Show simple item record

Oxide-Based Solid-State Batteries: A Perspective on Composite Cathode Architecture

dc.contributor.authorRen, Yaoyu
dc.contributor.authorDanner, Timo
dc.contributor.authorMoy, Alexandra
dc.contributor.authorFinsterbusch, Martin
dc.contributor.authorHamann, Tanner
dc.contributor.authorDippell, Jan
dc.contributor.authorFuchs, Till
dc.contributor.authorMüller, Marius
dc.contributor.authorHoft, Ricky
dc.contributor.authorWeber, André
dc.contributor.authorCurtiss, Larry A.
dc.contributor.authorZapol, Peter
dc.contributor.authorKlenk, Matthew
dc.contributor.authorNgo, Anh T.
dc.contributor.authorBarai, Pallab
dc.contributor.authorWood, Brandon C.
dc.contributor.authorShi, Rongpei
dc.contributor.authorWan, Liwen F.
dc.contributor.authorHeo, Tae Wook
dc.contributor.authorEngels, Martin
dc.contributor.authorNanda, Jagjit
dc.contributor.authorRichter, Felix H.
dc.contributor.authorLatz, Arnulf
dc.contributor.authorSrinivasan, Venkat
dc.contributor.authorJanek, Jürgen
dc.contributor.authorSakamoto, Jeff
dc.contributor.authorWachsman, Eric D.
dc.contributor.authorFattakhova-Rohlfing, Dina
dc.date.accessioned2023-02-01T18:59:56Z
dc.date.available2024-02-01 13:59:53en
dc.date.available2023-02-01T18:59:56Z
dc.date.issued2023-01
dc.identifier.citationRen, Yaoyu; Danner, Timo; Moy, Alexandra; Finsterbusch, Martin; Hamann, Tanner; Dippell, Jan; Fuchs, Till; Müller, Marius ; Hoft, Ricky; Weber, André ; Curtiss, Larry A.; Zapol, Peter; Klenk, Matthew; Ngo, Anh T.; Barai, Pallab; Wood, Brandon C.; Shi, Rongpei; Wan, Liwen F.; Heo, Tae Wook; Engels, Martin; Nanda, Jagjit; Richter, Felix H.; Latz, Arnulf; Srinivasan, Venkat; Janek, Jürgen ; Sakamoto, Jeff; Wachsman, Eric D.; Fattakhova-Rohlfing, Dina (2023). "Oxide- Based Solid- State Batteries: A Perspective on Composite Cathode Architecture." Advanced Energy Materials 13(1): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/175800
dc.description.abstractThe garnet-type phase Li7La3Zr2O12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid-state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all-solid-state LLZO-based battery that delivers safety, durability, and pack-level performance characteristics that are unobtainable with state-of-the-art Li-ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo- and heteroionic interfaces in a pure oxide-based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO-based SSBs.The perspective addresses the critical issues in the development of composite cathodes in solid-state batteries based on a garnet LLZO electrolyte. The focus is on understanding various homo- and heteroionic interfaces and their chemical, electrochemical, structural, morphological, and mechanical properties during processing and operation. The knowledge gained from an extensive literature review is used to guide the optimization of oxide batteries.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroxide solid electrolyte
dc.subject.othersolid state battery
dc.subject.otherceramic cathode/electrolyte interface
dc.subject.othergrain boundaries
dc.titleOxide-Based Solid-State Batteries: A Perspective on Composite Cathode Architecture
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175800/1/aenm202201939_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175800/2/aenm202201939-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175800/3/aenm202201939.pdf
dc.identifier.doi10.1002/aenm.202201939
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceJ. Tong, S. Wu, N. Von Solms, X. Liang, F. Huo, Q. Zhou, H. He, S. Zhang, Front. Chem. 2020, 7, 945.
dc.identifier.citedreferenceP. Barai, T. Rojas, B. Narayanan, A. T. Ngo, L. A. Curtiss, V. Srinivasan, Chem. Mater. 2021, 33, 5527.
dc.identifier.citedreferenceJ. Haruyama, K. Sodeyama, L. Han, K. Takada, Y. Tateyama, Chem. Mater. 2014, 26, 4248.
dc.identifier.citedreferenceA. Mehrotra, P. N. Ross, V. Srinivasan, J. Electrochem. Soc. 2014, 161, A1681.
dc.identifier.citedreferencea) A. Ray, B. Saruhan, Materials 2021, 14, 2942; b) W.-L. Yuan, X. Yang, L. He, Y. Xue, S. Qin, G.-H. Tao, Front. Chem. 2018, 6, 59.
dc.identifier.citedreferenceJ. Nilsson-Hallén, B. Ahlström, M. Marczewski, P. Johansson, Front. Chem. 2019, 7, 126.
dc.identifier.citedreferenceP. Ray, A. Balducci, B. Kirchner, J. Phys. Chem. B 2018, 122, 10535.
dc.identifier.citedreferencea) A. A. Teran, M. H. Tang, S. A. Mullin, N. P. Balsara, Solid State Ionics 2011, 203, 18; b) H. Choe, B. Carroll, D. Pasquariello, K. Abraham, Chem. Mater. 1997, 9, 369; c) G. Appetecchi, D. Zane, B. Scrosati, J. Electrochem. Soc. 2004, 151, A1369.
dc.identifier.citedreferencea) X. Zhang, B.-Q. Xu, Y.-H. Lin, Y. Shen, L. Li, C.-W. Nan, Solid State Ionics 2018, 327, 32; b) X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.-W. Nan, Y. Shen, J. Am. Chem. Soc. 2017, 139, 13779.
dc.identifier.citedreferenceT. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, Y. Iriyama, J. Power Sources 2014, 260, 292.
dc.identifier.citedreferenceE. Yi, H. Shen, S. Heywood, J. Alvarado, D. Y. Parkinson, G. Chen, S. W. Sofie, M. M. Doeff, ACS Appl. Energy Mater. 2020, 3, 170.
dc.identifier.citedreferenceJ. Zagórski, B. Silván, D. Saurel, F. Aguesse, A. Llordés, ACS Appl. Energy Mater. 2020, 3, 8344.
dc.identifier.citedreferenceC. Peebles, R. Sahore, J. A. Gilbert, J. C. Garcia, A. Tornheim, J. Bareño, H. Iddir, C. Liao, D. P. Abraham, J. Electrochem. Soc. 2017, 164, A1579.
dc.identifier.citedreferenceQ. Liu, W. Jiang, M. J. P. Munoz, Y. Liu, Z. Yang, I. Bloom, T. L. Dzwiniel, Y. Li, K. Z. Pupek, Z. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 23035.
dc.identifier.citedreferenceF. J. Simon, M. Hanauer, A. Henss, F. H. Richter, J. r. Janek, ACS Appl. Mater. Interfaces 2019, 11, 42186.
dc.identifier.citedreferencea) B. X. Dong, P. Bennington, Y. Kambe, D. Sharon, M. Dolejsi, J. Strzalka, V. F. Burnett, P. F. Nealey, S. N. Patel, Mol. Syst. Des. Eng. 2019, 4, 597; b) Q. Guo, F. Xu, L. Shen, Z. Wang, J. Wang, H. He, X. Yao, J. Power Sources 2021, 498, 229934.
dc.identifier.citedreferenceM. R. Busche, T. Drossel, T. Leichtweiss, D. A. Weber, M. Falk, M. Schneider, M.-L. Reich, H. Sommer, P. Adelhelm, J. Janek, Nat. Chem. 2016, 8, 426.
dc.identifier.citedreferencea) J. Yan, X. Liu, B. Li, Adv. Sci. 2016, 3, 1600101; b) J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources 2005, 147, 269.
dc.identifier.citedreferenceL. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Frömling, H. L. Thaman, S. Berendts, R. Uecker, W. C. Carter, Y.-M. Chiang, Adv. Energy Mater. 2017, 7, 1701003.
dc.identifier.citedreferencea) R. Amin, Y.-M. Chiang, J. Electrochem. Soc. 2016, 163, A1512; b) H.-J. Noh, S. Youn, C. S. Yoon, Y.-K. Sun, J. Power Sources 2013, 233, 121.
dc.identifier.citedreferencea) X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572; b) W. Luo, Y. Gong, Y. Zhu, K. K. Fu, J. Dai, S. D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, J. Am. Chem. Soc. 2016, 138, 12258; c) C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E. D. Wachsman, L. Hu, Proc. Natl. Acad. Sci. USA 2018, 115, 3770.
dc.identifier.citedreferenceB. Liu, L. Zhang, S. Xu, D. W. McOwen, Y. Gong, C. Yang, G. R. Pastel, H. Xie, K. Fu, J. Dai, C. Chen, E. D. Wachsman, L. Hu, Energy Storage Mater. 2018, 14, 376.
dc.identifier.citedreferenceY. Ren, T. Liu, Y. Shen, Y. Lin, C.-W. Nan, Ionics 2017, 23, 2521.
dc.identifier.citedreferenceY. Gong, K. Fu, S. Xu, J. Dai, T. R. Hamann, L. Zhang, G. T. Hitz, Z. Fu, Z. Ma, D. W. McOwen, X. Han, L. Hu, E. D. Wachsman, Mater. Today 2018, 21, 594.
dc.identifier.citedreferenceD. W. McOwen, S. Xu, Y. Gong, Y. Wen, G. L. Godbey, J. E. Gritton, T. R. Hamann, J. Dai, G. T. Hitz, L. Hu, E. D. Wachsman, Adv. Mater. 2018, 30, 1707132.
dc.identifier.citedreferencea) L. Buannic, M. Naviroj, S. M. Miller, J. Zagorski, K. T. Faber, A. Llordés, J. Am. Ceram. Soc. 2019, 102, 1021; b) H. Shen, E. Yi, S. Heywood, D. Y. Parkinson, G. Chen, N. Tamura, S. Sofie, K. Chen, M. M. Doeff, ACS Appl. Mater. Interfaces 2020, 12, 3494.
dc.identifier.citedreferenceJ. van den Broek, S. Afyon, J. L. M. Rupp, Adv. Energy Mater. 2016, 6, 1600736.
dc.identifier.citedreferenceR. Pfenninger, M. Struzik, I. Garbayo, E. Stilp, J. L. M. Rupp, Nat. Energy 2019, 4, 475.
dc.identifier.citedreferencea) J. Sastre, M. H. Futscher, L. Pompizi, A. Aribia, A. Priebe, J. Overbeck, M. Stiefel, A. N. Tiwari, Y. E. Romanyuk, Commun. Mater. 2021, 2, 76; b) S. Lobe, C. Dellen, M. Finsterbusch, H. G. Gehrke, D. Sebold, C. L. Tsai, S. Uhlenbruck, O. Guillon, J. Power Sources 2016, 307, 684.
dc.identifier.citedreferencea) K. Tadanaga, H. Egawa, A. Hayashi, M. Tatsumisago, J. Mosa, M. Aparicio, A. Duran, J. Power Sources 2015, 273, 844; b) M. Bitzer, T. Van Gestel, S. Uhlenbruck, B. Hans Peter, Thin Solid Films 2016, 615, 128.
dc.identifier.citedreferenceA. Bielefeld, D. A. Weber, R. Rueß, V. Glavas, J. Janek, J. Electrochem. Soc. 2022, 169, 020539.
dc.identifier.citedreferenceH. Fathiannasab, L. Zhu, Z. Chen, J. Power Sources 2021, 483, 229028.
dc.identifier.citedreferencea) J. A. Dawson, P. Canepa, T. Famprikis, C. Masquelier, M. S. Islam, J. Am. Chem. Soc. 2018, 140, 362; b) J.-M. Hu, B. Wang, Y. Ji, T. Yang, X. Cheng, Y. Wang, L.-Q. Chen, ACS Appl. Mater. Interfaces 2017, 9, 33341.
dc.identifier.citedreferenceH.-C. Yu, M.-J. Choe, G. G. Amatucci, Y.-M. Chiang, K. Thornton, Comput. Mater. Sci. 2016, 121, 14.
dc.identifier.citedreferencea) G. Bucci, T. Swamy, Y.-M. Chiang, W. C. Carter, J. Mater. Chem. A 2017, 5, 19422; b) D. Bistri, C. V. Di Leo, J. Electrochem. Soc. 2021, 168, 030515.
dc.identifier.citedreferencea) J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin, J. C. Diniz da Costa, J. Membr. Sci. 2008, 320, 13; b) C. Sun, R. Hui, J. Roller, J. Solid State Electrochem. 2010, 14, 1125.
dc.identifier.citedreferenceJ. Molenda, A. Stokłosa, T. Ba¸k, Solid State Ionics 1989, 36, 53.
dc.identifier.citedreferencea) M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 2010, 195, 7904; b) K. J. Griffith, K. M. Wiaderek, G. Cibin, L. E. Marbella, C. P. Grey, Nature 2018, 559, 556.
dc.identifier.citedreferenceS.-H. Park, P. J. King, R. Tian, C. S. Boland, J. Coelho, C. Zhang, P. McBean, N. McEvoy, M. P. Kremer, D. Daly, J. N. Coleman, V. Nicolosi, Nat. Energy 2019, 4, 560.
dc.identifier.citedreferencea) T. Asano, S. Yubuchi, A. Sakuda, A. Hayashi, M. Tatsumisago, J. Electrochem. Soc. 2017, 164, A3960; b) C. Wang, L. Zhang, H. Xie, G. Pastel, J. Dai, Y. Gong, B. Liu, E. D. Wachsman, L. Hu, Nano Energy 2018, 50, 393.
dc.identifier.citedreferenceS. B. Ma, H. J. Kwon, M. Kim, S.-M. Bak, H. Lee, S. N. Ehrlich, J.-J. Cho, D. Im, D.-H. Seo, Adv. Energy Mater. 2020, 10, 2001767.
dc.identifier.citedreferencea) A. J. Samson, K. Hofstetter, E. Wachsman, V. Thangadurai, J. Electrochem. Soc. 2018, 165, A2303; b) X. Cheng, J. Huang, W. Qiang, B. Huang, Ceram. Int. 2020, 46, 3731; c) J. Gao, J. Zhu, X. Li, J. Li, X. Guo, H. Li, W. Zhou, Adv. Funct. Mater. 2021, 31, 2001918; d) J. Sakamoto, T. Thompson, N. Taylor ( University of Michigan ), US20200259211A1 2020.
dc.identifier.citedreferencea) S.-H. Chung, C.-H. Chang, A. Manthiram, Adv. Funct. Mater. 2018, 28, 1801188; b) X. Zhu, T. Zhao, P. Tan, Z. Wei, M. Wu, Nano Energy 2016, 26, 565; c) F. Wu, V. Srot, S. Chen, S. Lorger, P. A. van Aken, J. Maier, Y. Yu, Adv. Mater. 2019, 31, 1905146.
dc.identifier.citedreferencea) L. Liu, Z. Wang, H. Li, L. Chen, X. Huang, Solid State Ionics 2002, 152–153, 341; b) S. Ahmed, S. E. Trask, D. W. Dees, P. A. Nelson, W. Lu, A. R. Dunlop, B. J. Polzin, A. N. Jansen, J. Power Sources 2018, 403, 56; c) R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng, F. Li, Adv. Mater. 2017, 29, 1606823; d) L. Wang, Z. Wu, J. Zou, P. Gao, X. Niu, H. Li, L. Chen, Joule 2019, 3, 2086; e) M. W. Chase Jr., J. Phys. Chem. Ref. Data, Monograph 1998, 9, 1510.
dc.identifier.citedreferencea) M. Doyle, T. F. Fuller, J. Newman, J. Electrochem. Soc. 1993, 140, 1526; b) P. Ramadass, B. Haran, P. M. Gomadam, R. White, B. N. Popov, J. Electrochem. Soc. 2004, 151, A196.
dc.identifier.citedreferenceJ. Sturm, A. Rheinfeld, I. Zilberman, F. B. Spingler, S. Kosch, F. Frie, A. Jossen, J. Power Sources 2019, 412, 204.
dc.identifier.citedreferenceC. Wang, R. Yu, S. Hwang, J. Liang, X. Li, C. Zhao, Y. Sun, J. Wang, N. Holmes, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, D. Su, X. Sun, Energy Storage Mater. 2020, 30, 98.
dc.identifier.citedreferenceL. Wang, R. Xie, B. Chen, X. Yu, J. Ma, C. Li, Z. Hu, X. Sun, C. Xu, S. Dong, T.-S. Chan, J. Luo, G. Cui, L. Chen, Nat. Commun. 2020, 11, 5889.
dc.identifier.citedreferenceS. Randau, F. Walther, A. Neumann, Y. Schneider, R. S. Negi, B. Mogwitz, J. Sann, K. Becker-Steinberger, T. Danner, S. Hein, A. Latz, F. H. Richter, J. Janek, Chem. Mater. 2021, 33, 1380.
dc.identifier.citedreferenceS. Qin, X. Zhu, Y. Jiang, M. e. Ling, Z. Hu, J. Zhu, Appl. Phys. Lett. 2018, 112, 113901.
dc.identifier.citedreferenceM. J. Wang, E. Kazyak, N. P. Dasgupta, J. Sakamoto, Joule 2021, 5, 1371.
dc.identifier.citedreferenceV. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 2014, 43, 4714.
dc.identifier.citedreferencea) Y. Takeda, O. Yamamoto, N. Imanishi, Electrochemistry 2016, 84, 210; b) J. Lang, L. Qi, Y. Luo, H. Wu, Energy Storage Mater. 2017, 7, 115; c) D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194; d) S. S. Zhang, ACS Appl. Energy Mater. 2018, 1, 910; e) Z. A. Ghazi, Z. Sun, C. Sun, F. Qi, B. An, F. Li, H.-M. Cheng, Small 2019, 15, 1900687; f) T. Krauskopf, F. H. Richter, W. G. Zeier, J. Janek, Chem. Rev. 2020, 120, 7745; g) R. Wang, W. Cui, F. Chu, F. Wu, J. Energy Chem. 2020, 48, 145; h) P. Albertus, V. Anandan, C. Ban, N. Balsara, I. Belharouak, J. Buettner-Garrett, Z. Chen, C. Daniel, M. Doeff, N. J. Dudney, B. Dunn, S. J. Harris, S. Herle, E. Herbert, S. Kalnaus, J. A. Libera, D. Lu, S. Martin, B. D. McCloskey, M. T. McDowell, Y. S. Meng, J. Nanda, J. Sakamoto, E. C. Self, S. Tepavcevic, E. Wachsman, C. Wang, A. S. Westover, J. Xiao, T. Yersak, ACS Energy Lett 2021, 6, 1399.
dc.identifier.citedreferenceG. T. Hitz, D. W. McOwen, L. Zhang, Z. Ma, Z. Fu, Y. Wen, Y. Gong, J. Dai, T. R. Hamann, L. Hu, E. D. Wachsman, Mater. Today 2019, 22, 50.
dc.identifier.citedreferenceE. Kazyak, R. Garcia-Mendez, W. S. LePage, A. Sharafi, A. L. Davis, A. J. Sanchez, K.-H. Chen, C. Haslam, J. Sakamoto, N. P. Dasgupta, Matter 2020, 2, 1025.
dc.identifier.citedreferencea) A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Chem. Rev. 2020, 120, 6878; b) C. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, Chem. Rev. 2020, 120, 4257; c) N. Zhao, W. Khokhar, Z. Bi, C. Shi, X. Guo, L.-Z. Fan, C.-W. Nan, Joule 2019, 3, 1190; d) Y. Gao, A. M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo, S.-H. Bo, Chem. Rev. 2020, 120, 5954; e) T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278; f) Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Joule 2018, 2, 1747; g) F. Zheng, M. Kotobuki, S. Song, M. O. Lai, L. Lu, J. Power Sources 2018, 389, 198; h) S. Lobe, A. Bauer, S. Uhlenbruck, D. Fattakhova-Rohlfing, Adv. Sci. 2021, 8, 2002044; i) Y. Zhu, J. C. Gonzalez-Rosillo, M. Balaish, Z. D. Hood, K. J. Kim, J. L. M. Rupp, Nat. Rev. Mater. 2021, 6, 313; j) M. Balaish, J. C. Gonzalez-Rosillo, K. J. Kim, Y. Zhu, Z. D. Hood, J. L. M. Rupp, Nat. Energy 2021, 6, 227; k) K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. M. Rupp, Adv. Energy Mater. 2021, 11, 2002689; l) K. V. Kravchyk, F. Okur, M. V. Kovalenko, ACS Energy Lett 2021, 6, 2202; m) R. Ye, M. Ihrig, N. Imanishi, M. Finsterbusch, E. Figgemeier, ChemSusChem 2021, 14, 4397; n) K. V. Kravchyk, D. T. Karabay, M. V. Kovalenko, Sci. Rep. 2022, 12, 1177.
dc.identifier.citedreferenceS. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W. G. Zeier, F. H. Richter, J. Janek, Nat. Energy 2020, 5, 259.
dc.identifier.citedreferenceP. Barai, T. Fister, Y. Liang, J. Libera, M. Wolfman, X. Wang, J. Garcia, H. Iddir, V. Srinivasan, Chem. Mater. 2021, 33, 4337.
dc.identifier.citedreferenceJ. G. Connell, T. Fuchs, H. Hartmann, T. Krauskopf, Y. Zhu, J. Sann, R. Garcia-Mendez, J. Sakamoto, S. Tepavcevic, J. Janek, Chem. Mater. 2020, 32, 10207.
dc.identifier.citedreferenceX. Liu, R. Garcia-Mendez, A. R. Lupini, Y. Cheng, Z. D. Hood, F. Han, A. Sharafi, J. C. Idrobo, N. J. Dudney, C. Wang, C. Ma, J. Sakamoto, M. Chi, Nat. Mater. 2021, 20, 1485.
dc.identifier.citedreferenceM. Ihrig, M. Finsterbusch, A. M. Laptev, C.-h. Tu, N. T. T. Tran, C.-a. Lin, L.-Y. Kuo, R. Ye, Y. J. Sohn, P. Kaghazchi, S.-k. Lin, D. Fattakhova-Rohlfing, O. Guillon, ACS Appl. Mater. Interfaces 2022, 14, 11288.
dc.identifier.citedreferenceM. Finsterbusch, T. Danner, C.-L. Tsai, S. Uhlenbruck, A. Latz, O. Guillon, ACS Appl. Mater. Interfaces 2018, 10, 22329.
dc.identifier.citedreferenceT. W. Heo, A. Grieder, B. Wang, M. Wood, T. Hsu, S. A. Akhade, L. F. Wan, L.-Q. Chen, N. Adelstein, B. C. Wood, npj Comput. Mater. 2021, 7, 214.
dc.identifier.citedreferenceK. Kim, A. M. Dive, A. C. Grieder, N. Adelstein, S. Kang, L. F. Wan, B. C. Wood, J. Chem. Phys. 2022, 156, 221101.
dc.identifier.citedreferenceJ. Wolfenstine, J. Sakamoto, J. L. Allen, J. Mater. Sci. 2012, 47, 4428.
dc.identifier.citedreferenceS. Kumazaki, Y. Iriyama, K.-H. Kim, R. Murugan, K. Tanabe, K. Yamamoto, T. Hirayama, Z. Ogumi, Electrochem. Commun. 2011, 13, 509.
dc.identifier.citedreferenceR. Hongahally Basappa, T. Ito, T. Morimura, R. Bekarevich, K. Mitsuishi, H. Yamada, J. Power Sources 2017, 363, 145.
dc.identifier.citedreferenceS. Yu, D. J. Siegel, Chem. Mater. 2017, 29, 9639.
dc.identifier.citedreferencea) C. Li, Y. Liu, J. He, K. S. Brinkman, J. Alloys Compd. 2017, 695, 3744; b) G. Han, B. Kinzer, R. Garcia-Mendez, H. Choe, J. Wolfenstine, J. Sakamoto, J. Eur. Ceram. Soc. 2020, 40, 1999.
dc.identifier.citedreferenceL. Cheng, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, ACS Appl. Mater. Interfaces 2015, 7, 2073.
dc.identifier.citedreferenceA. Sharafi, C. G. Haslam, R. D. Kerns, J. Wolfenstine, J. Sakamoto, J. Mater. Chem. A 2017, 5, 21491.
dc.identifier.citedreferenceH. Shiiba, N. Zettsu, M. Yamashita, H. Onodera, R. Jalem, M. Nakayama, K. Teshima, J. Phys. Chem. C 2018, 122, 21755.
dc.identifier.citedreferencea) S. Braun, C. Yada, A. Latz, J. Phys. Chem. C 2015, 119, 22281; b) C.-C. Chen, J. Maier, Phys. Chem. Chem. Phys. 2017, 19, 6379; c) G. Gregori, R. Merkle, J. Maier, Prog. Mater Sci. 2017, 89, 252; d) M. Landstorfer, S. Funken, T. Jacob, Phys. Chem. Chem. Phys. 2011, 13, 12817.
dc.identifier.citedreferencea) B. J. Morgan, R. Soc. Open Sci. 2017, 4, 170824; b) T. H. Wan, F. Ciucci, Electrochim. Acta 2020, 331, 135355; c) K. Becker-Steinberger, S. Schardt, B. Horstmann, A. Latz, (Preprint) arXiv:2101.10294, v1, submitted: Jan 2021.
dc.identifier.citedreferenceB. Kozinsky, S. A. Akhade, P. Hirel, A. Hashibon, C. Elsässer, P. Mehta, A. Logeat, U. Eisele, Phys. Rev. Lett. 2016, 116, 055901.
dc.identifier.citedreferenceJ. Ast, M. Ghidelli, K. Durst, M. Göken, M. Sebastiani, A. M. Korsunsky, Mater. Des. 2019, 173, 107762.
dc.identifier.citedreferencea) F. Shen, M. B. Dixit, X. Xiao, K. B. Hatzell, ACS Energy Lett. 2018, 3, 1056; b) M. B. Dixit, M. Regala, F. Shen, X. Xiao, K. B. Hatzell, ACS Appl. Mater. Interfaces 2019, 11, 2022; c) T. Hamann, L. Zhang, Y. Gong, G. Godbey, J. Gritton, D. McOwen, G. Hitz, E. Wachsman, Adv. Funct. Mater. 2020, 30, 1910362.
dc.identifier.citedreferenceA. Neumann, T. R. Hamann, T. Danner, S. Hein, K. Becker-Steinberger, E. Wachsman, A. Latz, ACS Appl. Energy Mater. 2021, 4, 4786.
dc.identifier.citedreferencea) L. Cheng, J. S. Park, H. Hou, V. Zorba, G. Chen, T. Richardson, J. Cabana, R. Russo, M. Doeff, J. Mater. Chem. A 2014, 2, 172; b) I. N. David, T. Thompson, J. Wolfenstine, J. L. Allen, J. Sakamoto, J. Am. Ceram. Soc. 2015, 98, 1209; c) Y. Kim, H. Jo, J. L. Allen, H. Choe, J. Wolfenstine, J. Sakamoto, J. Am. Ceram. Soc. 2016, 99, 1367; d) B. Xu, H. Duan, W. Xia, Y. Guo, H. Kang, H. Li, H. Liu, J. Power Sources 2016, 302, 291.
dc.identifier.citedreferenceA. N. Mistry, K. Smith, P. P. Mukherjee, ACS Appl. Mater. Interfaces 2018, 10, 6317.
dc.identifier.citedreferenceF. L. E. Usseglio-Viretta, A. Colclasure, A. N. Mistry, K. P. Y. Claver, F. Pouraghajan, D. P. Finegan, T. M. M. Heenan, D. Abraham, P. P. Mukherjee, D. Wheeler, P. Shearing, S. J. Cooper, K. Smith, J. Electrochem. Soc. 2018, 165, A3403.
dc.identifier.citedreferencea) R. V. Rao, V. Patel, Sci. Iran. 2013, 20, 710; b) K. J. Harry, K. Higa, V. Srinivasan, N. P. Balsara, J. Electrochem. Soc. 2016, 163, A2216.
dc.identifier.citedreferenceA. Neumann, S. Randau, K. Becker-Steinberger, T. Danner, S. Hein, Z. Ning, J. Marrow, F. H. Richter, J. Janek, A. Latz, ACS Appl. Mater. Interfaces 2020, 12, 9277.
dc.identifier.citedreferenceT. Shi, Q. Tu, Y. Tian, Y. Xiao, L. J. Miara, O. Kononova, G. Ceder, Adv. Energy Mater. 2020, 10, 1902881.
dc.identifier.citedreferenceH.-K. Tian, Z. Liu, Y. Ji, L.-Q. Chen, Y. Qi, Chem. Mater. 2019, 31, 7351.
dc.identifier.citedreferencea) P. Barai, K. Higa, A. T. Ngo, L. A. Curtiss, V. Srinivasan, J. Electrochem. Soc. 2019, 166, A1752; b) P. Barai, A. T. Ngo, B. Narayanan, K. Higa, L. A. Curtiss, V. Srinivasan, J. Electrochem. Soc. 2020, 167, 100537.
dc.identifier.citedreferenceY. Suzuki, K. Kami, K. Watanabe, A. Watanabe, N. Saito, T. Ohnishi, K. Takada, R. Sudo, N. Imanishi, Solid State Ionics 2015, 278, 172.
dc.identifier.citedreferenceY. Ren, Y. Shen, Y. Lin, C.-W. Nan, Electrochem. Commun. 2015, 57, 27.
dc.identifier.citedreferenceS. Jeff, R. Ezhiylmurugan, K. Hyunjoung, K. Yunsung, W. Jeff, Nanotechnology 2013, 24, 424005.
dc.identifier.citedreferenceM. Wood, X. Gao, R. Shi, T. W. Heo, J. A. Espitia, E. B. Duoss, B. C. Wood, J. Ye, J. Power Sources 2021, 484, 229252.
dc.identifier.citedreferenceR. Shi, M. Wood, T. W. Heo, B. C. Wood, J. Ye, J. Eur. Ceram. Soc. 2021, 41, 211.
dc.identifier.citedreferenceR.-H. Shin, S.-I. Son, S.-M. Lee, Y. S. Han, Y. D. Kim, S.-S. Ryu, J. Korean Ceram. Soc 2016, 53, 712.
dc.identifier.citedreferencea) A. Logéat, T. Köhler, U. Eisele, B. Stiaszny, A. Harzer, M. Tovar, A. Senyshyn, H. Ehrenberg, B. Kozinsky, Solid State Ionics 2012, 206, 33; b) T. Thompson, A. Sharafi, M. D. Johannes, A. Huq, J. L. Allen, J. Wolfenstine, J. Sakamoto, Adv. Energy Mater. 2015, 5, 1500096; c) M. Yi, T. Liu, X. Wang, J. Li, C. Wang, Y. Mo, Ceram. Int. 2019, 45, 786.
dc.identifier.citedreferencea) S. Ohta, T. Kobayashi, J. Seki, T. Asaoka, J. Power Sources 2012, 202, 332; b) X. Tong, V. Thangadurai, E. D. Wachsman, Inorg. Chem. 2015, 54, 3600.
dc.identifier.citedreferencea) C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Inorg. Chem. 2010, 50, 1089; b) Y. Jin, P. J. McGinn, J. Power Sources 2011, 196, 8683; c) Y. Shimonishi, A. Toda, T. Zhang, A. Hirano, N. Imanishi, O. Yamamoto, Y. Takeda, Solid State Ionics 2011, 183, 48; d) H. Buschmann, J. Dolle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. Janek, Phys. Chem. Chem. Phys. 2011, 13, 19378; e) E. Rangasamy, J. Wolfenstine, J. Sakamoto, Solid State Ionics 2012, 206, 28.
dc.identifier.citedreferencea) J. L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto, J. Power Sources 2012, 206, 315; b) H. El Shinawi, J. Janek, J. Power Sources 2013, 225, 13; c) D. Rettenwander, J. Langer, W. Schmidt, C. Arrer, K. J. Harris, V. Terskikh, G. R. Goward, M. Wilkening, G. Amthauer, Chem. Mater. 2015, 27, 3135; d) J. Su, X. Huang, Z. Song, T. Xiu, M. E. Badding, J. Jin, Z. Wen, Ceram. Int. 2019, 45, 14991.
dc.identifier.citedreferenceL. Cheng, E. J. Crumlin, W. Chen, R. Qiao, H. Hou, S. F. Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen, M. Doeff, Phys. Chem. Chem. Phys. 2014, 16, 18294.
dc.identifier.citedreferenceW. Xue, Y. Yang, Q. Yang, Y. Liu, L. Wang, C. Chen, R. Cheng, RSC Adv. 2018, 8, 13083.
dc.identifier.citedreferenceA. Paolella, W. Zhu, G. Bertoni, S. Savoie, Z. Feng, H. Demers, V. Gariepy, G. Girard, E. Rivard, N. Delaporte, A. Guerfi, H. Lorrmann, C. George, K. Zaghib, ACS Appl. Energy Mater. 2020, 3, 3415.
dc.identifier.citedreferenceX. Huang, Y. Lu, Z. Song, K. Rui, Q. Wang, T. Xiu, M. E. Badding, Z. Wen, Energy Storage Mater. 2019, 22, 207.
dc.identifier.citedreferenceR. Murugan, V. Thangadurai, W. Weppner, Angew. Chem., Int. Ed. 2007, 46, 7778.
dc.identifier.citedreferenceW. E. Tenhaeff, E. Rangasamy, Y. Wang, A. P. Sokolov, J. Wolfenstine, J. Sakamoto, N. J. Dudney, ChemElectroChem 2014, 1, 375.
dc.identifier.citedreferenceS. Ohta, T. Kobayashi, T. Asaoka, J. Power Sources 2011, 196, 3342.
dc.identifier.citedreferencea) R. A. Huggins, Ionics 2002, 8, 300; b) J. T. S. Irvine, D. C. Sinclair, A. R. West, Adv. Mater. 1990, 2, 132; c) J. K. Eckhardt, S. Burkhardt, J. Zahnow, M. T. Elm, J. Janek, P. J. Klar, C. Heiliger, J. Electrochem. Soc. 2021, 168, 090516.
dc.identifier.citedreferencea) Y. Zhu, X. He, Y. Mo, J. Mater. Chem. A 2016, 4, 3253; b) Y. Xiao, L. J. Miara, Y. Wang, G. Ceder, Joule 2019, 3, 1252; c) L. J. Miara, W. D. Richards, Y. E. Wang, G. Ceder, Chem. Mater. 2015, 27, 4040; d) L. Miara, A. Windmüller, C.-L. Tsai, W. D. Richards, Q. Ma, S. Uhlenbruck, O. Guillon, G. Ceder, ACS Appl. Mater. Interfaces 2016, 8, 26842; e) N. Zhang, X. Long, Z. Wang, P. Yu, F. Han, J. Fu, G. Ren, Y. Wu, S. Zheng, W. Huang, C. Wang, H. Li, X. Liu, ACS Appl. Energy Mater. 2018, 1, 5968; f) Y. Okuno, J. Haruyama, Y. Tateyama, ACS Appl. Energy Mater. 2020, 3, 11061; g) A. M. Nolan, E. D. Wachsman, Y. Mo, Energy Storage Mater. 2021, 41, 571.
dc.identifier.citedreferenceY. Ren, T. Liu, Y. Shen, Y. Lin, C.-W. Nan, J. Materiomics 2016, 2, 256.
dc.identifier.citedreferenceS. Afyon, F. Krumeich, J. L. M. Rupp, J. Mater. Chem. A 2015, 3, 18636.
dc.identifier.citedreferenceV. Thangadurai, W. Weppner, J. Power Sources 2005, 142, 339.
dc.identifier.citedreferenceK. H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C. A. J. Fisher, T. Hirayama, R. Murugan, Z. Ogumi, J. Power Sources 2011, 196, 764.
dc.identifier.citedreferenceM. Kotobuki, K. Kanamura, Y. Sato, T. Yoshida, J. Power Sources 2011, 196, 7750.
dc.identifier.citedreferenceK. Park, B.-C. Yu, J.-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, J. B. Goodenough, Chem. Mater. 2016, 28, 8051.
dc.identifier.citedreferenceJ. Wakasugi, H. Munakata, K. Kanamura, Electrochemistry 2017, 85, 77.
dc.identifier.citedreferenceG. Vardar, W. J. Bowman, Q. Lu, J. Wang, R. J. Chater, A. Aguadero, R. Seibert, J. Terry, A. Hunt, I. Waluyo, D. D. Fong, A. Jarry, E. J. Crumlin, S. L. Hellstrom, Y.-M. Chiang, B. Yildiz, Chem. Mater. 2018, 30, 6259.
dc.identifier.citedreferenceY. Kim, D. Kim, R. Bliem, G. Vardar, I. Waluyo, A. Hunt, J. T. Wright, J. P. Katsoudas, B. Yildiz, Chem. Mater. 2020, 32, 9531.
dc.identifier.citedreferenceY. Kim, I. Waluyo, A. Hunt, B. Yildiz, Adv. Energy Mater. 2022, 12, 2102741.
dc.identifier.citedreferenceX. Guo, L. Hao, Y. Yang, Y. Wang, Y. Lu, H. Yu, J. Mater. Chem. A 2019, 7, 25915.
dc.identifier.citedreferenceJ. Sastre, X. Chen, A. Aribia, A. N. Tiwari, Y. E. Romanyuk, ACS Appl. Mater. Interfaces 2020, 12, 36196.
dc.identifier.citedreferenceY. Ren, E. D. Wachsman, J. Electrochem. Soc. 2022, 169, 040529.
dc.identifier.citedreferenceS. Narayanan, F. Ramezanipour, V. Thangadurai, J. Phys. Chem. C 2012, 116, 20154.
dc.identifier.citedreferencea) S. Lobe, C. Dellen, A. Windmüller, C. L. Tsai, F. Vondahlen, S. Uhlenbruck, O. Guillon, Ionics 2018, 24, 2199; b) E. A. Il’ina, A. A. Raskovalov, Electrochim. Acta 2020, 330, 135220.
dc.identifier.citedreferenceS. Uhlenbruck, J. Dornseiffer, S. Lobe, C. Dellen, C.-L. Tsai, B. Gotzen, D. Sebold, M. Finsterbusch, O. Guillon, J. Electroceram. 2017, 38, 197.
dc.identifier.citedreferenceS. Panahian Jand, P. Kaghazchi, MRS Commun. 2018, 8, 591.
dc.identifier.citedreferenceT. Pan, J. Alvarado, J. Zhu, Y. Yue, H. L. Xin, D. Nordlund, F. Lin, M. M. Doeff, J. Electrochem. Soc. 2019, 166, A1964.
dc.identifier.citedreferenceM. Zarabian, M. Bartolini, P. Pereira-Almao, V. Thangadurai, J. Electrochem. Soc. 2017, 164, A1133.
dc.identifier.citedreferencea) H. Wakayama, H. Yonekura, Y. Kawai, Chem. Mater. 2016, 28, 4453; b) H. Wakayama, Y. Kawai, J. Mater. Chem. A 2017, 5, 18816.
dc.identifier.citedreferenceY. U. Wang, Acta Mater. 2006, 54, 953.
dc.identifier.citedreferenceT. F. Flint, Y. L. Sun, Q. Xiong, M. C. Smith, J. A. Francis, Sci. Rep. 2019, 9, 18426.
dc.identifier.citedreferenceC. Park, S. Lee, K. Kim, M. Kim, S. Choi, D. Shin, J. Electrochem. Soc. 2019, 166, A5318.
dc.identifier.citedreferenceK. Wu, Doctor Thesis, The Ohio State University 2003.
dc.identifier.citedreferenceE. J. Cheng, K. Hong, N. J. Taylor, H. Choe, J. Wolfenstine, J. Sakamoto, J. Eur. Ceram. Soc. 2017, 37, 3213.
dc.identifier.citedreferenceH.-C. Yu, D. Taha, T. Thompson, N. J. Taylor, A. Drews, J. Sakamoto, K. Thornton, J. Power Sources 2019, 440, 227116.
dc.identifier.citedreferenceC.-L. Tsai, Q. Ma, C. Dellen, S. Lobe, F. Vondahlen, A. Windmüller, D. Grüner, H. Zheng, S. Uhlenbruck, M. Finsterbusch, F. Tietz, D. Fattakhova-Rohlfing, H. P. Buchkremer, O. Guillon, Sustainable Energy Fuels 2019, 3, 280.
dc.identifier.citedreferencea) S. Lamowski, S. Schmerler, J. Kutzner, J. Kortus, Steel Res. Int. 2011, 82, 1129; b) E. T. Ritz, S. J. Li, N. A. Benedek, J. Appl. Phys. 2019, 126, 171102.
dc.identifier.citedreferenceS. O. Dang, Doctor Thesis, RWTH Aachen University 2015.
dc.identifier.citedreferencea) A. A. Hubaud, D. J. Schroeder, B. J. Ingram, J. S. Okasinski, J. T. Vaughey, J. Alloys Compd. 2015, 644, 804; b) M. Bertrand, S. Rousselot, D. Aymé-Perrot, M. Dollé, Mater. Adv. 2021, 2, 2989.
dc.identifier.citedreferencea) E. J. Cheng, N. J. Taylor, J. Wolfenstine, J. Sakamoto, J. Asian Ceram. Soc. 2017, 5, 113; b) K. Mukai, Y. Kishida, H. Nozaki, K. Dohmae, J. Power Sources 2013, 224, 230.
dc.identifier.citedreferenceJ. Wolfenstine, J. L. Allen, J. Sakamoto, D. J. Siegel, H. Choe, Ionics 2018, 24, 1271.
dc.identifier.citedreferenceH.-K. Tian, A. Chakraborty, A. A. Talin, P. Eisenlohr, Y. Qi, J. Electrochem. Soc. 2020, 167, 090541.
dc.identifier.citedreferenceA. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002.
dc.identifier.citedreferencea) S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka, J. Power Sources 2013, 238, 53; b) B. Ramkumar, K. So-young, N. Chan-woo, V. Aravindan, L. Yun-Sung, Electrochim. Acta 2020, 359, 136955; c) R. Balasubramaniam, C.-W. Nam, V. Aravindan, D. Eum, K. Kang, Y.-S. Lee, ChemElectroChem 2021, 8, 570.
dc.identifier.citedreferenceGeorge V. Alexander, N. C. Rosero-Navarro, A. Miura, K. Tadanaga, R. Murugan, J. Mater. Chem. A 2018, 6, 21018.
dc.identifier.citedreferenceZ. Zhao, Z. Wen, X. Liu, H. Yang, S. Chen, C. Li, H. Lv, F. Wu, B. Wu, D. Mu, Chem. Eng. J. 2021, 405, 127031.
dc.identifier.citedreferencea) S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, T. Asaoka, J. Power Sources 2014, 265, 40; b) T. Liu, Y. Ren, Y. Shen, S.-X. Zhao, Y. Lin, C.-W. Nan, J. Power Sources 2016, 324, 349; c) C. Roitzheim, Y. J. Sohn, L.-Y. Kuo, G. Häuschen, M. Mann, D. Sebold, M. Finsterbusch, P. Kaghazchi, O. Guillon, D. Fattakhova-Rohlfing, ACS Appl. Energy Mater. 2022, 5, 6913.
dc.identifier.citedreferenceF. Han, J. Yue, C. Chen, N. Zhao, X. Fan, Z. Ma, T. Gao, F. Wang, X. Guo, C. Wang, Joule 2018, 2, 497.
dc.identifier.citedreferenceA. M. Laptev, H. Zheng, M. Bram, M. Finsterbusch, O. Guillon, Mater. Lett. 2019, 247, 155.
dc.identifier.citedreferenceY. K. Lee, J. Park, W. Lu, J. Electrochem. Soc. 2019, 166, A1340.
dc.identifier.citedreferenceA. M. Nolan, Y. Liu, Y. Mo, ACS Energy Lett. 2019, 4, 2444.
dc.identifier.citedreferenceD. Wang, Q. Sun, J. Luo, J. Liang, Y. Sun, R. Li, K. Adair, L. Zhang, R. Yang, S. Lu, H. Huang, X. Sun, ACS Appl. Mater. Interfaces 2019, 11, 4954.
dc.identifier.citedreferencea) H. Schmalzried, J. Janek, Ber. Bunsen-Ges. Phys. Chem. 1998, 102, 127; b) J. Janek, Nova Acta Leopold. NF 2000, 83, 175.
dc.identifier.citedreferenceN. J. J. de Klerk, M. Wagemaker, ACS Appl. Energy Mater. 2018, 1, 5609.
dc.identifier.citedreferenceC. Ma, Y. Cheng, K. Chen, J. Li, B. G. Sumpter, C.-W. Nan, K. L. More, N. J. Dudney, M. Chi, Adv. Energy Mater. 2016, 6, 1600053.
dc.identifier.citedreferenceR. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier, J. Janek, Chem. Mater. 2017, 29, 5574.
dc.identifier.citedreferenceM. Rosen, M. Finsterbusch, O. Guillon, D. Fattakhova-Rohlfing, J. Mater. Chem. A 2022, 10, 2320.
dc.identifier.citedreferenceM. Ihrig, M. Finsterbusch, C.-L. Tsai, A. M. Laptev, C.-h. Tu, M. Bram, Y. J. Sohn, R. Ye, S. Sevinc, S.-k. Lin, D. Fattakhova-Rohlfing, O. Guillon, J. Power Sources 2021, 482, 228905.
dc.identifier.citedreferenceA. A. Delluva, J. Dudoff, G. Teeter, A. Holewinski, ACS Appl. Mater. Interfaces 2020, 12, 24992.
dc.identifier.citedreferenceR. Koerver, W. Zhang, L. de Biasi, S. Schweidler, A. O. Kondrakov, S. Kolling, T. Brezesinski, P. Hartmann, W. G. Zeier, J. Janek, Energy Environ. Sci. 2018, 11, 2142.
dc.identifier.citedreferenceR. Mücke, M. Finsterbusch, P. Kaghazchi, D. Fattakhova-Rohlfing, O. Guillon, J. Power Sources 2021, 489, 229430.
dc.identifier.citedreferenceJ. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
dc.identifier.citedreferenceW. D. Richards, L. J. Miara, Y. Wang, J. C. Kim, G. Ceder, Chem. Mater. 2016, 28, 266.
dc.identifier.citedreferenceT. K. Schwietert, V. A. Arszelewska, C. Wang, C. Yu, A. Vasileiadis, N. J. J. de Klerk, J. Hageman, T. Hupfer, I. Kerkamm, Y. Xu, E. van der Maas, E. M. Kelder, S. Ganapathy, M. Wagemaker, Nat. Mater. 2020, 19, 428.
dc.identifier.citedreferencea) J. Christensen, J. Newman, J. Electrochem. Soc. 2004, 151, A1977; b) V. Battaglia, J. Newman, J. Electrochem. Soc. 1995, 142, 1423.
dc.identifier.citedreferenceW. Zhang, D. Schröder, T. Arlt, I. Manke, R. Koerver, R. Pinedo, D. A. Weber, J. Sann, W. G. Zeier, J. Janek, J. Mater. Chem. A 2017, 5, 9929.
dc.identifier.citedreferenceP. Li, Y. Zhao, Y. Shen, S.-H. Bo, J. Phys. Energy 2020, 2, 022002.
dc.identifier.citedreferenceH.-K. Tian, B. Xu, Y. Qi, J. Power Sources 2018, 392, 79.
dc.identifier.citedreferenceK. Tantratian, H. Yan, K. Ellwood, E. T. Harrison, L. Chen, Adv. Energy Mater. 2021, 11, 2003417.
dc.identifier.citedreferenceH. Mendoza, S. A. Roberts, V. E. Brunini, A. M. Grillet, Electrochim. Acta 2016, 190, 1.
dc.identifier.citedreferenceR. Xu, H. Sun, L. S. de Vasconcelos, K. Zhao, J. Electrochem. Soc. 2017, 164, A3333.
dc.identifier.citedreferencea) S. Xia, L. Mu, Z. Xu, J. Wang, C. Wei, L. Liu, P. Pianetta, K. Zhao, X. Yu, F. Lin, Y. Liu, Nano Energy 2018, 53, 753; b) D. J. Miller, C. Proff, J. G. Wen, D. P. Abraham, J. Bareño, Adv. Energy Mater. 2013, 3, 1098.
dc.identifier.citedreferenceP. Liu, R. Xu, Y. Liu, F. Lin, K. Zhao, J. Electrochem. Soc. 2020, 167, 040527.
dc.identifier.citedreferencea) R. Ruess, S. Schweidler, H. Hemmelmann, G. Conforto, A. Bielefeld, D. A. Weber, J. Sann, M. T. Elm, J. Janek, J. Electrochem. Soc. 2020, 167, 100532; b) E. Trevisanello, R. Ruess, G. Conforto, F. H. Richter, J. Janek, Adv. Energy Mater. 2021, 11, 2003400.
dc.identifier.citedreferenceM. M. Besli, S. Xia, S. Kuppan, Y. Huang, M. Metzger, A. K. Shukla, G. Schneider, S. Hellstrom, J. Christensen, M. M. Doeff, Y. Liu, Chem. Mater. 2019, 31, 491.
dc.identifier.citedreferenceP. Minnmann, L. Quillman, S. Burkhardt, F. H. Richter, J. Janek, J. Electrochem. Soc. 2021, 168, 040537.
dc.identifier.citedreferenceF. Hao, P. P. Mukherjee, J. Electrochem. Soc. 2018, 165, A1857.
dc.identifier.citedreferenceF. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki, T. Shiratsuchi, T. Tsujimura, Y. Aihara, S. Kaskel, Energy Storage Mater. 2019, 21, 390.
dc.identifier.citedreferencea) K. Fu, Y. Gong, G. T. Hitz, D. W. McOwen, Y. Li, S. Xu, Y. Wen, L. Zhang, C. Wang, G. Pastel, J. Dai, B. Liu, H. Xie, Y. Yao, E. D. Wachsman, L. Hu, Energy Environ. Sci. 2017, 10, 1568; b) S. Xu, D. W. McOwen, L. Zhang, G. T. Hitz, C. Wang, Z. Ma, C. Chen, W. Luo, J. Dai, Y. Kuang, E. M. Hitz, K. Fu, Y. Gong, E. D. Wachsman, L. Hu, Energy Storage Mater. 2018, 15, 458.
dc.identifier.citedreferenceH. Stöffler, T. Zinkevich, M. Yavuz, A.-L. Hansen, M. Knapp, J. Bednarčík, S. Randau, F. H. Richter, J. Janek, H. Ehrenberg, S. Indris, J. Phys. Chem. C 2019, 123, 10280.
dc.identifier.citedreferenceT. Ates, A. Neumann, T. Danner, A. Latz, M. Zarrabeitia, D. Stepien, A. Varzi, S. Passerini, Adv. Sci. 2022, 9, 2105234.
dc.identifier.citedreferenceH. Stöffler, T. Zinkevich, M. Yavuz, A. Senyshyn, J. Kulisch, P. Hartmann, T. Adermann, S. Randau, F. H. Richter, J. Janek, S. Indris, H. Ehrenberg, J. Phys. Chem. C 2018, 122, 15954.
dc.identifier.citedreferenceS. Wang, W. Zhang, X. Chen, D. Das, R. Ruess, A. Gautam, F. Walther, S. Ohno, R. Koerver, Q. Zhang, W. G. Zeier, F. H. Richter, C.-W. Nan, J. Janek, Adv. Energy Mater. 2021, 11, 2100654.
dc.identifier.citedreferenceD. Devaux, R. Bouchet, D. Glé, R. Denoyel, Solid State Ionics 2012, 227, 119.
dc.identifier.citedreferenceM. A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S. P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B. J. Morgan, W. G. Zeier, J. Am. Chem. Soc. 2018, 140, 16330.
dc.identifier.citedreferenceS. Yu, R. D. Schmidt, R. Garcia-Mendez, E. Herbert, N. J. Dudney, J. B. Wolfenstine, J. Sakamoto, D. J. Siegel, Chem. Mater. 2016, 28, 197.
dc.identifier.citedreferenceZ. Deng, Z. Wang, I.-H. Chu, J. Luo, S. P. Ong, J. Electrochem. Soc. 2015, 163, A67.
dc.identifier.citedreferenceE. G. Herbert, W. E. Tenhaeff, N. J. Dudney, G. M. Pharr, Thin Solid Films 2011, 520, 413.
dc.identifier.citedreferenceJ. Janek, W. G. Zeier, Nat. Energy 2016, 1, 16141.
dc.identifier.citedreferenceS. H. Jung, U.-H. Kim, J.-H. Kim, S. Jun, C. S. Yoon, Y. S. Jung, Y.-K. Sun, Adv. Energy Mater. 2020, 10, 1903360.
dc.identifier.citedreferencea) Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685; b) G. F. Dewald, S. Ohno, M. A. Kraft, R. Koerver, P. Till, N. M. Vargas-Barbosa, J. Janek, W. G. Zeier, Chem. Mater. 2019, 31, 8328.
dc.identifier.citedreferencea) F. Walther, R. Koerver, T. Fuchs, S. Ohno, J. Sann, M. Rohnke, W. G. Zeier, J. Janek, Chem. Mater. 2019, 31, 3745; b) F. Walther, S. Randau, Y. Schneider, J. Sann, M. Rohnke, F. H. Richter, W. G. Zeier, J. Janek, Chem. Mater. 2020, 32, 6123; c) F. Walther, F. Strauss, X. Wu, B. Mogwitz, J. Hertle, J. Sann, M. Rohnke, T. Brezesinski, J. Janek, Chem. Mater. 2021, 33, 2110.
dc.identifier.citedreferenceR. Koerver, F. Walther, I. Aygün, J. Sann, C. Dietrich, W. G. Zeier, J. Janek, J. Mater. Chem. A 2017, 5, 22750.
dc.identifier.citedreferenceA. Sakuda, A. Hayashi, M. Tatsumisago, Chem. Mater. 2010, 22, 949.
dc.identifier.citedreferenceJ. Haruyama, K. Sodeyama, Y. Tateyama, ACS Appl. Mater. Interfaces 2017, 9, 286.
dc.identifier.citedreferencea) X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao, Y. Hu, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, K. R. Adair, X. Sun, Energy Environ. Sci. 2019, 12, 2665; b) X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 16427.
dc.identifier.citedreferenceL. M. Riegger, R. Schlem, J. Sann, W. G. Zeier, J. Janek, Angew. Chem., Int. Ed. 2021, 60, 6718.
dc.identifier.citedreferenceD. Cao, Y. Zhang, A. M. Nolan, X. Sun, C. Liu, J. Sheng, Y. Mo, Y. Wang, H. Zhu, Nano Lett. 2020, 20, 1483.
dc.identifier.citedreferenceP. Braun, C. Uhlmann, M. Weiss, A. Weber, E. Ivers-Tiffée, J. Power Sources 2018, 393, 119.
dc.identifier.citedreferenceD. Danilov, R. A. H. Niessen, P. H. L. Notten, J. Electrochem. Soc. 2011, 158, A215.
dc.identifier.citedreferencea) A. Bielefeld, D. A. Weber, J. Janek, J. Phys. Chem. C 2019, 123, 1626; b) A. Bielefeld, D. A. Weber, J. Janek, ACS Appl. Mater. Interfaces 2020, 12, 12821.
dc.identifier.citedreferenceH. Shen, E. Yi, M. Amores, L. Cheng, N. Tamura, D. Y. Parkinson, G. Chen, K. Chen, M. Doeff, J. Mater. Chem. A 2019, 7, 20861.
dc.identifier.citedreferencea) H. Chen, Q.-y. Liu, M.-x. Jing, F. Chen, W.-y. Yuan, B.-w. Ju, F.-y. Tu, X.-q. Shen, S.-b. Qin, ACS Appl. Mater. Interfaces 2020, 12, 15120; b) Q. Guo, F. Xu, L. Shen, S. Deng, Z. Wang, M. Li, X. Yao, Energy Mater. Adv. 2022, 2022, 9753506.
dc.identifier.citedreferencea) Z. Li, H.-X. Xie, X.-Y. Zhang, X. Guo, J. Mater. Chem. A 2020, 8, 3892; b) K. Liu, X. Li, J. Cai, Z. Yang, Z. Chen, B. Key, Z. Zhang, T. L. Dzwiniel, C. Liao, ACS Energy Lett. 2021, 6, 1315.
dc.identifier.citedreferenceB. Liu, L. Zhang, S. Xu, D. W. McOwen, Y. Gong, C. Yang, G. R. Pastel, H. Xie, K. Fu, J. Dai, Energy Storage Mater. 2018, 14, 376.
dc.identifier.citedreferenceA. Gupta, E. Kazyak, N. P. Dasgupta, J. Sakamoto, J. Power Sources 2020, 474, 228598.
dc.identifier.citedreferenceJ. Liu, X. Gao, G. O. Hartley, G. J. Rees, C. Gong, F. H. Richter, J. Janek, Y. Xia, A. W. Robertson, L. R. Johnson, P. G. Bruce, Joule 2020, 4, 101.
dc.identifier.citedreferenceY. Xie, H. Gao, J. Gim, A. T. Ngo, Z.-F. Ma, Z. Chen, J. Phys. Chem. Lett. 2019, 10, 589.
dc.identifier.citedreferenceC.-C. Su, M. He, R. Amine, Z. Chen, Z. Yu, T. Rojas, L. Cheng, A. T. Ngo, K. Amine, Nano Energy 2021, 83, 105843.
dc.identifier.citedreferenceA. Gupta, J. Sakamoto, Electrochem. Soc. Interface 2019, 28, 63.
dc.identifier.citedreferenceG. Bucci, B. Talamini, A. Renuka Balakrishna, Y.-M. Chiang, W. C. Carter, Phys. Rev. Mater. 2018, 2, 105407.
dc.identifier.citedreferenceB. Xu, H. Duan, H. Liu, C. A. Wang, S. Zhong, ACS Appl. Mater. Interfaces 2017, 9, 21077.
dc.identifier.citedreferenceW. Zhou, Z. Wang, Y. Pu, Y. Li, S. Xin, X. Li, J. Chen, J. B. Goodenough, Adv. Mater. 2019, 31, 1805574.
dc.identifier.citedreferenceX. Pan, H. Sun, Z. Wang, H. Huang, Q. Chang, J. Li, J. Gao, S. Wang, H. Xu, Y. Li, Adv. Energy Mater. 2020, 10, 2002416.
dc.identifier.citedreferenceK. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, S. Yuan, J. Energy Chem. 2021, 59, 320.
dc.identifier.citedreferenceM. Chen, J. Wu, T. Ye, J. Ye, C. Zhao, S. Bi, J. Yan, B. Mao, G. Feng, Nat. Commun. 2020, 11, 5809.
dc.identifier.citedreferenceJ.-Y. Liang, X.-X. Zeng, X.-D. Zhang, P.-F. Wang, J.-Y. Ma, Y.-X. Yin, X.-W. Wu, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2018, 140, 6767.
dc.identifier.citedreferenceC. Zhan, T. Wu, J. Lu, K. Amine, Energy Environ. Sci. 2018, 11, 243.
dc.identifier.citedreferenceN. R. Vadivel, S. Ha, M. He, D. Dees, S. Trask, B. Polzin, K. G. Gallagher, J. Electrochem. Soc. 2017, 164, A508.
dc.identifier.citedreferenceD. Kim, S. Park, O. B. Chae, J. H. Ryu, Y.-U. Kim, R.-Z. Yin, S. M. Oh, J. Electrochem. Soc. 2011, 159, A193.
dc.identifier.citedreferenceK. Leung, Chem. Mater. 2017, 29, 2550.
dc.identifier.citedreferencea) Y. Dai, L. Cai, R. E. White, J. Electrochem. Soc. 2012, 160, A182; b) X. Lin, J. Park, L. Liu, Y. Lee, A. Sastry, W. Lu, J. Electrochem. Soc. 2013, 160, A1701.
dc.identifier.citedreferenceF. Sagane, K. Miyazaki, T. Fukutsuka, Y. Iriyama, T. Abe, Z. Ogumi, Chem. Lett. 2010, 39, 826.
dc.identifier.citedreferenceF. Sagane, T. Abe, Y. Iriyama, Z. Ogumi, J. Power Sources 2005, 146, 749.
dc.identifier.citedreferenceT. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc. 2005, 152, A2151.
dc.identifier.citedreferenceH. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, X. Sun, Nano Energy 2019, 61, 119.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.