Time-varying sliding mode controller for over-actuated systems with constrained and uncertain actuators in flight control applications
dc.contributor.author | Tohidi, Seyed Shahabaldin | |
dc.contributor.author | Yildiz, Yildiray | |
dc.contributor.author | Kolmanovsky, Ilya | |
dc.date.accessioned | 2023-02-01T19:00:14Z | |
dc.date.available | 2024-03-01 14:00:09 | en |
dc.date.available | 2023-02-01T19:00:14Z | |
dc.date.issued | 2023-02 | |
dc.identifier.citation | Tohidi, Seyed Shahabaldin; Yildiz, Yildiray; Kolmanovsky, Ilya (2023). "Time-varying sliding mode controller for over-actuated systems with constrained and uncertain actuators in flight control applications." International Journal of Robust and Nonlinear Control 33(3): 1720-1737. | |
dc.identifier.issn | 1049-8923 | |
dc.identifier.issn | 1099-1239 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/175805 | |
dc.description.abstract | One solution to the problem of distributing the control action among redundant actuators with uncertain dynamics is employing an adaptive control allocator. This paper proposes a sliding mode controller which exploits a time-varying sliding surface to complement adaptive control allocation in the presence of actuator saturation. The proposed approach does not require error augmentation for tracking desired references, which diminishes the computational burden. Aerodata Model in Research Environment, which is an over-actuated aircraft model, is adopted to demonstrate the efficacy of the proposed controller in simulation studies. | |
dc.publisher | Springer Science & Business Media | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | over-actuated systems | |
dc.subject.other | constrained systems | |
dc.subject.other | control allocation | |
dc.subject.other | sliding mode controller | |
dc.title | Time-varying sliding mode controller for over-actuated systems with constrained and uncertain actuators in flight control applications | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Industrial and Operations Engineering | |
dc.subject.hlbsecondlevel | Mechanical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175805/1/rnc6440_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175805/2/rnc6440.pdf | |
dc.identifier.doi | 10.1002/rnc.6440 | |
dc.identifier.source | International Journal of Robust and Nonlinear Control | |
dc.identifier.citedreference | Chen L, Edwards C, Alwi H, Sato M. Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control. Automatica. 2020; 114: 108829. | |
dc.identifier.citedreference | Molnar L, Omerdic E, Toal D. Guidance, navigation and control system for the Tethra unmanned underwater vehicle. Int J Control. 2007; 80 ( 7 ): 1050 - 1076. | |
dc.identifier.citedreference | Safa A, Baradarannia M, Kharrati H, Khanmohammadi S. Robust attitude tracking control for a rigid spacecraft under input delays and actuator errors. Int J Control. 2019; 92 ( 5 ): 1183 - 1195. | |
dc.identifier.citedreference | Naskar AK, Patra S, Sen S. New control allocation algorithms in fixed point framework for overactuated systems with actuator saturation. Int J Control. 2017; 90 ( 2 ): 348 - 356. | |
dc.identifier.citedreference | Naderi M, Sedigh AK, Johansen TA. Guaranteed feasible control allocation using model predictive control. Control Theory Technol. 2019; 17 ( 3 ): 252 - 264. | |
dc.identifier.citedreference | Tohidi SS, Yildiz Y. Handling actuator magnitude and rate saturation in uncertain over-actuated systems: a modified projection algorithm approach. Int J Control. 2020;95(3): 790 - 803. | |
dc.identifier.citedreference | Rios H, Kamal S, Fridman LM, Zolghadri A. Fault tolerant control allocation via continuous integral sliding-modes: a HOSM-observer approach. Automatica. 2015; 51: 318 - 325. | |
dc.identifier.citedreference | Steinberger M, Castillo I, Horn M, Fridman L. Robust output tracking of constrained perturbed linear systems via model predictive sliding mode control. Int J Robust Nonlinear Control. 2020; 30 ( 3 ): 1258 - 1274. | |
dc.identifier.citedreference | Incremona GP, Ferrara A, Magni L. Hierarchical model predictive/sliding mode control of nonlinear constrained uncertain systems. IFAC-PapersOnLine. 2015; 48 ( 23 ): 102 - 109. | |
dc.identifier.citedreference | Rubagotti M, Raimondo DM, Ferrara A, Magni L. Robust model predictive control with integral sliding mode in continuous-time sampled-data nonlinear systems. IEEE Trans Automat Contr. 2010; 56 ( 3 ): 556 - 570. | |
dc.identifier.citedreference | Raimondo DM, Rubagotti M, Jones CN, Magni L, Ferrara A, Morari M. Multirate sliding mode disturbance compensation for model predictive control. Int J Robust Nonlinear Control. 2015; 25 ( 16 ): 2984 - 3003. | |
dc.identifier.citedreference | Golkani MA, Seeber R, Reichhartinger M, Horn M. Lyapunov-based saturated continuous twisting algorithm. Int J Robust Nonlinear Control. 2021; 31 ( 9 ): 3513 - 3527. | |
dc.identifier.citedreference | Ferrara A, Incremona GP, Regolin E. Optimization-based adaptive sliding mode control with application to vehicle dynamics control. Int J Robust Nonlinear Control. 2019; 29 ( 3 ): 550 - 564. | |
dc.identifier.citedreference | Seeber R, Reichhartinger M. Conditioned super-twisting algorithm for systems with saturated control action. Automatica. 2020; 116: 108921. | |
dc.identifier.citedreference | Seeber R, Horn M. Guaranteeing disturbance rejection and control signal continuity for the saturated super-twisting algorithm. IEEE Control Syst Lett. 2019; 3 ( 3 ): 715 - 720. | |
dc.identifier.citedreference | Corradini ML, Cristofaro A, Orlando G. Robust stabilization of multi input plants with saturating actuators. IEEE Trans Automat Contr. 2010; 55 ( 2 ): 419 - 425. | |
dc.identifier.citedreference | Tohidi SS, Yildiz Y, Kolmanovsky I. Sliding mode control for over-actuated systems with adaptive control allocation and its applications to flight control. Proceedings of the 2021 IEEE Conference on Control Technology and Applications (CCTA); 2021: 765 - 770. | |
dc.identifier.citedreference | Eugene L, Kevin W, Howe D. Robust and Adaptive Control with Aerospace Applications. Springer; 2013. | |
dc.identifier.citedreference | Stevens BL, Lewis FL, Johnson EN. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. John Wiley & Sons; 2015. | |
dc.identifier.citedreference | Antsaklis PJ, Michel AN. Linear Systems. Springer Science & Business Media; 2006. | |
dc.identifier.citedreference | Slotine J-JE, Li W. Applied Nonlinear Control. Prentice Hall; 1991. | |
dc.identifier.citedreference | Utkin V, Shi J. Integral sliding mode in systems operating under uncertainty conditions. Proceedings of 35th IEEE Conference on Decision and Control; 1996: 4591 - 4596. | |
dc.identifier.citedreference | Nechepurenko YM. Bounds for the matrix exponential based on the Lyapunov equation and limits of the Hausdorff set. Comput Math Math Phys. 2002; 42 ( 2 ): 125 - 134. | |
dc.identifier.citedreference | Yildiz Y, Kolmanovsky I. Stability properties and cross-coupling performance of the control allocation scheme CAPIO. J Guid Control Dyn. 2011; 34 ( 4 ): 1190 - 1196. | |
dc.identifier.citedreference | Ducard GJ. Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles. Springer Science & Business Media; 2009. | |
dc.identifier.citedreference | Bodson M. Evaluation of optimization methods for control allocation. J Guid Control Dyn. 2002; 25 ( 4 ): 703 - 711. | |
dc.identifier.citedreference | Liao F, Lum K-Y, Wang JL, Benosman M. Adaptive control allocation for non-linear systems with internal dynamics. IET Control Theory Appl. 2010; 4 ( 6 ): 909 - 922. | |
dc.identifier.citedreference | Shen Q, Wang D, Zhu S, Poh EK. Inertia-free fault-tolerant spacecraft attitude tracking using control allocation. Automatica. 2015; 62: 114 - 121. | |
dc.identifier.citedreference | Yildiz Y, Kolmanovsky I. Implementation of CAPIO for composite adaptive control of cross-coupled unstable aircraft. Infotech Aerosp. 2011:1460. | |
dc.identifier.citedreference | Acosta DM, Yildiz Y, Craun RW, et al. Piloted evaluation of a control allocation technique to recover from pilot-induced oscillations. J Aircr. 2014; 52 ( 1 ): 130 - 140. | |
dc.identifier.citedreference | Shen Q, Wang D, Zhu S, Poh EK. Robust control allocation for spacecraft attitude tracking under actuator faults. IEEE Trans Control Syst Technol. 2017; 25 ( 3 ): 1068 - 1075. | |
dc.identifier.citedreference | Sadeghzadeh I, Chamseddine A, Zhang Y, Theilliol D. Control allocation and re-allocation for a modified quadrotor helicopter against actuator faults. IFAC Proc Vol. 2012; 45 ( 20 ): 247 - 252. | |
dc.identifier.citedreference | Galeani S, Sassano M. Data-driven dynamic control allocation for uncertain redundant plants. Proceedings of the IEEE Conference on Decision and Control; 2018: 5494 - 5499. | |
dc.identifier.citedreference | Tohidi SS, Yildiz Y, Kolmanovsky I. Pilot induced oscillation mitigation for unmanned aircraft systems: an adaptive control allocation approach. Proceedings of the IEEE Conference on Control Technology and Applications; 2018: 343 - 348. | |
dc.identifier.citedreference | Podder TK, Sarkar N. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robot Auton Syst. 2001; 34 ( 1 ): 39 - 52. | |
dc.identifier.citedreference | Gierusz W, Tomera M. Logic thrust allocation applied to multivariable control of the training ship. Control Eng Pract. 2006; 14 ( 5 ): 511 - 524. | |
dc.identifier.citedreference | Johansen TA, Fuglseth TP, Tøndel P, Fossen TI. Optimal constrained control allocation in marine surface vessels with rudders. Control Eng Pract. 2008; 16 ( 4 ): 457 - 464. | |
dc.identifier.citedreference | Chen M, Ge SS, How BVE, Choo YS. Robust adaptive position mooring control for marine vessels. IEEE Trans Control Syst Technol. 2013; 21 ( 2 ): 395 - 409. | |
dc.identifier.citedreference | Sørensen AJ. A survey of dynamic positioning control systems. Annu Rev Control. 2011; 35 ( 1 ): 123 - 136. | |
dc.identifier.citedreference | Corradini ML, Cristofaro A. A nonlinear fault-tolerant thruster allocation architecture for underwater remotely operated vehicles. IFAC-PapersOnLine. 2016; 49 ( 23 ): 285 - 290. | |
dc.identifier.citedreference | Tjønnås J, Johansen TA. Stabilization of automotive vehicles using active steering and adaptive brake control allocation. IEEE Trans Control Syst Technol. 2010; 18 ( 3 ): 545 - 558. | |
dc.identifier.citedreference | Temiz O, Cakmakci M, Yildiz Y. A fault tolerant vehicle stability control using adaptive control allocation. Proceedings of the Dynamic Systems and Control Conference; 2018. | |
dc.identifier.citedreference | Temiz O, Cakmakci M, Yildiz Y. A fault tolerant integrated vehicle stability control using adaptive control allocation. arXiv preprint arXiv:2008.05697; 2020. | |
dc.identifier.citedreference | Tohidi SS, Khaki Sedigh A. Adaptive fault tolerance in automotive vehicle using control allocation based on the pseudo inverse along the null space for yaw stabilization. Proceedings of the 3rd International Conference on Control, Instrumentation, and Automation; 2013: 174 - 179. | |
dc.identifier.citedreference | Taghirad HD, Bedoustani YB. An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators. IEEE Trans Robot. 2011; 27 ( 6 ): 1137 - 1143. | |
dc.identifier.citedreference | Bouarfa A, Bodson M, Fadel M. A fast active-balancing method for the 3-phase multilevel flying capacitor inverter derived from control allocation theory. IFAC-PapersOnLine. 2017; 50 ( 1 ): 2113 - 2118. | |
dc.identifier.citedreference | Raoufat ME, Tomsovic K, Djouadi SM. Dynamic control allocation for damping of inter-area oscillations. IEEE Trans Power Syst. 2017; 32 ( 6 ): 4894 - 4903. | |
dc.identifier.citedreference | Durham WC. Constrained control allocation. J Guid Control Dyn. 1993; 16 ( 4 ): 717 - 725. | |
dc.identifier.citedreference | Durham W, Bordignon KA, Beck R. Aircraft Control Allocation. Springer Science & Business Media; 2017. | |
dc.identifier.citedreference | Alwi H, Edwards C. Fault tolerant control using sliding modes with on-line control allocation. Automatica. 2008; 44 ( 7 ): 1859 - 1866. | |
dc.identifier.citedreference | Tohidi SS, Khaki Sedigh A, Buzorgnia D. Fault tolerant control design using adaptive control allocation based on the pseudo inverse along the null space. Int J Robust Nonlinear Control. 2016; 26 ( 16 ): 3541 - 3557. | |
dc.identifier.citedreference | Petersen JA, Bodson M. Constrained quadratic programming techniques for control allocation. IEEE Trans Control Syst Technol. 2006; 14 ( 1 ): 91 - 98. | |
dc.identifier.citedreference | Härkegård O, Glad ST. Resolving actuator redundancy-optimal control vs. Control allocation. Automatica. 2005; 41 ( 1 ): 137 - 144. | |
dc.identifier.citedreference | Casavola A, Garone E. Fault-tolerant adaptive control allocation schemes for overactuated systems. Int J Robust Nonlinear Control. 2010; 20 ( 17 ): 1958 - 1980. | |
dc.identifier.citedreference | Härkegård O. Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation. Proceedings of the IEEE Conference on Decision and Control; 2002: 1295 - 1300. | |
dc.identifier.citedreference | Yildiz Y, Kolmanovsky IV. A control allocation technique to recover from pilot-induced oscillations (CAPIO) due to actuator rate limiting. Proceedings of the American Control Conference; 2010: 516 - 523. | |
dc.identifier.citedreference | Yildiz Y, Kolmanovsky IV, Acosta D. A control allocation system for automatic detection and compensation of phase shift due to actuator rate limiting. Proceedings of the American Control Conference; 2011: 444 - 449. | |
dc.identifier.citedreference | Zaccarian L. Dynamic allocation for input redundant control systems. Automatica. 2009; 45 ( 6 ): 1431 - 1438. | |
dc.identifier.citedreference | Tjønnås J, Johansen TA. Adaptive control allocation. Automatica. 2008; 44 ( 11 ): 2754 - 2765. | |
dc.identifier.citedreference | Falconi GP, Holzapfel F. Adaptive fault tolerant control allocation for a hexacopter system. Proceedings of the American Control Conference (ACC); 2016: 6760 - 6766. | |
dc.identifier.citedreference | Tohidi SS, Yildiz Y, Kolmanovsky I. Fault tolerant control for over-actuated systems: an adaptive correction approach. Proceedings of the American Control Conference; 2016: 2530 - 2535. | |
dc.identifier.citedreference | Tohidi SS, Yildiz Y, Kolmanovsky I. Adaptive control allocation for over-actuated systems with actuator saturation. IFAC-PapersOnLine. 2017; 50 ( 1 ): 5492 - 5497. | |
dc.identifier.citedreference | Tohidi SS, Yildiz Y, Kolmanovsky I. Adaptive control allocation for constrained systems. Automatica. 2020; 121: 109161. | |
dc.identifier.citedreference | Johansen TA, Fossen TI. Control allocation—A survey. Automatica. 2013; 49 ( 5 ): 1087 - 1103. | |
dc.identifier.citedreference | Tarbouriech S, Garcia G, Silva JM Jr, Queinnec I. Stability and Stabilization of Linear Systems with Saturating Actuators. Springer Science & Business Media; 2011. | |
dc.identifier.citedreference | Buffington JM, Enns DF. Lyapunov stability analysis of daisy chain control allocation. J Guid Control Dyn. 1996; 19 ( 6 ): 1226 - 1230. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.