Show simple item record

Weak Electron–Phonon Coupling and Enhanced Thermoelectric Performance in n-type PbTe–Cu2Se via Dynamic Phase Conversion

dc.contributor.authorWu, Ming
dc.contributor.authorCui, Hong-Hua
dc.contributor.authorCai, Songting
dc.contributor.authorHao, Shiqiang
dc.contributor.authorLiu, Yukun
dc.contributor.authorBailey, Trevor P.
dc.contributor.authorZhang, Yinying
dc.contributor.authorChen, Zixuan
dc.contributor.authorLuo, Yubo
dc.contributor.authorUher, Ctirad
dc.contributor.authorWolverton, Christopher
dc.contributor.authorDravid, Vinayak P.
dc.contributor.authorYu, Yan
dc.contributor.authorLuo, Zhong-Zhen
dc.contributor.authorZou, Zhigang
dc.contributor.authorYan, Qingyu
dc.contributor.authorKanatzidis, Mercouri G.
dc.date.accessioned2023-02-01T19:00:05Z
dc.date.available2024-02-01 14:00:03en
dc.date.available2023-02-01T19:00:05Z
dc.date.issued2023-01
dc.identifier.citationWu, Ming; Cui, Hong-Hua ; Cai, Songting; Hao, Shiqiang; Liu, Yukun; Bailey, Trevor P.; Zhang, Yinying; Chen, Zixuan; Luo, Yubo; Uher, Ctirad; Wolverton, Christopher; Dravid, Vinayak P.; Yu, Yan; Luo, Zhong-Zhen ; Zou, Zhigang; Yan, Qingyu; Kanatzidis, Mercouri G. (2023). "Weak Electron- Phonon Coupling and Enhanced Thermoelectric Performance in n- type PbTe- Cu2Se via Dynamic Phase Conversion." Advanced Energy Materials 13(1): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/175803
dc.description.abstractThis study investigates Ga-doped n-type PbTe thermoelectric materials and the dynamic phase conversion process of the second phases via Cu2Se alloying. Introducing Cu2Se enhances its electrical transport properties while reducing its lattice thermal conductivity (κlat) via weak electron–phonon coupling. Cu2Te and CuGa(Te/Se)2 (tetragonal phase) nanocrystals precipitate during the alloying process, resulting in Te vacancies and interstitial Cu in the PbTe matrix. At room temperature, Te vacancies and interstitial Cu atoms serve as n-type dopants, increasing the carrier concentration and electrical conductivity from ≈1.18 × 1019 cm−3 and ≈1870 S cm−1 to ≈2.26 × 1019 cm−3 and ≈3029 S cm−1, respectively. With increasing temperature, the sample exhibits a dynamic change in Cu2Te content and the generation of a new phase of CuGa(Te/Se)2 (cubic phase), strengthening the phonon scattering and obtaining an ultralow κlat. Pb0.975Ga0.025Te-3%CuSe exhibits a maximum figure of merit of ≈1.63 at 823 K, making it promising for intermediate-temperature device applications.A novel dynamic phase conversion is observed after Cu2Se alloying in Ga-doped n-type PbTe. Cu2Se alloying results in the Cu2Te and tetragonal CuGa(Te/Se)2 precipitates, leading to enhanced carrier concentration. With increasing temperature, the sample exhibits the dynamic change in Cu2Te content and the generation of cubic CuGa(Te/Se)2, obtaining an ultralow κlat and a high ZT of ≈1.63.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdynamic phase conversion
dc.subject.otherelectron–phonon coupling
dc.subject.othern-type PbTe
dc.subject.otherthermoelectrics
dc.subject.otherCu2Se alloying
dc.titleWeak Electron–Phonon Coupling and Enhanced Thermoelectric Performance in n-type PbTe–Cu2Se via Dynamic Phase Conversion
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175803/1/aenm202203325_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175803/2/aenm202203325.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175803/3/aenm202203325-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/aenm.202203325
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferencea) Y. Qin, Y. Xiao, L.-D. Zhao, APL Mater. 2020, 8, 010901; b) C. Zhou, Y. Yu, Y. K. Lee, O. Cojocaru-Mirédin, B. Yoo, S.-P. Cho, J. Im, M. Wuttig, T. Hyeon, I. Chung, J. Am. Chem. Soc. 2018, 140, 15535.
dc.identifier.citedreferenceH.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, APL Mater. 2015, 3, 041506.
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
dc.identifier.citedreferencea) K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818; b) G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123; c) T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Adv. Mater. 2017, 29, 1605884; d) J. He, T. M. Tritt, Science 2017, 357, 1369; e) A. J. Minnich, M. S. Dresselhaus, Z. Ren, G. Chen, Energy Environ. Sci. 2009, 2, 466; f) G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105; g) Z.-Z. Luo, S. Hao, S. Cai, T. P. Bailey, G. Tan, Y. Luo, I. Spanopoulos, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 6403; h) Z.-Z. Luo, S. Hao, X. Zhang, X. Hua, S. Cai, G. Tan, T. P. Bailey, R. Ma, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Energy Environ. Sci. 2018, 11, 3220.
dc.identifier.citedreferencea) C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Adv. Mater. 2010, 22, 3970; b) M. G. Kanatzidis, Chem. Mater. 2010, 22, 648; c) J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem., Int. Ed. 2009, 48, 8616; d) Z.-Z. Luo, S. Cai, S. Hao, T. P. Bailey, X. Hu, R. Hanus, R. Ma, G. Tan, D. G. Chica, G. J. Snyder, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Chem. Mater. 2019, 31, 5943.
dc.identifier.citedreferencea) G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nat. Commun. 2016, 7, 12167; b) Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin, X. Zhang, Y. Chen, L. Chen, B. Ge, Y. Pei, Joule 2019, 3, 1276.
dc.identifier.citedreferenceQ. Yan, M. G. Kanatzidis, Nat. Mater. 2022, 21, 503.
dc.identifier.citedreferenceJ. Zhang, D. Wu, D. He, D. Feng, M. Yin, X. Qin, J. He, Adv. Mater. 2017, 29, 1703148.
dc.identifier.citedreferenceG. Tan, M. Ohta, M. G. Kanatzidis, Philos. Tr. Soc. 2019, 377, 20180450.
dc.identifier.citedreferenceZ.-Z. Luo, S. Cai, S. Hao, T. P. Bailey, X. Su, I. Spanopoulos, I. Hadar, G. Tan, Y. Luo, J. Xu, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 16169.
dc.identifier.citedreferenceQ. Zhang, Q. Song, X. Wang, J. Sun, Q. Zhu, K. Dahal, X. Lin, F. Cao, J. Zhou, S. Chen, G. Chen, J. Mao, Z. Ren, Energy Environ. Sci. 2018, 11, 933.
dc.identifier.citedreferenceX. Su, S. Hao, T. P. Bailey, S. Wang, I. Hadar, G. Tan, T. B. Song, Q. Zhang, C. Uher, C. Wolverton, Adv. Energy Mater. 2018, 21, 1800659.
dc.identifier.citedreferenceY. Xiao, H. Wu, J. Cui, D. Wang, L. Fu, Y. Zhang, Y. Chen, J. He, S. J. Pennycook, L.-D. Zhao, Energy Environ. Sci. 2018, 11, 2486.
dc.identifier.citedreferencea) Y. Xiao, Y. Wu, P. Nan, H. Dong, Z. Chen, Z. Chen, H. Gu, B. Ge, W. Li, Y. Pei, Chem 2020, 6, 523; b) Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, G. J. Snyder, Y. Pei, Adv. Mater. 2017, 29, 1606768.
dc.identifier.citedreferencea) J. M. Hodges, S. Hao, J. A. Grovogui, X. Zhang, T. P. Bailey, X. Li, Z. Gan, Y. Y. Hu, C. Uher, V. P. Dravid, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 18115; b) Z.-Z. Luo, S. Cai, S. Hao, T. Bailey, Y. Luo, W. Luo, Y. Yu, C. Uher, C. M. Wolverton, V. Dravid, Z. Zou, Q. Yan, M. G. Kanatzidis, Energy Environ. Sci. 2022, 15, 368.
dc.identifier.citedreferenceL. Fu, M. Yin, D. Wu, W. Li, D. Feng, L. Huang, J. He, Energy Environ. Sci. 2017, 10, 2030.
dc.identifier.citedreferenceA. D. LaLonde, Y. Pei, G. J. Snyder, Energy Environ. Sci. 2011, 4, 2090.
dc.identifier.citedreferenceG. Tan, C. C. Stoumpos, S. Wang, T. P. Bailey, L.-D. Zhao, C. Uher, M. G. Kanatzidis, Adv. Energy Mater. 2017, 7, 1700099.
dc.identifier.citedreferenceY. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier, G. J. Snyder, Adv. Energy Mater. 2014, 4, 1400486.
dc.identifier.citedreferenceY. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S. J. Pennycook, L. Huang, J. He, L.-D. Zhao, J. Am. Chem. Soc. 2017, 139, 51.
dc.identifier.citedreferenceW. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. Pei, Adv. Mater. 2017, 29, 1605887.
dc.identifier.citedreferenceG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
dc.identifier.citedreferenceH. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422.
dc.identifier.citedreferencea) P. Jood, M. Ohta, M. Kunii, X. Hu, H. Nishiate, A. Yamamoto, M. G. Kanatzidis, J. Mater. Chem. C 2015, 3, 10401; b) S. Wang, Y. Xiao, Y. Chen, S. Peng, D. Wang, T. Hong, Z. Yang, Y. Sun, X. Gao, L.-D. Zhao, Energy Environ. Sci. 2021, 14, 451; c) Z.-Z. Luo, X. Zhang, X. Hua, G. Tan, T. P. Bailey, J. Xu, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Adv. Funct. Mater. 2018, 28, 1801617.
dc.identifier.citedreferenceY. K. Koh, C. J. Vineis, S. D. Calawa, M. P. Walsh, D. G. Cahill, Appl. Phys. Lett. 2009, 94, 153101.
dc.identifier.citedreferenceX. Qian, D. Wang, Y. Zhang, H. Wu, S. J. Pennycook, L. Zheng, P. F. P. Poudeu, L.-D. Zhao, J. Mater. Chem. A 2020, 8, 5699.
dc.identifier.citedreferencea) Y. Li, J. Zhang, S. Pan, Y. Jiang, K. Wang, J. Yang, Y. Pei, Q. Zhu, M. T. Agne, G. J. Snyder, Z. Ren, W. Zhang, J. Luo, Energy Environ. Sci. 2019, 12, 3089; b) X. Yu, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S. J. Pennycook, L. Huang, J. He, L. -D. Zhao, J. Am. Chem. Soc. 2017, 139, 18732; c) Y. Han, Z. Chen, C. Xin, Y. Pei, M. Zhou, R. Huang, L. Li, J. Alloys Compd. 2014, 600, 91; d) X. Wang, X. Li, Z. Zhang, X. Li, C. Chen, S. Li, X. Lin, J. Sui, X. Liu, F. Cao, J. Yang, Q. Zhang, Mater. Today Phys. 2018, 6, 45; e) H. Liu, Z. Chen, J. Tang, Y. Zhong, X. Guo, F. Zhang, R. Ang, ACS Appl. Mater. Interfaces 2020, 12, 52952; f) H.-T. Liu, Q. Sun, Y. Zhong, C.-L. Xia, Y. Chen, X.-L. Shi, Z.-G. Chen, R. Ang, Mater. Today Phys. 2022, 24, 100677.
dc.identifier.citedreferencea) M. Dutta, R. K. Biswas, S. K. Pati, K. Biswas, ACS Energy Lett. 2021, 6, 1625; b) L. You, J. Zhang, S. Pan, Y. Jiang, K. Wang, J. Yang, Y. Pei, Q. Zhu, M. T. Agne, G. J. Snyder, Z. Ren, W. Zhang, J. Luo, Energy Environ. Sci. 2019, 12, 3089;
dc.identifier.citedreferenceP.-Y. Deng, K.-K. Wang, J.-Y. Du, H.-J. Wu, Adv. Funct. Mater. 2020, 30, 2005479;
dc.identifier.citedreferencea) M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V. Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, E. E. Haller, Phys. Rev. B 1997, 56, 9431; b) Y. Zhang, E. Skoug, J. Cain, V. Ozoliņš, D. Morelli, C. Wolverton, Phys. Rev. B 2012, 85, 054306; c) D. T. Morelli, J. P. Heremans, G. A. Slack, Phys. Rev. B 2002, 66, 195304.
dc.identifier.citedreferenceR. Blachnik, R. Igel, Z. Naturforsch., B 1974, 29, 625.
dc.identifier.citedreferenceL. Chaput, A. Togo, I. Tanaka, G. Hug, Phys. Rev. B 2011, 84, 094302.
dc.identifier.citedreferenceG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.