-01T18:59:10Z
dc.date.available2024-02-01 13:59:07en
dc.date.available2023-02-01T18:59:10Z
dc.date.issued2023-01
dc.identifier.citationKim, Hyun Chan; Sodano, Henry Angelo (2023). "Ultra-High Toughness Fibers Using Controlled Disorder of Assembled Aramid Nanofibers." Advanced Functional Materials 33(4): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/175785
dc.description.abstractAssembling nanoscale building blocks with reduced defects has emerged as a promising approach to exploit nanomaterials in the fabrication of simultaneously strong and tough architectures at larger scales. Aramid nanofibers (ANFs), a type of organic nanobuilding block, have been spotlighted due to their superior mechanical properties and thermal stability. However, no breakthrough research has been conducted on the high mechanical properties of a structure composed of ANFs. Here, assembling ANFs into macroscale fiber using a simultaneous protonation and wet-spinning process is studied to reduce defects and control disorder. The ANF-assembled fibers consist of hierarchically aligned nanofibers that behave as a defective law structure, making it possible to reach a Young’s modulus of 53.15 ± 8.98 GPa, a tensile strength of 1,353.64 ± 92.98 MPa, and toughness of 128.66 ± 14.13 MJ m−3. Compared to commercial aramid fibers, the fibers exhibit ≈1.6 times greater toughness while also providing specific energy to break as 93 J g−1. Furthermore, this shows recyclability of the ANF assembly by retaining ≈94% of the initial mechanical properties. This study demonstrates a facile process to produce high stiffness and strength fibers composed of ANFs that possess significantly greater toughness than commercial synthetic fibers.A novel aramid nanofibers assembly strategy for macroscale fibers using a simultaneous protonation and wet-spinning process along with drawing and annealing processes is reported. The prepared fibers show hierarchically aligned nanofibers as a defective law structure, making it possible to reach greater specific toughness compared to existing commercial synthetic and natural fibers, which corresponds to spider silks while showing higher strength and modulus than spider silks.
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othertoughness
dc.subject.otheraramid nanofibers
dc.subject.othermechanical properties
dc.subject.otherprotonation
dc.subject.otherwet spinning
dc.titleUltra-High Toughness Fibers Using Controlled Disorder of Assembled Aramid Nanofibers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175785/1/adfm202208661-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175785/2/adfm202208661_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175785/3/adfm202208661.pdf
dc.identifier.doi10.1002/adfm.202208661
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceH.-J. Chen, Q.-Y. Bai, M.-C. Liu, G. Wu, Y.-Z. Wang, Green Chem. 2021, 23, 7646.
dc.identifier.citedreferenceY. Zhao, X. Li, J. Shen, C. Gao, B. Van der Bruggen, J. Mater. Chem. A 2020, 8, 7548.
dc.identifier.citedreferenceB. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu, X. Ding, Adv. Funct. Mater. 2020, 30, 2000186.
dc.identifier.citedreferenceA. Wang, X. Zhang, F. Chen, Q. Fu, Carbon 2021, 179, 655.
dc.identifier.citedreferenceZ. Liu, J. Lyu, D. Fang, X. Zhang, ACS Nano 2019, 13, 5703.
dc.identifier.citedreferenceF. Vollrath, D. P. Knight, Nature 2001, 410, 541.
dc.identifier.citedreferenceP. M. Cunniff, M. A. Auerbach, presented at 23rd. Army Science Conf., Orlando, 2002.
dc.identifier.citedreferenceX.-H. Zhong, Y.-L. Li, Y.-K. Liu, X.-H. Qiao, Y. Feng, J. Liang, J. Jin, L. Zhu, F. Hou, J.-Y. Li, Adv. Mater. 2010, 22, 692.
dc.identifier.citedreferenceH. C. Kim, D. Kim, J. Y. Lee, L. Zhai, J. Kim, Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 567.
dc.identifier.citedreferenceS. Seyedin, M. S. Romano, A. I. Minett, J. M. Razal, Sci. Rep. 2015, 5, 14946.
dc.identifier.citedreferenceS. Suto, S. Yoshida, Angew. Makromol. Chem. 1995, 226, 89.
dc.identifier.citedreferenceM. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358.
dc.identifier.citedreferenceX. Liao, M. Dulle, J. M. de Souza e Silva, R. B. Wehrspohn, S. Agarwal, S. Förster, H. Hou, P. Smith, A. Greiner, Science 2019, 366, 1376.
dc.identifier.citedreferenceN. P. Cheremisinoff, P. N. Cheremisinoff, Handbook of Applied Polymer Processing Technology, CRC Press, Boca Raton, FL 2020.
dc.identifier.citedreferenceM. Cheng, W. Chen, T. Weerasooriya, J Eng Mater Technol 2005, 127, 197.
dc.identifier.citedreferenceB. O. Swanson, T. A. Blackledge, A. P. Summers, C. Y. Hayashi, Evolution 2006, 60, 2539.
dc.identifier.citedreferenceT. A. Blackledge, C. Y. Hayashi, J Exp Biol 2006, 209, 2452.
dc.identifier.citedreferenceJ. B. Gillespie, D. D. Edie, V. Gabara, T. J. Haulik, J. L. Kardos, L. S. Schadler, High-Performance Structural Fibers for Advanced Polymer Matrix Composites, National Academies Press, Washington, DC, 2005, p. 11268.
dc.identifier.citedreferenceR. Zaera, in Impact Engineering of Composite Structures (Ed: S. Abrate ), Springer, Vienna, 2011, p. 305.
dc.identifier.citedreferenceM. N. Mohammed, S. Al-Zubaidi, S. H. K. Bahrain, S. M. Sapuan, in Composite Solutions for Ballistics, Elsevier, Cham 2021, p. 3.
dc.identifier.citedreferenceA. Bhatnagar, Lightweight Ballistic Composites, CRC Press, Boca Raton, FL 2006.
dc.identifier.citedreferenceZ. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun, Y. Xu, X. Ren, C. Jin, P. Xu, M. Wang, C. Gao, Adv. Mater. 2016, 28, 6449.
dc.identifier.citedreferenceX. Xiang, Z. Yang, J. Di, W. Zhang, R. Li, L. Kang, Y. Zhang, H. Zhang, Q. Li, Nanoscale 2017, 9, 11523.
dc.identifier.citedreferenceG. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, J. Lian, Science 2015, 349, 1083.
dc.identifier.citedreferenceS. Nagane, S. Macpherson, M. A. Hope, D. J. Kubicki, W. Li, S. D. Verma, J. Ferrer Orri, Y.-H. Chiang, J. L. MacManus-Driscoll, C. P. Grey, S. D. Stranks, Adv. Mater. 2021, 33, 2102462.
dc.identifier.citedreferenceK. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O’Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J. N. Coleman, Nat. Mater. 2014, 13, 624.
dc.identifier.citedreferenceM. Zhong, R. Wang, K. Kawamoto, B. D. Olsen, J. A. Johnson, Science 2016, 353, 1264.
dc.identifier.citedreferenceM. Eder, S. Amini, P. Fratzl, Science 2018, 362, 543.
dc.identifier.citedreferenceM. R. Begley, D. S. Gianola, T. R. Ray, Science 2019, 364, eaav4299.
dc.identifier.citedreferenceS. C. Glotzer, M. J. Solomon, Nat. Mater. 2007, 6, 557.
dc.identifier.citedreferenceK. Thorkelsson, P. Bai, T. Xu, Nano Today 2015, 10, 48.
dc.identifier.citedreferenceH. C. Kim, J. W. Kim, L. Zhai, J. Kim, Cellulose 2019, 26, 5821.
dc.identifier.citedreferenceN. Mittal, F. Ansari, K. Gowda V, C. Brouzet, P. Chen, P. T. Larsson, S. V. Roth, F. Lundell, L. Wågberg, N. A. Kotov, L. D. Söderberg, ACS Nano 2018, 12, 6378.
dc.identifier.citedreferenceA. T. L. Tan, J. Beroz, M. Kolle, A. J. Hart, Adv. Mater. 2018, 30, 1803620.
dc.identifier.citedreferenceD. Puppi, F. Chiellini, Polym. Int. 2017, 66, 1690.
dc.identifier.citedreferenceH. C. Kim, P. S. Panicker, D. Kim, S. Adil, J. Kim, Sci. Rep. 2021, 11, 13611.
dc.identifier.citedreferenceM. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E. M. Arruda, J. Kieffer, M. D. Thouless, N. A. Kotov, ACS Nano 2011, 5, 6945.
dc.identifier.citedreferenceJ. Nasser, L. Zhang, J. Lin, H. Sodano, ACS Appl Polym Mater 2020, 2, 2934.
dc.identifier.citedreferenceJ. Lin, S. H. Bang, M. H. Malakooti, H. A. Sodano, ACS Appl. Mater. Interfaces 2017, 9, 11167.
dc.identifier.citedreferenceJ. Nasser, J. Lin, K. Steinke, H. A. Sodano, Compos. Sci. Technol. 2019, 174, 125.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.