Show simple item record

Global Structure of Magnetotail Reconnection Revealed by Mining Space Magnetometer Data

dc.contributor.authorStephens, G. K.
dc.contributor.authorSitnov, M. I.
dc.contributor.authorWeigel, R. S.
dc.contributor.authorTurner, D. L.
dc.contributor.authorTsyganenko, N. A.
dc.contributor.authorRogers, A. J.
dc.contributor.authorGenestreti, K. J.
dc.contributor.authorSlavin, J. A.
dc.date.accessioned2023-03-03T21:09:00Z
dc.date.available2024-03-03 16:08:52en
dc.date.available2023-03-03T21:09:00Z
dc.date.issued2023-02
dc.identifier.citationStephens, G. K.; Sitnov, M. I.; Weigel, R. S.; Turner, D. L.; Tsyganenko, N. A.; Rogers, A. J.; Genestreti, K. J.; Slavin, J. A. (2023). "Global Structure of Magnetotail Reconnection Revealed by Mining Space Magnetometer Data." Journal of Geophysical Research: Space Physics 128(2): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/175895
dc.description.abstractReconnection in the magnetotail occurs along so-called X-lines, where magnetic field lines tear and detach from plasma on microscopic spatial scales (comparable to particle gyroradii). In 2017–2020, the Magnetospheric MultiScale (MMS) mission detected X-lines in the magnetotail enabling their investigation on local scales. However, the global structure and evolution of these X-lines, critical for understanding their formation and total energy conversion mechanisms, remained virtually unknown because of the intrinsically local nature of observations and the extreme sparsity of concurrent data. Here, we show that mining a multi-mission archive of space magnetometer data collected over the last 26 yr and then fitting a magnetic field representation modeled using flexible basis-functions faithfully reconstructs the global pattern of X-lines; 24 of the 26 modeled X-lines match (Bz = 0 isocontours are within ∼2 Earth radii or RE) or nearly match (Bz = 2 nT isocontours are within ∼2RE) the locations of the MMS encountered reconnection sites. The obtained global reconnection picture is considered in the context of substorm activity, including conventional substorms and more complex events.Plain Language SummaryMagnetic reconnection is a fundamental process in plasmas which couples microscopic scales (∼electron to proton gyroradii) to explosive macroscopic phenomena many orders of magnitude larger, such as solar flares and geomagnetic storms/substorms. Reconnection forms along “X-lines”, rifts where oppositely directed magnetic field lines are forced together. In the Earth’s magnetosphere, reconnection has been observed by satellites at isolated locations; however, the large-scale structure of X-lines and their time evolution remains unknown because of the rarity and local nature of observations. Here, ground based measurements of geomagnetic activity and solar wind measurements are used to data-mine 26 yr of magnetometer data from 22 Earth-orbiting satellites, which are then utilized to reconstruct the global magnetic field associated with X-lines in Earth’s magnetosphere. We show that these reconstructions pinpoint the reconnection locations by verifying their consistency with direct spacecraft observations.Key PointsGlobal structure of magnetotail reconnection inferred from data mining matches its locations revealed by in situ observationsReconstructed magnetotail reconnection structures include X- and O-lines and magnetic nullsReconstructed multiscale current sheet structure is consistent with its formation mechanism by quasi-adiabatic ion motions
dc.publisherAmerican Geophysical Union (AGU)
dc.publisherWiley Periodicals, Inc.
dc.subject.othersubstorms and storms
dc.subject.otherX-line
dc.subject.otherthin current sheet
dc.subject.otherdata-mining
dc.subject.othermagnetotail
dc.subject.otherreconnection
dc.titleGlobal Structure of Magnetotail Reconnection Revealed by Mining Space Magnetometer Data
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175895/1/2022JA031066-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175895/2/jgra57624.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175895/3/jgra57624_am.pdf
dc.identifier.doi10.1029/2022JA031066
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceStephens, G. K., Sitnov, M. I., Korth, H., Tsyganenko, N. A., Ohtani, S., Gkioulidou, M., & Ukhorskiy, A. Y. ( 2019 ). Global empirical picture of magnetospheric substorms inferred from multimission magnetometer data. Journal of Geophysical Research: Space Physics, 124 ( 2 ), 1085 – 1110. https://doi.org/10.1029/2018JA025843
dc.identifier.citedreferenceSpeiser, T. W. ( 1965 ). Particle trajectories in model current sheets: 1. Analytical solutions. Journal of Geophysical Research, 70 ( 17 ), 4219 – 4226. https://doi.org/10.1029/JZ070i017p04219
dc.identifier.citedreferenceStephens, G. K., Bingham, S. T., Sitnov, M. I., Gkioulidou, M., Merkin, V. G., Korth, H., & Ukhorskiy, A. Y. ( 2020 ). Storm time plasma pressure inferred from multimission measurements and its validation using van Allen probes particle data. Space Weather, 18 ( 12 ), e2020SW002583. https://doi.org/10.1029/2020SW002583
dc.identifier.citedreferenceStephens, G. K., & Sitnov, M. I. ( 2021 ). Concurrent empirical magnetic reconstruction of storm and substorm spatial scales using data mining and virtual spacecraft. Frontiers in Physics, 9, 210. https://doi.org/10.3389/fphy.2021.653111
dc.identifier.citedreferenceStephens, G. K., Sitnov, M. I., Weigel, R., Turner, D., Tsyganenko, N., Rogers, A., et al. ( 2022 ). Global structure of magnetotail reconnection revealed by mining space magnetometer data [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.6862829
dc.identifier.citedreferenceTanaka, T., Ebihara, Y., Watanabe, M., Den, M., Fujita, S., Kikuchi, T., & Kataoka, R. ( 2021 ). Roles of the M-I coupling and plasma sheet dissipation on the growth-phase thinning and subsequent transition to the onset. Journal of Geophysical Research: Space Physics, 126 ( 12 ), e2021JA029925. https://doi.org/10.1029/2021JA029925
dc.identifier.citedreferenceTorbert, R. B., Burch, J. L., Phan, T. D., Hesse, M., Argall, M. R., Shuster, J., & Saito, Y. ( 2018 ). Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science, 362 ( 6421 ), 1391 – 1395. https://doi.org/10.1126/science.aat2998
dc.identifier.citedreferenceTsyganenko, N. A. ( 1991 ). Methods for quantitative modeling of the magnetic field from Birkeland currents. Planetary and Space Science, 39 ( 4 ), 641 – 654. https://doi.org/10.1016/0032-0633(91)90058-I
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. Journal of Geophysical Research: Space Physics, 100 ( A4 ), 5599 – 5612. https://doi.org/10.1029/94JA03193
dc.identifier.citedreferenceTsyganenko, N. A. ( 1998 ). Modeling of twisted/warped magnetospheric configurations using the general deformation method. Journal of Geophysical Research: Space Physics, 103 ( A10 ), 23551 – 23563. https://doi.org/10.1029/98JA02292
dc.identifier.citedreferenceTsyganenko, N. A. ( 2002a ). A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. Journal of Geophysical Research: Space Physics, 107 ( A8 ), SMP12-1 – SMP12-15. https://doi.org/10.1029/2001JA000219
dc.identifier.citedreferenceTsyganenko, N. A. ( 2002b ). A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations. Journal of Geophysical Research: Space Physics, 107 ( A8 ), SMP10-1 – SMP10-17. https://doi.org/10.1029/2001JA000220
dc.identifier.citedreferenceTsyganenko, N. A. ( 2013 ). Data-based modeling of the Earth’s dynamic magnetosphere: A review. Annales Geophysicae, 31 ( 10 ), 1745 – 1772. https://doi.org/10.5194/angeo-31-1745-2013
dc.identifier.citedreferenceTsyganenko, N. A. ( 2014 ). Data-based modeling of the geomagnetosphere with an IMF-dependent magnetopause. Journal of Geophysical Research: Space Physics, 119 ( 1 ), 335 – 354. https://doi.org/10.1002/2013JA019346
dc.identifier.citedreferenceTsyganenko, N. A., Andreeva, V. A., & Gordeev, E. I. ( 2015 ). Internally and externally induced deformations of the magnetospheric equatorial current as inferred from spacecraft data. Annales Geophysicae, 33 ( 1 ), 1 – 11. https://doi.org/10.5194/angeo-33-1-2015
dc.identifier.citedreferenceTsyganenko, N. A., Andreeva, V., Kubyshkina, M., Sitnov, M. I., & Stephens, G. K. ( 2021 ). Data-based modeling of the Earth’s magnetic field. In Magnetospheres in the solar system (pp. 617 – 635 ). American Geophysical Union (AGU). https://doi.org/10.1002/9781119815624.ch39
dc.identifier.citedreferenceTsyganenko, N. A., Andreeva, V. A., Sitnov, M. I., Stephens, G. K., Gjerloev, J. W., Chu, X., & Troshichev, O. A. ( 2021 ). Reconstructing substorms via historical data mining: Is it really feasible? Journal of Geophysical Research: Space Physics, 126 ( 10 ), e2021JA029604. https://doi.org/10.1029/2021JA029604
dc.identifier.citedreferenceTsyganenko, N. A., & Fairfield, D. H. ( 2004 ). Global shape of the magnetotail current sheet as derived from geotail and polar data. Journal of Geophysical Research: Space Physics, 109 ( A3 ). https://doi.org/10.1029/2003JA010062
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2005 ). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research: Space Physics, 110 ( A3 ). https://doi.org/10.1029/2004JA010798
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2007 ). Magnetospheric configurations from a high-resolution data-based magnetic field model. Journal of Geophysical Research: Space Physics, 112 ( A6 ), https://doi.org/10.1029/2007JA012260
dc.identifier.citedreferenceVassiliadis, D. ( 2006 ). Systems theory for geospace plasma dynamics. Reviews of Geophysics, 44 ( 2 ). https://doi.org/10.1029/2004RG000161
dc.identifier.citedreferenceVassiliadis, D., Klimas, A., & Baker, D. ( 1999 ). Models of D st geomagnetic activity and of its coupling to solar wind parameters. Physics and Chemistry of the Earth–Part C: Solar, Terrestrial & Planetary Science, 24 ( 1 ), 107 – 112. https://doi.org/10.1016/S1464-1917(98)00016-6
dc.identifier.citedreferenceVassiliadis, D., Klimas, A. J., Baker, D. N., & Roberts, D. A. ( 1995 ). A description of the solar wind-magnetosphere coupling based on nonlinear filters. Journal of Geophysical Research: Space Physics, 100 ( A3 ), 3495 – 3512. https://doi.org/10.1029/94JA02725
dc.identifier.citedreferenceVerleysen, M., & François, D. ( 2005 ). The curse of dimensionality in data mining and time series prediction. In J. Cabestany, A. Prieto, & F. Sandoval (Eds.), Computational intelligence and bioinspired systems (pp. 758 – 770 ). Springer Berlin Heidelberg.
dc.identifier.citedreferenceWang, C.-P., Lyons, L. R., Nagai, T., & Samson, J. C. ( 2004 ). Midnight radial profiles of the quiet and growth-phase plasma sheet: The geotail observations. Journal of Geophysical Research: Space Physics, 109 ( A12 ). https://doi.org/10.1029/2004JA010590
dc.identifier.citedreferenceWettschereck, D., Aha, D. W., & Mohri, T. ( 1997 ). A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review, 11 ( 1 ), 273 – 314. https://doi.org/10.1023/A:1006593614256
dc.identifier.citedreferenceWilliams, T., Shulman, S., Ottenstein, N., Palmer, E., Riley, C., Letourneau, S., & Godine, D. ( 2020 ). Operational techniques for dealing with long eclipses during the MMS extended mission. In 2020 IEEE Aerospace Conference (pp. 1 – 12 ). https://doi.org/10.1109/AERO47225.2020.9172276
dc.identifier.citedreferenceXiao, C. J., Wang, X. G., Pu, Z. Y., Zhao, H., Wang, J. X., Ma, Z. W., et al. ( 2006 ). In situ evidence for the structure of the magnetic null in a 3-D reconnection event in the Earth’s magnetotail. Nature Physics, 2 ( 7 ), 478 – 483. https://doi.org/10.1038/nphys342
dc.identifier.citedreferenceYoon, P. H., & Lui, A. T. Y. ( 2005 ). A class of exact two-dimensional kinetic current sheet equilibria. Journal of Geophysical Research: Space Physics, 110 ( A1 ). https://doi.org/10.1029/2003JA010308
dc.identifier.citedreferenceAlken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., & Zhou, B. ( 2021 ). International geomagnetic reference field: The thirteenth generation. Earth, Planets, and Space, 73 ( 1 ), 49. https://doi.org/10.1186/s40623-020-01288-x
dc.identifier.citedreferenceAngelopoulos, V., Artemyev, A., Phan, T. D., & Miyashita, Y. ( 2020 ). Near-Earth magnetotail reconnection powers space storms. Nature Physics, 16 ( 3 ), 317 – 321. https://doi.org/10.1038/s41567-019-0749-4
dc.identifier.citedreferenceAngelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., & Kepko, L. ( 2008 ). Tail reconnection triggering substorm onset. Science, 321 ( 5891 ), 931 – 935. https://doi.org/10.1126/science.1160495
dc.identifier.citedreferenceAngelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D. L., Kiehas, S. A., Li, S.-S., & Shinohara, I. ( 2013 ). Electromagnetic energy conversion at reconnection fronts. Science, 341 ( 6153 ), 1478 – 1482. https://doi.org/10.1126/science.1236992
dc.identifier.citedreferenceBaker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., & McPherron, R. L. ( 1996 ). Neutral line model of substorms: Past results and present view. Journal of Geophysical Research: Space Physics, 101 ( A6 ), 12975 – 13010. https://doi.org/10.1029/95JA03753
dc.identifier.citedreferenceBirn, J., Hesse, M., & Schindler, K. ( 1996 ). MHD simulations of magnetotail dynamics. Journal of Geophysical Research: Space Physics, 101 ( A6 ), 12939 – 12954. https://doi.org/10.1029/96JA00611
dc.identifier.citedreferenceBorovsky, J. E., & Yakymenko, K. ( 2017 ). Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2973 – 2998. https://doi.org/10.1002/2016JA023625
dc.identifier.citedreferenceBurch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric multiscale overview and science objectives. Space Science Reviews, 199 ( 1–4 ), 5 – 21. https://doi.org/10.1007/s11214-015-0164-9
dc.identifier.citedreferenceBurch, J. L., Torbert, R. B., Phan, T. D., Chen, L.-J., Moore, T. E., Ergun, R. E., & Chandler, M. ( 2016 ). Electron-scale measurements of magnetic reconnection in space. Science, 352 ( 6290 ). https://doi.org/10.1126/science.aaf2939
dc.identifier.citedreferenceBurton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204 – 4214. https://doi.org/10.1029/JA080i031p04204
dc.identifier.citedreferenceCamporeale, E. ( 2019 ). The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather, 17 ( 8 ), 1166 – 1207. https://doi.org/10.1029/2018SW002061
dc.identifier.citedreferenceChen, L.-J., Wang, S., Hesse, M., Ergun, R. E., Moore, T., Giles, B., & Lindqvist, P.-A. ( 2019 ). Electron diffusion regions in magnetotail reconnection under varying guide fields. Geophysical Research Letters, 46 ( 12 ), 6230 – 6238. https://doi.org/10.1029/2019GL082393
dc.identifier.citedreferenceChilds, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., & Navrátil, P. ( 2012 ). Visit: An end-user tool for visualizing and analyzing very large data. In High performance visualization-enabling extreme-scale scientific insight (pp. 357 – 372 ). https://doi.org/10.1201/b12985
dc.identifier.citedreferenceCowley, S. ( 1981 ). Magnetospheric asymmetries associated with the y-component of the IMF. Planetary and Space Science, 29 ( 1 ), 79 – 96. https://doi.org/10.1016/0032-0633(81)90141-0
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Øieroset, M., & Shay, M. A. ( 2010 ). Average properties of the magnetic reconnection ion diffusion region in the earth’s magnetotail: The 2001–2005 Cluster observations and comparison with simulations. Journal of Geophysical Research: Space Physics, 115 ( A8 ). https://doi.org/10.1029/2009JA014962
dc.identifier.citedreferenceFarrugia, C. J., Rogers, A. J., Torbert, R. B., Genestreti, K. J., Nakamura, T. K. M., Lavraud, B., & Dors, I. ( 2021 ). An encounter with the ion and electron diffusion regions at a flapping and twisted tail current sheet. Journal of Geophysical Research: Space Physics, 126 ( 3 ), e2020JA028903. https://doi.org/10.1029/2020JA028903
dc.identifier.citedreferenceFuselier, S. A., Trattner, K. J., & Petrinec, S. M. ( 2011 ). Antiparallel and component reconnection at the dayside magnetopause. Journal of Geophysical Research: Space Physics, 116 ( A10 ). https://doi.org/10.1029/2011JA016888
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ). The SuperMag data processing technique. Journal of Geophysical Research: Space Physics, 117 ( A9 ). https://doi.org/10.1029/2012JA017683
dc.identifier.citedreferenceGonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. ( 1994 ). What is a geomagnetic storm? Journal of Geophysical Research: Space Physics, 99 ( A4 ), 5771 – 5792. https://doi.org/10.1029/93JA02867
dc.identifier.citedreferenceGreene, J. M. ( 1988 ). Geometrical properties of three-dimensional reconnecting magnetic fields with nulls. Journal of Geophysical Research: Space Physics, 93 ( A8 ), 8583 – 8590. https://doi.org/10.1029/JA093iA08p08583
dc.identifier.citedreferenceGriton, L., Pantellini, F., & Meliani, Z. ( 2018 ). Three-dimensional magnetohydrodynamic simulations of the solar wind interaction with a hyperfast-rotating Uranus. Journal of Geophysical Research: Space Physics, 123 ( 7 ), 5394 – 5406. https://doi.org/10.1029/2018JA025331
dc.identifier.citedreferenceHones, E. W., Jr. ( 1984 ). Plasma sheet behavior during substorms. In Magnetic reconnection in space and laboratory plasmas (pp. 178 – 184 ). American Geophysical Union (AGU). https://doi.org/10.1029/GM030p0178
dc.identifier.citedreferenceIeda, A., Nishimura, Y., Miyashita, Y., Angelopoulos, V., Runov, A., Nagai, T., & Machida, S. ( 2016 ). Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm. Journal of Geophysical Research: Space Physics, 121 ( 5 ), 4548 – 4568. https://doi.org/10.1002/2015JA022244
dc.identifier.citedreferenceImber, S. M., Slavin, J. A., Auster, H. U., & Angelopoulos, V. ( 2011 ). A THEMIS survey of flux ropes and traveling compression regions: Location of the near-earth reconnection site during solar minimum. Journal of Geophysical Research: Space Physics, 116 ( A2 ). https://doi.org/10.1029/2010JA016026
dc.identifier.citedreferenceJackson, D. D. ( 1972 ). Interpretation of inaccurate, insufficient and inconsistent data. Geophysical Journal International, 28 ( 2 ), 97 – 109. https://doi.org/10.1111/j.1365-246X.1972.tb06115.x
dc.identifier.citedreferenceJi, H., Daughton, W., Jara-Almonte, J., Le, A., Stanier, A., & Yoo, J. ( 2022 ). Magnetic reconnection in the era of exascale computing and multiscale experiments. Nature Reviews Physics, 4, 263 – 282. https://doi.org/10.1038/s42254-021-00419-x
dc.identifier.citedreferenceJuusola, L., Østgaard, N., Tanskanen, E., Partamies, N., & Snekvik, K. ( 2011 ). Earthward plasma sheet flows during substorm phases. Journal of Geophysical Research: Space Physics, 116 ( A10 ). https://doi.org/10.1029/2011JA016852
dc.identifier.citedreferenceKorth, H., Sitnov, M. I., & Stephens, G. K. ( 2018 ). Magnetic field modeling database description final [Dataset]. NASA Space Physics Data Facility. Retrieved from https://spdf.gsfc.nasa.gov/pub/data/aaa_special-purpose-datasets/empirical-magnetic-field-modeling-database-with-TS07D-coefficients/
dc.identifier.citedreferenceLiemohn, M. W., McCollough, J. P., Jordanova, V. K., Ngwira, C. M., Morley, S. K., Cid, C., & Vasile, R. ( 2018 ). Model evaluation guidelines for geomagnetic index predictions. Space Weather, 16 ( 12 ), 2079 – 2102. https://doi.org/10.1029/2018SW002067
dc.identifier.citedreferenceLiu, R., Kliem, B., Titov, V. S., Chen, J., Wang, Y., Wang, H., et al. ( 2016 ). Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. The Astrophysical Journal, 818 ( 2 ), 148. https://doi.org/10.3847/0004-637x/818/2/148
dc.identifier.citedreferenceMcPherron, R. L., Russell, C. T., & Aubry, M. P. ( 1973 ). Satellite studies of magnetospheric substorms on 15 August 1968: 9. Phenomenological model for substorms. Journal of Geophysical Research, 78 ( 16 ), 3131 – 3149.
dc.identifier.citedreferenceMead, G. D., & Beard, D. B. ( 1964 ). Shape of the geomagnetic field solar wind boundary. Journal of Geophysical Research, 69 ( 7 ), 1169 – 1179. https://doi.org/10.1029/JZ069i007p01169
dc.identifier.citedreferenceNagai, T., Fujimoto, M., Nakamura, R., Baumjohann, W., Ieda, A., Shinohara, I., & Mukai, T. ( 2005 ). Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail. Journal of Geophysical Research: Space Physics, 110 ( A9 ). https://doi.org/10.1029/2005JA011207
dc.identifier.citedreferenceNagai, T., & Shinohara, I. ( 2022 ). Solar wind energy input: The primary control factor of magnetotail reconnection site. Journal of Geophysical Research: Space Physics, 127 ( 8 ). e2022JA030653. https://doi.org/10.1029/2022JA030653
dc.identifier.citedreferenceNelder, J. A., & Mead, R. ( 1965 ). A simplex method for function minimization. The Computer Journal, 7 ( 4 ), 308 – 313. https://doi.org/10.1093/comjnl/7.4.308
dc.identifier.citedreferenceNewell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMag auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research: Space Physics, 116 ( A12 ). https://doi.org/10.1029/2011JA016779
dc.identifier.citedreferenceNewell, P. T., & Gjerloev, J. W. ( 2012 ). SuperMag-based partial ring current indices. Journal of Geophysical Research: Space Physics, 117 ( A5 ). https://doi.org/10.1029/2012JA017586
dc.identifier.citedreferenceNishida, A., Scholer, M., Terasawa, T., Bame, S. J., Gloeckler, G., Smith, E. J., & Zwickl, R. D. ( 1986 ). Quasi-stagnant plasmoid in the middle tail: A new pre-expansion phase phenomenon. Journal of Geophysical Research: Space Physics, 91 ( A4 ), 4245 – 4255. https://doi.org/10.1029/JA091iA04p04245
dc.identifier.citedreferencePapitashvili, N. E., & King, J. H. ( 2020 ). OMNI 5 min data [Dataset]. NASA Space Physics Data Facility. Retrieved from https://www.unavco.org/data/doi/10.7283/633E-1497
dc.identifier.citedreferencePartamies, N., Juusola, L., Tanskanen, E., & Kauristie, K. ( 2013 ). Statistical properties of substorms during different storm and solar cycle phases. Annales Geophysicae, 31 ( 2 ), 349 – 358. https://doi.org/10.5194/angeo-31-349-2013
dc.identifier.citedreferencePhan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., & Magnes, W. ( 2018 ). Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature, 557 ( 7704 ), 202 – 206. https://doi.org/10.1038/s41586-018-0091-5
dc.identifier.citedreferencePress, W. H., Teukolsky, S. A., Flannery, B. P., & Vetterling, W. T. ( 1992 ). Numerical recipes in FORTRAN: The art of scientific computing ( 2nd ed. ). Cambridge University Press.
dc.identifier.citedreferenceReyes, P. I., Pinto, V. A., & Moya, P. S. ( 2021 ). Geomagnetic storm occurrence and their relation with solar cycle phases. Space Weather, 19 ( 9 ), e2021SW002766. https://doi.org/10.1029/2021SW002766
dc.identifier.citedreferenceRogers, A. J., Farrugia, C. J., & Torbert, R. B. ( 2019 ). Numerical algorithm for detecting ion diffusion regions in the geomagnetic tail with applications to MMS tail season 1 May to 30 September 2017. Journal of Geophysical Research: Space Physics, 124 ( 8 ), 6487 – 6503. https://doi.org/10.1029/2018JA026429
dc.identifier.citedreferenceRogers, A. J., Farrugia, C. J., Torbert, R. B., & Rogers, T. J. ( 2023 ). Applying magnetic curvature to MMS data to identify thin current sheets relative to tail reconnection. Journal of Geophysical Research: Space Physics, 128, e2022JA030577. https://doi.org/10.1029/2022JA030577
dc.identifier.citedreferenceRunov, A., Sergeev, V. A., Baumjohann, W., Nakamura, R., Apatenkov, S., Asano, Y., & Rème, H. ( 2005 ). Electric current and magnetic field geometry in flapping magnetotail current sheets. Annales Geophysicae, 23 ( 4 ), 1391 – 1403. https://doi.org/10.5194/angeo-23-1391-2005
dc.identifier.citedreferenceRussell, C. T., & McPherron, R. L. ( 1973 ). The magnetotail and substorms. Space Science Reviews, 15 ( 2 ), 205 – 266. https://doi.org/10.1007/BF00169321
dc.identifier.citedreferenceSergeev, V. A., Angelopoulos, V., Kubyshkina, M., Donovan, E., Zhou, X.-Z., Runov, A., & Nakamura, R. ( 2011 ). Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage. Journal of Geophysical Research: Space Physics, 116 ( A5 ). https://doi.org/10.1029/2010JA015689
dc.identifier.citedreferenceSergeev, V. A., Sormakov, D. A., Apatenkov, S. V., Baumjohann, W., Nakamura, R., Runov, A. V., & Nagai, T. ( 2006 ). Survey of large-amplitude flapping motions in the midtail current sheet. Annales Geophysicae, 24 ( 7 ), 2015 – 2024. https://doi.org/10.5194/angeo-24-2015-2006
dc.identifier.citedreferenceShiota, D., Isobe, H., Chen, P. F., Yamamoto, T. T., Sakajiri, T., & Shibata, K. ( 2005 ). Self-consistent magnetohydrodynamic modeling of a coronal mass ejection, coronal dimming, and a giant cusp-shaped arcade formation. The Astrophysical Journal, 634 ( 1 ), 663 – 678. https://doi.org/10.1086/496943
dc.identifier.citedreferenceShue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., & Kawano, H. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 103 ( A8 ), 17691 – 17700. https://doi.org/10.1029/98JA01103
dc.identifier.citedreferenceShukhtina, M. A., Dmitrieva, N. P., & Sergeev, V. A. ( 2014 ). On the conditions preceding sudden magnetotail magnetic flux unloading. Geophysical Research Letters, 41 ( 4 ), 1093 – 1099. https://doi.org/10.1002/2014GL059290
dc.identifier.citedreferenceSibeck, D. G., Lopez, R. E., & Roelof, E. C. ( 1991 ). Solar wind control of the magnetopause shape, location, and motion. Journal of Geophysical Research: Space Physics, 96 ( A4 ), 5489 – 5495. https://doi.org/10.1029/90JA02464
dc.identifier.citedreferenceSitnov, M. I., Birn, J., Ferdousi, B., Gordeev, E., Khotyaintsev, Y., Merkin, V., & Zhou, X. ( 2019 ). Explosive magnetotail activity. Space Science Reviews, 215 ( 4 ), 31. https://doi.org/10.1007/s11214-019-0599-5
dc.identifier.citedreferenceSitnov, M. I., Buzulukova, N., Swisdak, M., Merkin, V. G., & Moore, T. E. ( 2013 ). Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail. Geophysical Research Letters, 40 ( 1 ), 22 – 27. https://doi.org/10.1029/2012GL054701
dc.identifier.citedreferenceSitnov, M. I., & Merkin, V. G. ( 2016 ). Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation. Journal of Geophysical Research: Space Physics, 121 ( 8 ), 7664 – 7683. https://doi.org/10.1002/2016JA023001
dc.identifier.citedreferenceSitnov, M. I., & Schindler, K. ( 2010 ). Tearing stability of a multiscale magnetotail current sheet. Geophysical Research Letters, 37 ( 8 ). https://doi.org/10.1029/2010GL042961
dc.identifier.citedreferenceSitnov, M. I., Sharma, A. S., Papadopoulos, K., & Vassiliadis, D. ( 2001 ). Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions. Physical Review E—Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 65, 016116. https://doi.org/10.1103/PhysRevE.65.016116
dc.identifier.citedreferenceSitnov, M. I., Stephens, G. K., Motoba, T., & Swisdak, M. ( 2021 ). Data mining reconstruction of magnetotail reconnection and implications for its first-principle modeling. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.644884
dc.identifier.citedreferenceSitnov, M. I., Stephens, G. K., Tsyganenko, N. A., Miyashita, Y., Merkin, V. G., Motoba, T., & Genestreti, K. J. ( 2019b ). Signatures of nonideal plasma evolution during substorms obtained by mining multimission magnetometer data. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8427 – 8456. https://doi.org/10.1029/2019JA027037
dc.identifier.citedreferenceSitnov, M. I., Stephens, G. K., Tsyganenko, N. A., Ukhorskiy, A. Y., Wing, S., Korth, H., & Anderson, B. J. ( 2017 ). Spatial structure and asymmetries of magnetospheric currents inferred from high-resolution empirical geomagnetic field models. In Dawn-dusk asymmetries in planetary plasma environments (pp. 199 – 212 ). American Geophysical Union (AGU). https://doi.org/10.1002/9781119216346.ch15
dc.identifier.citedreferenceSitnov, M. I., & Swisdak, M. ( 2011 ). Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts. Journal of Geophysical Research: Space Physics, 116 ( A12 ). https://doi.org/10.1029/2011JA016920
dc.identifier.citedreferenceSitnov, M. I., Swisdak, M., Guzdar, P. N., & Runov, A. ( 2006 ). Structure and dynamics of a new class of thin current sheets. Journal of Geophysical Research: Space Physics, 111 ( A8 ). https://doi.org/10.1029/2005JA011517
dc.identifier.citedreferenceSitnov, M. I., Tsyganenko, N. A., Ukhorskiy, A. Y., & Brandt, P. C. ( 2008 ). Dynamical data-based modeling of the storm-time geomagnetic field with enhanced spatial resolution. Journal of Geophysical Research: Space Physics, 113 ( A7 ). https://doi.org/10.1029/2007JA013003
dc.identifier.citedreferenceSitnov, M. I., Ukhorskiy, A. Y., & Stephens, G. K. ( 2012 ). Forecasting of global data-binning parameters for high-resolution empirical geomagnetic field models. Space Weather, 10 ( 9 ). https://doi.org/10.1029/2012SW000783
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.