Show simple item record

The effect of bone particle size on the histomorphometric and clinical outcomes following lateral ridge augmentation procedures: A randomized double-blinded controlled trial

dc.contributor.authorBasma, Hussein S.
dc.contributor.authorSaleh, Muhammad H. A.
dc.contributor.authorGeurs, Nico C.
dc.contributor.authorLi, Peng
dc.contributor.authorRavidà, Andrea
dc.contributor.authorWang, Hom-Lay
dc.contributor.authorAbou-Arraj, Ramzi V.
dc.date.accessioned2023-03-03T21:08:46Z
dc.date.available2024-03-03 16:08:45en
dc.date.available2023-03-03T21:08:46Z
dc.date.issued2023-02
dc.identifier.citationBasma, Hussein S.; Saleh, Muhammad H. A.; Geurs, Nico C.; Li, Peng; Ravidà, Andrea ; Wang, Hom-Lay ; Abou-Arraj, Ramzi V. (2023). "The effect of bone particle size on the histomorphometric and clinical outcomes following lateral ridge augmentation procedures: A randomized double- blinded controlled trial." Journal of Periodontology 94(2): 163-173.
dc.identifier.issn0022-3492
dc.identifier.issn1943-3670
dc.identifier.urihttps://hdl.handle.net/2027.42/175892
dc.description.abstractBackgroundThe aim of this randomized clinical trial was to clinically and histologically compare the amount and quality of bone gained after lateral ridge augmentation (LRA) procedures performed using small-particle (SP)-size (250–1000 μm) versus large-particle (LP)-size (1000–2000 μm) size corticocancellous bone allografts at 6 months following surgical intervention.MethodsTwenty-two patients, each presenting with ridge width <5 mm were enrolled. Patients were randomly allocated to SP- and LP-size graft. The gain in ridge width at the level of the crest and 4 mm apical to the crest was assessed via a standardized procedure before grafting and at time of implant placement, using a surgical caliper and a novel digital technique using cone-beam computed tomography (CBCT). Six months following the procedure, trephine bone cores were taken from 19 augmented sites of 17 patients (14/19 sites were in the posterior mandible) who completed the study for clinical, histologic, and histomorphometric analysis.ResultsSeventeen patients (19 sites) completed the study. An LP-size graft resulted in greater ridge width gain at the level of the crest (LP 5.1 ± 1.7; SP 3.7 ± 1.3 mm; p = 0.0642) and 4 mm apical to the crest (LP 5.9 ± 2.2; SP 5.1 ± 1.8 mm; p = 0.4480) compared with the SP. No statistical significance for the bone density at the time of implant placement (p = 1.00) was found. Vital bone formation was more extensive in the SP compared with the LP (41.0 ± 10.1% vs. 31.4 ± 14.8%, respectively; p = 0.05).ConclusionThe results of the present study show a trend of higher ridge gain using LP during the bone augmentation procedure. Future research with bigger sample size should confirm the results of the present research.
dc.publisherWiley Periodicals, Inc.
dc.publisherQuintessence
dc.subject.otherdental implants
dc.subject.othercone-beam computed tomography
dc.subject.otherbone regeneration
dc.subject.otherallografts
dc.titleThe effect of bone particle size on the histomorphometric and clinical outcomes following lateral ridge augmentation procedures: A randomized double-blinded controlled trial
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175892/1/jper11010.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175892/2/jper11010_am.pdf
dc.identifier.doi10.1002/JPER.22-0212
dc.identifier.sourceJournal of Periodontology
dc.identifier.citedreferenceTestori T, Wallace SS, Trisi P, Capelli M, Zuffetti F, Del Fabbro M. Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: a multicenter, randomized, controlled, clinical histomorphometric trial. Int J Periodontics Restorative Dent 2013; 33: 467 - 475.
dc.identifier.citedreferenceUrban IA, Monje A, Lozada J, Wang HL. Principles for vertical ridge augmentation in the atrophic posterior mandible: a technical review. Int J Periodontics Restorative Dent 2017; 37: 639 - 645.
dc.identifier.citedreferenceMcAllister BS, Haghighat K. Bone augmentation techniques. J Periodontol 2007; 78: 377 - 396.
dc.identifier.citedreferenceAghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants 2007; 22 (Suppl): 49 - 70.
dc.identifier.citedreferenceUrban IA, Monje A, Lozada JL, Wang HL. Long-term evaluation of Peri-implant bone level after reconstruction of severely atrophic edentulous maxilla via vertical and horizontal guided bone regeneration in combination with sinus augmentation: a case series with 1 to 15 years of loading. Clin Implant Dent Relat Res 2017; 19: 46 - 55.
dc.identifier.citedreferenceNystrom E, Nilson H, Gunne J, Lundgren S. A 9–14-year follow-up of onlay bone grafting in the atrophic maxilla. Int J Oral Maxillofac Surg 2009; 38: 111 - 116.
dc.identifier.citedreferenceRocchietta I, Simion M, Hoffmann M, Trisciuoglio D, Benigni M, Dahlin C. Vertical bone augmentation with an autogenous block or particles in combination with guided bone regeneration: a clinical and histological preliminary study in humans. Clin Implant Dent Relat Res 2016; 18: 19 - 29.
dc.identifier.citedreferenceNkenke E, Radespiel-Troger M, Wiltfang J, Schultze-Mosgau S, Winkler G, Neukam FW. Morbidity of harvesting of retromolar bone grafts: a prospective study. Clin Oral Implants Res 2002; 13: 514 - 521.
dc.identifier.citedreferenceZeltner M, Fluckiger LB, Hammerle CH, Husler J, Benic GI. Volumetric analysis of chin and mandibular retromolar region as donor sites for cortico-cancellous bone blocks. Clin Oral Implants Res 2016; 27: 999 - 1004.
dc.identifier.citedreferenceBuser D, Bragger U, Lang NP, Nyman S. Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res 1990; 1: 22 - 32.
dc.identifier.citedreferenceHjorting-Hansen E. Bone grafting to the jaws with special reference to reconstructive preprosthetic surgery. A historical review. Mund Kiefer Gesichtschir 2002; 6: 6 - 14.
dc.identifier.citedreferenceJensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants 2009; 24 (Suppl): 218 - 236.
dc.identifier.citedreferenceFeuille F, Knapp CI, Brunsvold MA, Mellonig JT. Clinical and histologic evaluation of bone-replacement grafts in the treatment of localized alveolar ridge defects. Part 1: mineralized freeze-dried bone allograft. Int J Periodontics Restorative Dent 2003; 23: 29 - 35.
dc.identifier.citedreferenceLanger B, Langer L, Sullivan RM. Vertical ridge augmentation procedure using guided bone regeneration, demineralized freeze-dried bone allograft, and miniscrews: 4- to 13-year observations on loaded implants. Int J Periodontics Restorative Dent 2010; 30: 227 - 235.
dc.identifier.citedreferenceFroum SJ, Wallace SS, Elian N, Cho SC, Tarnow DP. Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. Int J Periodontics Restorative Dent 2006; 26: 543 - 551.
dc.identifier.citedreferenceNissan J, Ghelfan O, Mardinger O, Calderon S, Chaushu G. Efficacy of cancellous block allograft augmentation prior to implant placement in the posterior atrophic mandible. Clin Implant Dent Relat Res 2011; 13: 279 - 285.
dc.identifier.citedreferencePiattelli A, Scarano A, Corigliano M, Piattelli M. Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: a histological and histochemical study in man. Biomaterials 1996; 17: 1127 - 1131.
dc.identifier.citedreferenceKheur MG, Kheur S, Lakha T, Jambhekar S, Le B, Jain V. Does graft particle type and size affect ridge dimensional changes after alveolar ridge split procedure? J Oral Maxillofac Surg 2018; 76: 761 - 769.
dc.identifier.citedreferenceMoher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol 2010; 63: e1 - 37.
dc.identifier.citedreferenceShrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull 1979; 86: 420 - 428.
dc.identifier.citedreferenceLekholm U ZG. Patient selection and preparation. In: Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry. Quintessence, 1985: 199 – 209.
dc.identifier.citedreferenceZhou X, Zhang Z, Li S, Bai Y, Xu H. Osteoconduction of different sizes of anorganic bone particles in a model of guided bone regeneration. Br J Oral Maxillofac Surg 2011; 49: 37 - 41.
dc.identifier.citedreferenceShapoff CA, Bowers GM, Levy B, Mellonig JT, Yukna RA. The effect of particle size on the osteogenic activity of composite grafts of allogeneic freeze-dried bone and autogenous marrow. J Periodontol 1980; 51: 625 - 630.
dc.identifier.citedreferenceCammack GV, 2nd, Nevins M, Clem DS, 3rd, Hatch JP, Mellonig JT. Histologic evaluation of mineralized and demineralized freeze-dried bone allograft for ridge and sinus augmentations. Int J Periodontics Restorative Dent 2005; 25: 231 - 237.
dc.identifier.citedreferenceChackartchi T, Iezzi G, Goldstein M, et al. Sinus floor augmentation using large (1-2 mm) or small (0.25-1 mm) bovine bone mineral particles: a prospective, intra-individual controlled clinical, micro-computerized tomography and histomorphometric study. Clin Oral Implants Res 2011; 22: 473 - 480.
dc.identifier.citedreferenceSchenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants 1994; 9: 13 - 29.
dc.identifier.citedreferenceUrban IA, Nagursky H, Lozada JL. Horizontal ridge augmentation with a resorbable membrane and particulated autogenous bone with or without anorganic bovine bone-derived mineral: a prospective case series in 22 patients. Int J Oral Maxillofac Implants 2011; 26: 404 - 414.
dc.identifier.citedreferenceDonos N, Mardas N, Chadha V. Clinical outcomes of implants following lateral bone augmentation: systematic assessment of available options (barrier membranes, bone grafts, split osteotomy). J Clin Periodontol 2008; 35: 173 - 202.
dc.identifier.citedreferenceKuchler U, von Arx T. Horizontal ridge augmentation in conjunction with or prior to implant placement in the anterior maxilla: a systematic review. Int J Oral Maxillofac Implants 2014; 29 (Suppl): 14 - 24.
dc.identifier.citedreferenceSanz-Sanchez I, Ortiz-Vigon A, Sanz-Martin I, Figuero E, Sanz M. Effectiveness of lateral bone augmentation on the alveolar crest dimension: a systematic review and meta-analysis. J Dent Res 2015; 94: 128S - 142S.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.