Show simple item record

Smallholder farms have and can store more carbon than previously estimated

dc.contributor.authorEwing, Patrick M.
dc.contributor.authorTu, Xinyi
dc.contributor.authorRunck, Bryan C.
dc.contributor.authorNord, Alison
dc.contributor.authorChikowo, Regis
dc.contributor.authorSnapp, Sieglinde S.
dc.date.accessioned2023-03-03T21:08:08Z
dc.date.available2024-04-03 16:08:07en
dc.date.available2023-03-03T21:08:08Z
dc.date.issued2023-03
dc.identifier.citationEwing, Patrick M.; Tu, Xinyi; Runck, Bryan C.; Nord, Alison; Chikowo, Regis; Snapp, Sieglinde S. (2023). "Smallholder farms have and can store more carbon than previously estimated." Global Change Biology (6): 1471-1483.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/175881
dc.description.abstractIncreasing soil organic carbon (SOC) stocks is increasingly targeted as a key strategy in climate change mitigation and improved ecosystem resiliency. Agricultural land, a dominant global land use, provides substantial challenges and opportunities for global carbon sequestration. Despite this, global estimates of soil carbon sequestration potential often exclude agricultural land and estimates are coarse for regions in the Global South. To address these discrepancies and improve estimates, we develop a hybrid, data-augmented database approach to better estimate the magnitude of SOC sequestration potential of agricultural soils. With high-resolution (30 m) soil maps of Africa developed by the International Soils Database (iSDA) and Malawi as a case study, we create a national adjustment using site-specific soil data retrieved from 1160 agricultural fields. We use a benchmark approach to estimate the amount of SOC Malawian agricultural soils can sequester, accounting for edaphic and climatic conditions, and calculate the resulting carbon gap. Field measurements of SOC stocks and sequestration potentials were consistently larger than iSDA predictions, with an average carbon gap of 4.42 ± 0.23 Mg C ha−1 to a depth of 20 cm, with some areas exceeding 10 Mg C ha−1. Augmenting iSDA predictions with field data also improved sensitivity to identify areas with high SOC sequestration potential by 6%—areas that may benefit from improved management practices. Overall, we estimate that 6.8 million ha of surface soil suitable for agriculture in Malawi has the potential to store 274 ± 14 Tg SOC. Our approach illustrates how ground truthing efforts remain essential to reduce errors in continent-wide soil carbon predictions for local and regional use. This work begins efforts needed across regions to develop soil carbon benchmarks that inform policies and identify high-impact areas in the effort to increase SOC globally.We augmented a high-resolution continental soils database with local data to develop hybrid, regional predictions of carbon stocks and then estimated carbon sequestration potential within agricultural soils. The method found that agricultural soils in Malawi can sequester 4.4 Mg C ha on average with a change in management, a 90% increase over database predictions alone, and the method better identified high sequestration locations. Results will aid policy and management interventions to improve food security and mitigate climate change.
dc.publisherAmerican Society of Agronomy, Soil Science Society of America
dc.publisherWiley Periodicals, Inc.
dc.subject.otheriSDA
dc.subject.othersmallholder agriculture
dc.subject.othersub-Saharan Africa
dc.subject.othersoil carbon
dc.subject.othercarbon sequestration
dc.subject.otherclimate change mitigation
dc.subject.othergeographically weighted regression
dc.titleSmallholder farms have and can store more carbon than previously estimated
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175881/1/gcb16551.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175881/2/gcb16551_am.pdf
dc.identifier.doi10.1111/gcb.16551
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferencePebesma, E. ( 2018 ). Simple features for R: Standardized support for spatial vector data. The R Journal, 10 ( 1 ), 439. https://doi.org/10.32614/RJ-2018-009
dc.identifier.citedreferenceMoran, P. A. P. ( 1950 ). Notes on continuous stochastic phenomena. Biometrika, 37 ( 1/2 ), 17 – 23. https://doi.org/10.2307/2332142
dc.identifier.citedreferenceNord, A., Snapp, S., & Traore, B. ( 2022 ). Current knowledge on practices targeting soil fertility and agricultural land rehabilitation in the Sahel. A review. Agronomy for Sustainable Development, 42 ( 4 ), 79. https://doi.org/10.1007/s13593-022-00808-1
dc.identifier.citedreferenceNunes, M. R., Veum, K. S., Parker, P. A., Holan, S. H., Karlen, D. L., Amsili, J. P., Es, H. M., Wills, S. A., Seybold, C. A., & Moorman, T. B. ( 2021 ). The soil health assessment protocol and evaluation applied to soil organic carbon. Soil Science Society of America Journal, 85 ( 4 ), 1196 – 1213. https://doi.org/10.1002/saj2.20244
dc.identifier.citedreferenceOldfield, E. E., Bradford, M. A., & Wood, S. A. ( 2019 ). Global meta-analysis of the relationship between soil organic matter and crop yields. The Soil, 5 ( 1 ), 15 – 32. https://doi.org/10.5194/soil-5-15-2019
dc.identifier.citedreferenceParadis, E., & Schliep, K. ( 2019 ). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35 ( 3 ), 526 – 528. https://doi.org/10.1093/bioinformatics/bty633
dc.identifier.citedreferencePaustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., Dungait, J., Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde, R. C., Madaras, M., McConkey, B., Porzig, E., Rice, C., Searle, R., … Jahn, M. ( 2019 ). Quantifying carbon for agricultural soil management: From the current status toward a global soil information system. Carbon Management, 10 ( 6 ), 567 – 587. https://doi.org/10.1080/17583004.2019.1633231
dc.identifier.citedreferencePaustian, K. H., Collins, H. P., & Paul, E. A. ( 2019 ). Management controls on soil carbon. In E. A. Paul, K. H. Paustian, E. T. Elliott, & C. V. Cole (Eds.), Soil organic matter in temperate agroecosystems (pp. 15 – 49 ). CRC Press.
dc.identifier.citedreferenceJarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. ( 2008 ). Hole-filled SRTM for the globe version 4. CGIAR-CSI SRTM 9m database. http://srtm.csi.cgiar.org
dc.identifier.citedreferencePebesma, E. ( 2022 ). Stars: Spatiotemporal arrays, raster and vector data cubes (0.5-6) [computer software]. https://CRAN.R-project.org/package=stars
dc.identifier.citedreferencePolak, J., & Snowball, J. ( 2019 ). Linking sustainable local economic development to a market-based carbon control regime: Carbon restoration projects in the eastern cape province of South Africa using Portulacaria afra. Journal of Economic and Financial Sciences, 12 ( 1 ). https://doi.org/10.4102/jef.v12i1.225
dc.identifier.citedreferenceR Core Team. ( 2021 ). R: A language and environment for statistical computing (4.1.1) [Computer software]. R Foundation for Statistical Computing. https://www.r-project.org
dc.identifier.citedreferenceRobin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. ( 2011 ). pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12 ( 1 ), 77. https://doi.org/10.1186/1471-2105-12-77
dc.identifier.citedreferenceRoper, W. R., Osmond, D. L., Heitman, J. L., Wagger, M. G., & Reberg-Horton, S. C. ( 2017 ). Soil health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Science Society of America Journal, 81 ( 4 ), 828 – 843. https://doi.org/10.2136/sssaj2016.12.0400
dc.identifier.citedreferenceRovira, P., Sauras-Yera, T., & Romanyà, J. ( 2022 ). Equivalent-mass versus fixed-depth as criteria for quantifying soil carbon sequestration: How relevant is the difference? Catena, 214, 106283. https://doi.org/10.1016/j.catena.2022.106283
dc.identifier.citedreferenceSalley, S. W., Herrick, J. E., Holmes, C. V., Karl, J. W., Levi, M. R., McCord, S. E., van der Waal, C., & Van Zee, J. W. ( 2018 ). A comparison of soil texture-by-feel estimates: Implications for the citizen soil scientist. Soil Science Society of America Journal, 82 ( 6 ), 1526 – 1537. https://doi.org/10.2136/sssaj2018.04.0137
dc.identifier.citedreferenceSanderman, J., Hengl, T., & Fiske, G. J. ( 2017 ). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 36 ), 9575 – 9580. https://doi.org/10.1073/pnas.1706103114
dc.identifier.citedreferenceScharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. ( 2014 ). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5 ( 1 ), 81 – 91. https://doi.org/10.4155/cmt.13.77
dc.identifier.citedreferenceSchlesinger, W. H. ( 2000 ). Carbon sequestration in soils: Some cautions amidst optimism. Agriculture, Ecosystems & Environment, 82 ( 1–3 ), 121 – 127. https://doi.org/10.1016/S0167-8809(00)00221-8
dc.identifier.citedreferenceSix, J., Conant, R. T., Paul, E. A., & Paustian, K. ( 2002 ). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241 ( 2 ), 155 – 176.
dc.identifier.citedreferenceSnapp, S. ( 2022 ). Embracing variability in soils on smallholder farms: New tools and better science. Agricultural Systems, 195, 103310. https://doi.org/10.1016/j.agsy.2021.103310
dc.identifier.citedreferenceSnapp, S. S. ( 1998 ). Soil nutrient status of smallholder farms in Malawi. Communications in Soil Science and Plant Analysis, 29 ( 17–18 ), 2571 – 2588. https://doi.org/10.1080/00103629809370135
dc.identifier.citedreferenceSnapp, S. S., Grabowski, P., Chikowo, R., Smith, A., Anders, E., Sirrine, D., Chimonyo, V., & Bekunda, M. ( 2018 ). Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible? Agricultural Systems, 162, 77 – 88. https://doi.org/10.1016/j.agsy.2018.01.012
dc.identifier.citedreferenceTittonell, P., Vanlauwe, B., Leffelaar, P. A., Rowe, E. C., & Giller, K. E. ( 2005 ). Exploring diversity in soil fertility management of smallholder farms in western Kenya. Agriculture, Ecosystems & Environment, 110 ( 3–4 ), 149 – 165. https://doi.org/10.1016/j.agee.2005.04.001
dc.identifier.citedreferenceTu, X., Snapp, S., & Viens, F. ( 2022 ). A Bayesian approach to understand controls on total and labile soil carbon in cultivated soils of central and southern Malawi. Geoderma, 413, 115746. https://doi.org/10.1016/j.geoderma.2022.115746
dc.identifier.citedreferenceWalker, W. S., Gorelik, S. R., Cook-Patton, S. C., Baccini, A., Farina, M. K., Solvik, K. K., Ellis, P. W., Sanderman, J., Houghton, R. A., Leavitt, S. M., Schwalm, C. R., & Griscom, B. W. ( 2022 ). The global potential for increased storage of carbon on land. Proceedings of the National Academy of Sciences of the United States of America, 119 ( 23 ), e2111312119. https://doi.org/10.1073/pnas.2111312119
dc.identifier.citedreferenceWickham, H. ( 2016 ). ggplot2: Elegant graphics for data analysis ( 2nd ed. ). Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4
dc.identifier.citedreferenceWilliams, A., Hunter, M. C., Kammerer, M., Kane, D. A., Jordan, N. R., Mortensen, D. A., Smith, R. G., Snapp, S., & Davis, A. S. ( 2016 ). Soil water holding capacity mitigates downside risk and volatility in us rainfed maize: Time to invest in soil organic matter? PLoS ONE, 11 ( 8 ), e0160974. https://doi.org/10.1371/journal.pone.0160974
dc.identifier.citedreferenceXie, Y., Allaire, J. J., & Grolemund, G. ( 2019 ). R markdown: The definitive guide. CRC Press, Taylor and Francis Group.
dc.identifier.citedreferenceZomer, R. J., Bossio, D. A., Sommer, R., & Verchot, L. V. ( 2017 ). Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, 7 ( 1 ), 15554. https://doi.org/10.1038/s41598-017-15794-8
dc.identifier.citedreferenceBurt, R., Reinsch, T. G., & Miller, W. P. ( 1993 ). A micro-pipette method for water dispersible clay. Communications in Soil Science and Plant Analysis, 24 ( 19–20 ), 2531 – 2544.
dc.identifier.citedreferenceAllison, L. E., & Moodie, C. D. ( 2016 ). Carbonate. In A. G. Norman (Ed.), Agronomy monographs (pp. 1379 – 1396 ). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.c40
dc.identifier.citedreferenceBeillouin, D., Cardinael, R., Berre, D., Boyer, A., Corbeels, M., Fallot, A., Feder, F., & Demenois, J. ( 2022 ). A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon. Global Change Biology, 28 ( 4 ), 1690 – 1702. https://doi.org/10.1111/gcb.15998
dc.identifier.citedreferenceBozdogan, H. ( 1987 ). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52 ( 3 ), 345 – 370. https://doi.org/10.1007/BF02294361
dc.identifier.citedreferenceBurke, W. J., Jayne, T. S., & Snapp, S. S. ( 2022 ). Nitrogen efficiency by soil quality and management regimes on Malawi farms: Can fertilizer use remain profitable? World Development, 152, 105792. https://doi.org/10.1016/j.worlddev.2021.105792
dc.identifier.citedreferenceBurke, W. J., Snapp, S. S., & Jayne, T. S. ( 2020 ). An in-depth examination of maize yield response to fertilizer in Central Malawi reveals low profits and too many weeds. Agricultural Economics, 51 ( 6 ), 923 – 940. https://doi.org/10.1111/agec.12601
dc.identifier.citedreferenceCastellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. ( 2015 ). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 21 ( 9 ), 3200 – 3209. https://doi.org/10.1111/gcb.12982
dc.identifier.citedreferenceCheesman, S., Thierfelder, C., Eash, N. S., Kassie, G. T., & Frossard, E. ( 2016 ). Soil carbon stocks in conservation agriculture systems of southern Africa. Soil and Tillage Research, 156, 99 – 109. https://doi.org/10.1016/j.still.2015.09.018
dc.identifier.citedreferenceChen, S., Arrouays, D., Angers, D. A., Chenu, C., Barré, P., Martin, M. P., Saby, N. P. A., & Walter, C. ( 2019 ). National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Science of the Total Environment, 666, 355 – 367. https://doi.org/10.1016/j.scitotenv.2019.02.249
dc.identifier.citedreferenceClimate Watch Historical GHG Emissions. ( 2022 ). Global historical emissions: Malawi. World Resources Institute. https://www.climatewatchdata.org/ghg-emissions
dc.identifier.citedreferenceCorbeels, M., Cardinael, R., Naudin, K., Guibert, H., & Torquebiau, E. ( 2019 ). The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil and Tillage Research, 188, 16 – 26. https://doi.org/10.1016/j.still.2018.02.015
dc.identifier.citedreferenceDidan, K., & Huete, A. ( 2015 ). MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006 [data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006
dc.identifier.citedreferenceDroste, N., May, W., Clough, Y., Börjesson, G., Brady, M. V., & Hedlund, K. ( 2020 ). Soil carbon insures arable crop production against increasing adverse weather due to climate change. Environmental Research Letters. https://doi.org/10.1088/1748-9326/abc5e3
dc.identifier.citedreferenceEwing, P. M., Ter Avest, D., Tu, X., & Snapp, S. S. ( 2021 ). Accessible, affordable, fine-scale estimates of soil carbon for sustainable management in sub-Saharan Africa. Soil Science Society of America Journal, 85 ( 5 ), 1814 – 1826. https://doi.org/10.1002/saj2.20263
dc.identifier.citedreferenceFriedman, J., Hastie, T., & Tibshirani, R. ( 2010 ). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33 ( 1 ). https://doi.org/10.18637/jss.v033.i01
dc.identifier.citedreferenceFujisaki, K., Chapuis-Lardy, L., Albrecht, A., Razafimbelo, T., Chotte, J.-L., & Chevallier, T. ( 2018 ). Data synthesis of carbon distribution in particle size fractions of tropical soils: Implications for soil carbon storage potential in croplands. Geoderma, 313, 41 – 51. https://doi.org/10.1016/j.geoderma.2017.10.010
dc.identifier.citedreferenceGao, Y., Zhong, B., Yue, H., Wu, B., & Cao, S. ( 2011 ). A degradation threshold for irreversible loss of soil productivity: A long-term case study in China: Degradation threshold of soil productivity. Journal of Applied Ecology, 48 ( 5 ), 1145 – 1154. https://doi.org/10.1111/j.1365-2664.2011.02011.x
dc.identifier.citedreferenceGriscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. ( 2017 ). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 44 ), 11645 – 11650. https://doi.org/10.1073/pnas.1710465114
dc.identifier.citedreferenceGuillaume, T., Makowski, D., Libohova, Z., Bragazza, L., Sallaku, F., & Sinaj, S. ( 2022 ). Soil organic carbon saturation in cropland-grassland systems: Storage potential and soil quality. Geoderma, 406, 115529. https://doi.org/10.1016/j.geoderma.2021.115529
dc.identifier.citedreferenceHassink, J. ( 1997 ). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191, 77 – 87.
dc.identifier.citedreferenceHengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A., Mendes de Jesus, J., Tamene, L., & Tondoh, J. E. ( 2015 ). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE, 10 ( 6 ), e0125814. https://doi.org/10.1371/journal.pone.0125814
dc.identifier.citedreferenceHengl, T., Miller, M. A. E., Križan, J., Shepherd, K. D., Sila, A., Kilibarda, M., Antonijević, O., Glušica, L., Dobermann, A., Haefele, S. M., McGrath, S. P., Acquah, G. E., Collinson, J., Parente, L., Sheykhmousa, M., Saito, K., Johnson, J.-M., Chamberlin, J., Silatsa, F. B. T., … Crouch, J. ( 2021 ). African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Scientific Reports, 11 ( 1 ), 6130. https://doi.org/10.1038/s41598-021-85639-y
dc.identifier.citedreferenceHerrick, J. E., Urama, K. C., Karl, J. W., Boos, J., Johnson, M.-V. V., Shepherd, K. D., Hempel, J., Bestelmeyer, B. T., Davies, J., Guerra, J. L., Kosnik, C., Kimiti, D. W., Ekai, A. L., Muller, K., Norfleet, L., Ozor, N., Reinsch, T., Sarukhan, J., & West, L. T. ( 2013 ). The global land-potential knowledge system (LandPKS): Supporting evidence-based, site-specific land use and management through cloud computing, mobile applications, and crowdsourcing. Journal of Soil and Water Conservation, 68 ( 1 ), 5A – 12A. https://doi.org/10.2489/jswc.68.1.5A
dc.identifier.citedreferenceHijmans, R. J. ( 2022 ). terra: Spatial Data Analysis (1.6-7) [Computer software]. https://CRAN.R-project.org/package=terra
dc.identifier.citedreferenceIdowu, O. J., Van Es, H. M., Abawi, G. S., Wolfe, D. W., Schindelbeck, R. R., Moebius-Clune, B. N., & Gugino, B. K. ( 2009 ). Use of an integrative soil health test for evaluation of soil management impacts. Renewable Agriculture and Food Systems, 24 ( 3 ), 214 – 224.
dc.identifier.citedreferenceIPCC. ( 2022 ). Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/
dc.identifier.citedreferenceKarlen, D. L., Veum, K. S., Sudduth, K. A., Obrycki, J. F., & Nunes, M. R. ( 2019 ). Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil and Tillage Research, 195, 104365. https://doi.org/10.1016/j.still.2019.104365
dc.identifier.citedreferenceKelly, C., Wynants, M., Patrick, A., Taylor, A., Mkilema, F., Nasseri, M., Lewin, S., Munishi, L., Mtei, K., Ndakidemi, P., & Blake, W. ( 2022 ). Soils, science and community ActioN (SoilSCAN): A citizen science tool to empower community-led land management change in East Africa. Environmental Research Letters, 17 ( 8 ), 085003. https://doi.org/10.1088/1748-9326/ac8300
dc.identifier.citedreferenceKempen, B., Dalsgaard, S., Kaaya, A. K., Chamuya, N., Ruipérez-González, M., Pekkarinen, A., & Walsh, M. G. ( 2019 ). Mapping topsoil organic carbon concentrations and stocks for Tanzania. Geoderma, 337, 164 – 180. https://doi.org/10.1016/j.geoderma.2018.09.011
dc.identifier.citedreferenceKoenker, R. ( 2022 ). quantreg: Quantile Regression (5.93) [Computer software]. https://CRAN.R-project.org/package=quantreg
dc.identifier.citedreferenceLi, G., Messina, J. P., Peter, B. G., & Snapp, S. S. ( 2017 ). Mapping land suitability for agriculture in Malawi. Land Degradation & Development, 28 ( 7 ), 2001 – 2016. https://doi.org/10.1002/ldr.2723
dc.identifier.citedreferenceLu, B., Harris, P., Charlton, M., & Brunsdon, C. ( 2014 ). The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spatial Information Science, 17 ( 2 ), 85 – 101. https://doi.org/10.1080/10095020.2014.917453
dc.identifier.citedreferenceLuedeling, E., Sileshi, G., Beedy, T., & Dietz, J. ( 2011 ). Carbon sequestration potential of agroforestry Systems in Africa. In B. M. Kumar & P. K. R. Nair (Eds.), Carbon sequestration potential of agroforestry systems (Vol. 8, pp. 61 – 83 ). Springer Netherlands. https://doi.org/10.1007/978-94-007-1630-8_4
dc.identifier.citedreferenceMalawi Ministry of Agriculture and Food Security—Planning Department. ( 2016 ). CountrySTAT: Area harvested. Malawi National Statistical Office. http://malawi.countrystat.org
dc.identifier.citedreferenceMalawi National Statistical Office. ( 2016 ). CountrySTAT: Population by residence. Malawi National Statistical Office. http://malawi.countrystat.org/
dc.identifier.citedreferenceMartínez, E., Fuentes, J.-P., Silva, P., Valle, S., & Acevedo, E. ( 2008 ). Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil and Tillage Research, 99 ( 2 ), 232 – 244. https://doi.org/10.1016/j.still.2008.02.001
dc.identifier.citedreferenceMatus, F. J. ( 2021 ). Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: A meta-analysis. Scientific Reports, 11 ( 1 ), 6438. https://doi.org/10.1038/s41598-021-84821-6
dc.identifier.citedreferenceMaynard, J. J., Yeboah, E., Owusu, S., Buenemann, M., Neff, J. C., & Herrick, J. E. ( 2022 ). Accuracy of regional-to-global soil maps for on-farm decision making: Are soil maps “good enough”? [preprint]. Agriculture, Ecosystems and Environment. https://doi.org/10.5194/egusphere-2022-246
dc.identifier.citedreferenceMikha, M. M., Benjamin, J. G., Halvorson, A. D., & Nielsen, D. C. ( 2013 ). Soil carbon changes influenced by soil management and calculation method. Open Journal of Soil Science, 3 ( 2 ), 123 – 131. https://doi.org/10.4236/ojss.2013.32014
dc.identifier.citedreferenceMinasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Winowiecki, L. ( 2017 ). Soil carbon 4 per mille. Geoderma, 292, 59 – 86. https://doi.org/10.1016/j.geoderma.2017.01.002
dc.identifier.citedreferenceMoebius-Clune, B. N., van Es, H. M., Idowu, O. J., Schindelbeck, R. R., Kimetu, J. M., Ngoze, S., Lehmann, J., & Kinyangi, J. M. ( 2011 ). Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agriculture, Ecosystems & Environment, 141 ( 1–2 ), 86 – 99. https://doi.org/10.1016/j.agee.2011.02.018
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.