Show simple item record

Discovery of rosin-based acylhydrazone derivatives as potential antifungal agents against rice Rhizoctonia solani for sustainable crop protection

dc.contributor.authorXu, Renle
dc.contributor.authorGu, Shihao
dc.contributor.authorChen, Kun
dc.contributor.authorChen, Jinyu
dc.contributor.authorWang, Yong
dc.contributor.authorGao, Yanqing
dc.contributor.authorShang, Shibin
dc.contributor.authorSong, Zhanqian
dc.contributor.authorSong, Jie
dc.contributor.authorLi, Jian
dc.date.accessioned2023-02-01T19:00:21Z
dc.date.available2024-03-01 14:00:15en
dc.date.available2023-02-01T19:00:21Z
dc.date.issued2023-02
dc.identifier.citationXu, Renle; Gu, Shihao; Chen, Kun; Chen, Jinyu; Wang, Yong; Gao, Yanqing; Shang, Shibin; Song, Zhanqian; Song, Jie; Li, Jian (2023). "Discovery of rosin-based acylhydrazone derivatives as potential antifungal agents against rice Rhizoctonia solani for sustainable crop protection." Pest Management Science 79(2): 655-665.
dc.identifier.issn1526-498X
dc.identifier.issn1526-4998
dc.identifier.urihttps://hdl.handle.net/2027.42/175806
dc.description.abstractBACKGROUNDThe use of fungicides to protect crops from diseases is an effective method, and novel environmentally friendly plant-derived fungicides with enhanced performance and low toxicity are urgent requirements for sustainable agriculture.RESULTSTwo kinds of rosin-based acylhydrazone compounds were designed and prepared. Based on the antifungal activity assessment against Rhizoctonia solani, Fusarium oxysporum, Phytophthora capsici, Sclerotinia sclerotiorum, and Botrytis cinerea, acylhydrazone derivatives containing a thiophene ring were screened and showed an inhibitory effect on rice R. solani. Among them, Compound 4n, with an electron-withdrawing group on the benzene ring structure attached to the thiophene ring, showed optimal activity, and the EC50 value was 0.981 mg L−1, which was lower than that of carbendazim. Furthermore, it was indicated that 4n could affect the mycelial morphology, cell membrane permeability and microstructure, cause the generation of reactive oxygen species in fungal cells, and damage the nucleus and mitochondrial physiological function, resulting in the cell death of R. solani. Meanwhile, Compound 4n exhibited a better therapeutic effect on in vivo rice plants. However, the induction activity of 4n on the defense enzyme in rice leaf sheaths showed that 4n stimulates the initial resistance of rice plants by removing active oxygen, thereby protecting the cell membrane or enhancing the strength of the cell wall. Through the quantitative structure–activity relationship study, the quantitative chemical and electrostatic descriptors significantly affect the binding of 4n with the receptor, which improves its antifungal activity.CONCLUSIONThis study provides a basis for exploiting potential rosin-based fungicides in promoting sustainable crop protection. © 2022 Society of Chemical Industry.The rosin-based acylhydrazone fungicides were prepared and their putative modes of action on rice Rhizoctonia solani were investigated by physiological and biochemical determination and computational chemistry analysis.
dc.publisherJohn Wiley & Sons, Ltd.
dc.subject.otherantifungal activity
dc.subject.otherR. solani
dc.subject.otheraction mechanism
dc.subject.otherrosin
dc.subject.otheracylhydrazone
dc.subject.otherthiophene ring
dc.titleDiscovery of rosin-based acylhydrazone derivatives as potential antifungal agents against rice Rhizoctonia solani for sustainable crop protection
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175806/1/ps7232.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175806/2/ps7232_am.pdf
dc.identifier.doi10.1002/ps.7232
dc.identifier.sourcePest Management Science
dc.identifier.citedreferenceWang Z, Song J, Han Z, Jiang Z, Zheng W, Chen J, et al., Quantitative structure−activity relationship of terpenoid aphid antifeedants. J Agric Food Chem 56: 11361 – 11366 ( 2008 ).
dc.identifier.citedreferenceMasahiko T, Fumiyuki K, Keisuke S, Shuichi O and Michio S, Germination and appressorium formation of Pyricularia oryzae Cavara can be inhibited by reduced concentration of Blasin®Flowable with carbon dioxide microbubbles. J Integr Agric 17: 2024 – 2030 ( 2018 ).
dc.identifier.citedreferenceEl-Mekabaty A, Habib OMO, Moawad EB and Abo-Ouf RM, Efficient syntheses of some new thiophene-based heterocycles. J Heterocyclic Chem 54: 561 – 569 ( 2017 ).
dc.identifier.citedreferenceFokialakis N, Cantrell CL, Duke SO, Skaltsounis AL and Wedge DE, Antifungal activity of thiophenes from Echinops ritro. J Agric Food Chem 54: 1651 – 1655 ( 2006 ).
dc.identifier.citedreferenceYang Z, Sun Y, Liu Q, Li A, Wang W and Gu W, Design, synthesis, and antifungal activity of novel thiophene/furan-1,3,4-oxadiazole carboxamides as potent succinate dehydrogenase inhibitors. J Agric Food Chem 69: 13373 – 13385 ( 2021 ).
dc.identifier.citedreferenceOrtíz-López FJ, Monteiro MC, González-Menéndez V, Tormo JR, Genilloud O, Bills GF, et al., Cyclic colisporifungin and linear cavinafungins, antifungal lipopeptides isolated from Colispora cavincola. J Nat Prod 78: 468 – 475 ( 2015 ).
dc.identifier.citedreferenceCong Y, Fan H, Ma Q, Lu Y, Xu L, Zhang P, et al., Mixed culture fermentation between Rhizopus nigricans and Trichoderma pseudokoningii to control cucumber Fusarium wilt. Crop Prot 124: 104857 ( 2019 ).
dc.identifier.citedreferenceGao Y, Xu R, Gu S, Chen K, Li J, He X, et al., Discovery of natural rosin derivatives containing oxime ester moieties as potential antifungal agents to control tomato gray mold caused by Botrytis cinerea. J Agric Food Chem 70: 5551 – 5560 ( 2022 ).
dc.identifier.citedreferenceOwen WJ, Sullenberger MT, Loso MR, Meyer KG and Slanec TJ, Synthesis and antifungal activity of 3-aryl-1,2,4-triazin-6-one derivatives. Pest Manag Sci 71: 83 – 90 ( 2015 ).
dc.identifier.citedreferenceNishiwaki H, Nakazaki S, Akiyama K and Yamauchi S, Structure-antifungal activity relationship of fluorinated dihydroguaiaretic acid derivatives and preventive activity against Alternaria alternata Japanese pear pathotype. J Agric Food Chem 65: 6701 – 6707 ( 2017 ).
dc.identifier.citedreferenceWang SQ, Wang YF and Xu Z, Tetrazole hybrids and their antifungal activities. Eur J Med Chem 170: 225 – 234 ( 2019 ).
dc.identifier.citedreferenceAljuhani N, Whittal RM, Khan SR and Siraki AG, Phenylbutazone oxidation via Cu, Zn-SOD peroxidase activity: an EPR study. Chem Res Toxicol 28: 1476 – 1483 ( 2015 ).
dc.identifier.citedreferenceYingsanga P, Srilaong V, Kanlayanarat S, Noichinda S and McGlasson WB, Relationship between browning and related enzymes (PAL, PPO and POD) in rambutan fruit ( Nephelium lappaceum Linn.) cvs. Rongrien and See-Chompoo. Postharvest Biol Biotechnol 50: 164 – 168 ( 2008 ).
dc.identifier.citedreferenceJiang S, Han S, He D, Cao G, Fang K, Xiao X, et al., The accumulation of phenolic compounds and increased activities of related enzymes contribute to early defense against walnut blight. Physiol Mol Plant Pathol 108: 101433 ( 2019 ).
dc.identifier.citedreferenceMa C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, et al., Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO 2 and In 2 O 3 nanoparticles. Environ Sci-Nano 3: 1369 – 1379 ( 2016 ).
dc.identifier.citedreferenceNosaka Y and Nosaka AY, Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117: 11302 – 11336 ( 2017 ).
dc.identifier.citedreferenceKim JK, Louhghalam A, Lee G, Schafer BW, Wirtz D and Kim DH, Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun 8: 1 – 13 ( 2017 ).
dc.identifier.citedreferenceRouco L, Alvariño R, Alfonso A, Romero MJ, Pedrido R and Maneiro M, Neuroprotective effects of fluorophore-labelled manganese complexes: determination of ROS production, mitochondrial membrane potential and confocal fluorescence microscopy studies in neuroblastoma cells. J Inorg Biochem 227: 111670 ( 2022 ).
dc.identifier.citedreferenceHuang YM, Banerjee S, Crone DE, Schenkelberg CD, Pitman DJ, Buck PM, et al., Toward computationally designed self-reporting biosensors using leave-one-out green fluorescent protein. Biochemistry 54: 6263 – 6273 ( 2015 ).
dc.identifier.citedreferenceKawai K, Hayashi M and Majima T, HOMO energy gap dependence of hole-transfer kinetics in DNA. J Am Chem Soc 134: 4806 – 4811 ( 2012 ).
dc.identifier.citedreferenceAlAbbad S, Sardot T, Lekashvili O, Decato D, Lelj F, Ross JBA, et al., Trans influence and substituent effects on the HOMO–LUMO energy gap and stokes shift in Ru mono-diimine derivatives. J Mol Struct 1195: 620 – 631 ( 2019 ).
dc.identifier.citedreferenceBarim E and Akman F, Synthesis, characterization and spectroscopic investigation of N-(2-acetylbenzofuran-3-yl)acrylamide monomer: molecular structure, HOMO–LUMO study, TD-DFT and MEP analysis. J Mol Struct 1195: 506 – 513 ( 2019 ).
dc.identifier.citedreferenceSantos ES, Reis VS, Guimarães L and Nascimento CS, Molecular wires formed from native and push-pull derivatives polypyrroles and β-cyclodextrins: a HOMO–LUMO gap theoretical investigation. Chem Phys Lett 730: 141 – 146 ( 2019 ).
dc.identifier.citedreferenceLiang W, Li X, Dalton LR, Robinson BH and Eichinger BE, Solvents level dipole moments. J Phys Chem B 115: 12566 – 12570 ( 2011 ).
dc.identifier.citedreferenceMcNamara KD and Zoellner RW, The effects of substituent position and orientation on the structures and dipole moments of the cyanocyclohexanes using density functional theory calculations. Comput Theor Chem 1170: 112622 ( 2019 ).
dc.identifier.citedreferenceNusser T, Balogh T and Náray-Szabó G, The average molecular electrostatic field as a QSAR descriptor: 5. Hydrophobicity indices for small molecules. J Mol Struct 297: 127 – 132 ( 1993 ).
dc.identifier.citedreferenceGonzález-Dı́az H, Molina R and Uriarte E, Markov entropy backbone electrostatic descriptors for predicting proteins biological activity. Bioorg Med Chem Lett 14: 4691 – 4695 ( 2004 ).
dc.identifier.citedreferenceSandhiya L and Senthilkumar K, A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors. J Mol Struct 1074: 157 – 167 ( 2014 ).
dc.identifier.citedreferenceBehzadi H, Roonasi P, van der Spoel D and Manzetti S, Relationship between electronic properties and drug activity of seven quinoxaline compounds: a DFT study. J Mol Struct 1091: 196 – 202 ( 2015 ).
dc.identifier.citedreferenceMatta CF and Arabi AA, Electron-density descriptors as predictors in quantitative structure–activity/property relationships and drug design. Future Med Chem 3: 969 – 994 ( 2011 ).
dc.identifier.citedreferenceJalan A, Ashcraft RW, West RH and Green WH, Predicting solvation energies for kinetic modeling. Annu Rep Sect C: Phys Chem 106: 211 – 258 ( 2010 ).
dc.identifier.citedreferenceZarzycki P, Chatman S, Preočanin T and Rosso KM, Electrostatic potential of specific mineral faces. Langmuir 27: 7986 – 7990 ( 2011 ).
dc.identifier.citedreferenceDeLiberto ST and Werner SJ, Review of anthraquinone applications for pest management and agricultural crop protection. Pest Manag Sci 72: 1813 – 1825 ( 2016 ).
dc.identifier.citedreferenceRistaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ, Fedoroff NV et al., The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci 118: e2022239118 ( 2021 ).
dc.identifier.citedreferenceLi K, Xing R, Liu S, Qin Y, Meng X and Li P, Microwave-assisted degradation of chitosan for a possible use in inhibiting crop pathogenic fungi. Int J Biol Macromol 51: 767 – 773 ( 2012 ).
dc.identifier.citedreferenceAnderson AJ, McLean JE, Jacobson AR and Britt DW, CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J Agric Food Chem 66: 6513 – 6524 ( 2018 ).
dc.identifier.citedreferenceAjayi-Oyetunde OO and Bradley CA, Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol 67: 3 – 17 ( 2018 ).
dc.identifier.citedreferenceMa YN, Xu FR, Chen CJ, Li QQ, Wang MZ, Cheng YX, et al., The beneficial use of essential oils from buds and fruit of Syzygium aromaticum to combat pathogenic fungi of Panax notoginseng. Ind Crop Prod 133: 185 – 192 ( 2019 ).
dc.identifier.citedreferenceVerger PJP and Boobis AR, Reevaluate pesticides for food security and safety. Science 341: 717 – 718 ( 2013 ).
dc.identifier.citedreferencePhillips MWA, Agrochemical industry development, trends in R&D and the impact of regulation. Pest Manag Sci 76: 3348 – 3356 ( 2020 ).
dc.identifier.citedreferenceClements J, Schoville S, Clements A, Amezian D, Davis T, Sanchez-Sedillo B, et al., Agricultural fungicides inadvertently influence the fitness of Colorado potato beetles, Leptinotarsa decemlineata, and their susceptibility to insecticides. Sci Rep 8: 13282 ( 2018 ).
dc.identifier.citedreferenceLi D, Luong TTM, Dan WJ, Ren Y, Nien HX, Zhang AL, et al., Natural products as sources of new fungicides (IV): synthesis and biological evaluation of isobutyrophenone analogs as potential inhibitors of class-II fructose-1,6-bisphosphate aldolase. Bioorg Med Chem Lett 26: 386 – 393 ( 2018 ).
dc.identifier.citedreferenceKoehler AM and Shew HD, Effects of fungicide applications on root-infecting microorganisms and overwintering survival of perennial stevia. Crop Prot 120: 13 – 20 ( 2019 ).
dc.identifier.citedreferenceGuo Z, Ma W, Gu H, Feng Y, He Z, Chen Q, et al., pH-switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds. Soft Matter 13: 7371 – 7380 ( 2017 ).
dc.identifier.citedreferenceBi H, Wang S, Zhou W, Zhuang Y and Liu T, Producing gram-scale unnatural rosavin analogues from glucose by engineered Escherichia coli. ACS Synth Biol 8: 1931 – 1940 ( 2019 ).
dc.identifier.citedreferenceMao S, Wu C, Gao Y, Hao J, He X, Tao P, et al., Pine rosin as a valuable natural resource in the synthesis of fungicide candidates for controlling Fusarium oxysporum on cucumber. J Agric Food Chem 69: 6475 – 6484 ( 2021 ).
dc.identifier.citedreferenceGuilherme FD, Simonetti JÉ, Folquitto LRS, Reis ACC, Oliver JC, Dias ALT, et al., Synthesis, chemical characterization and antimicrobial activity of new acylhydrazones derived from carbohydrates. J Mol Struct 1184: 349 – 356 ( 2019 ).
dc.identifier.citedreferenceXiao G, Wang Y, Zhang H, Chen L and Fu S, Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone. Carbohydr Polym 218: 68 – 77 ( 2019 ).
dc.identifier.citedreferenceSanthiya K, Sen SK, Natarajan R, Shankar R and Murugesapandian B, D–A–D structured bis-acylhydrazone exhibiting aggregation-induced emission, mechanochromic luminescence, and Al (III) detection. J Org Chem 83: 10770 – 10775 ( 2018 ).
dc.identifier.citedreferenceZhang J, Wei C, Li S, Hu D and Song B, Discovery of novel bis-sulfoxide derivatives bearing acylhydrazone and benzothiazole moieties as potential antibacterial agents. Pestic Biochem Physiol 167: 104605 ( 2020 ).
dc.identifier.citedreferenceLee SW, Choi JH, Cho SK, Yu HA, Abd El-Aty AM and Shim JH, Development of a new QuEChERS method based on dry ice for the determination of 168 pesticides in paprika using tandem mass spectrometry. J Chromatogr A 1218: 4366 – 4377 ( 2011 ).
dc.identifier.citedreferenceIshibashi M, Izumi Y, Sakai M, Ando T, Fukusaki E and Bamba T, High-throughput simultaneous analysis of pesticides by supercritical fluid chromatography coupled with high-resolution mass spectrometry. J Agric Food Chem 63: 4457 – 4463 ( 2015 ).
dc.identifier.citedreferenceHamadache M, Benkortbi O, Hanini S, Amrane A, Khaouane L and Si Moussa C, A quantitative structure activity relationship for acute oral toxicity of pesticides on rats: validation, domain of application and prediction. J Hazard Mater 303: 28 – 40 ( 2016 ).
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.