Show simple item record

Molecular Rotational Correlation Times and Nanoviscosity Determined by 111mCd Perturbed Angular Correlation (PAC) of γ-rays Spectroscopy

dc.contributor.authorFromsejer, Rasmus
dc.contributor.authorJensen, Marianne L.
dc.contributor.authorZacate, Matthew O.
dc.contributor.authorKarner, Victoria L.
dc.contributor.authorPecoraro, Vincent L.
dc.contributor.authorHemmingsen, Lars
dc.date.accessioned2023-03-03T21:09:40Z
dc.date.available2024-03-03 16:09:39en
dc.date.available2023-03-03T21:09:40Z
dc.date.issued2023-02-10
dc.identifier.citationFromsejer, Rasmus; Jensen, Marianne L.; Zacate, Matthew O.; Karner, Victoria L.; Pecoraro, Vincent L.; Hemmingsen, Lars (2023). "Molecular Rotational Correlation Times and Nanoviscosity Determined by 111mCd Perturbed Angular Correlation (PAC) of γ-rays Spectroscopy." Chemistry – A European Journal 29(9): n/a-n/a.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/175911
dc.description.abstractThe nanoviscosity experienced by molecules in solution may be determined through measurement of the molecular rotational correlation time, τc, for example, by fluorescence and NMR spectroscopy. With this work, we apply PAC spectroscopy to determine the rate of rotational diffusion, λ=1/τc, of a de novo designed protein, TRIL12AL16C, in solutions with viscosities, ξ, from 1.7 to 88 mPa⋅s. TRIL12AL16C was selected as molecular probe because it exhibits minimal effects due to intramolecular dynamics and static line broadening, allowing for exclusive elucidation of molecular rotational diffusion. Diffusion rates determined by PAC data agree well with literature data from fluorescence and NMR spectroscopy, and scales linearly with 1/ξ in agreement with the Stokes–Einstein–Debye model. PAC experiments require only trace amounts (∼1011) of probe nuclei and can be conducted over a broad range of sample temperatures and pressures. Moreover, most materials are relatively transparent to γ-rays. Thus, PAC spectroscopy could find applications under circumstances where conventional techniques cannot be applied, spanning from the physics of liquids to in-vivo biochemistry.Brownian molecular tumbling rates in solution have been measured by using 111mCd perturbed angular correlation of γ-rays (PAC) spectroscopy and a de novo designed molecular probe (a trimeric coiled-coil protein). Most materials are relatively transparent to γ-rays, and PAC spectroscopy might find applications where conventional methods probing rotational correlation times, for example, NMR and fluorescence spectroscopy, cannot be applied—from the physics of liquids to in-vivo biochemistry.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherrotational diffusion
dc.subject.otherdesigned proteins
dc.subject.otherPAC spectroscopy
dc.subject.otherproteins
dc.subject.otherviscosity
dc.titleMolecular Rotational Correlation Times and Nanoviscosity Determined by 111mCd Perturbed Angular Correlation (PAC) of γ-rays Spectroscopy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175911/1/chem202203084-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175911/2/chem202203084_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175911/3/chem202203084.pdf
dc.identifier.doi10.1002/chem.202203084
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceJ. T. Derksen, J. D. Baldeschwieler, G. L. Scherphof, Proc. Natl. Acad. Sci. USA 1988, 85, 9768 – 9772.
dc.identifier.citedreferenceF. Perrin, J. Phys. Radium 1934, 5, 497 – 511.
dc.identifier.citedreferenceD. Lavalette, C. Tétreau, M. Tourbez, Y. Blouquit, Biophys. J. 1999, 76, 2744 – 2751.
dc.identifier.citedreferenceJ. G. de la Torre, M. L. Huertas, B. Carrasco, J. Magn. Reson. 2000, 147, 138 – 146.
dc.identifier.citedreferenceJ. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006.
dc.identifier.citedreferenceC. E. Cobb, E. J. Hustedt, J. M. Beechem, A. H. Beth, Biophys. J. 1993, 64, 605 – 613.
dc.identifier.citedreferenceA. Loman, I. Gregor, C. Stutz, M. Mund, J. Enderlein, Photochem. Photobiol. Sci. 2010, 9, 627 – 636.
dc.identifier.citedreferenceH. Frauenfelder, R. M. Steffen, S. R. de Groot, H. A. Tollhoek, W. J. Huiskamp, in Alpha-, Beta- and Gamma-Ray Spectroscopy (Ed.: K. Siegbahn ), North Holland Publishing Company, 1965, pp. 997 – 1198.
dc.identifier.citedreferenceL. Hemmingsen, K. N. Sas, E. Danielsen, Chem. Rev. 2004, 104, 4027 – 4062.
dc.identifier.citedreferenceE. Danielsen, R. Bauer, Hyperfine Interact. 1991, 62, 311 – 324.
dc.identifier.citedreferenceR. Bauer, A. Atke, E. Danielsen, J. Marcussen, C. E. Olsen, J. Rehfeld, T. Saermark, D. Schneider, H. Vilhardt, M. Zeppezauer, Int. J. Radiat. Appl. Instrum. Part A 1991, 42, 1015 – 1023.
dc.identifier.citedreferenceE. Danielsen, R. Bauer, D. Schneider, Eur. Biophys. J. 1991, 20, 193 – 201.
dc.identifier.citedreferenceT. Butz, A. Lerf, R. Huber, Phys. Rev. Lett. 1982, 48, 890 – 893.
dc.identifier.citedreferenceC. A. Kalfas, E. G. Sideris, S. El-Kateb, P. W. Martin, U. Kuhnlein, Chem. Phys. Lett. 1980, 73, 311 – 314.
dc.identifier.citedreferenceM. Stachura, S. Chakraborty, A. Gottberg, L. Ruckthong, V. L. Pecoraro, L. Hemmingsen, J. Am. Chem. Soc. 2017, 139, 79 – 82.
dc.identifier.citedreferenceF. J. Schwab, H. Appel, M. Neu, W.-G. Thies, Eur. Biophys. J. 1992, 21, 147 – 154.
dc.identifier.citedreferenceR. Fromsejer, L. Hemmingsen, Hyperfine Interact. 2019, 240, 88.
dc.identifier.citedreferenceK. J. Hwang, M. R. Mauk, Proc. Natl. Acad. Sci. USA 1977, 74, 4991 – 4995.
dc.identifier.citedreferenceM. R. Mauk, R. C. Gamble, J. D. Baldeschwieler, Science 1980, 207, 309 – 311.
dc.identifier.citedreferenceY. Zhang, X. Wu, Y. Wang, S. Zhu, B. Z. Gao, X.-C. Yuan, Laser Phys. 2014, 24, 065601.
dc.identifier.citedreferenceF. H. Roerdink, J. Regts, T. Handel, S. M. Sullivan, J. D. Baldeschwieler, G. L. Scherphof, Biochim. Biophys. Acta Biomembr. 1989, 980, 234 – 240.
dc.identifier.citedreferenceO. Iranzo, T. Jakusch, K.-H. Lee, L. Hemmingsen, V. L. Pecoraro, Chem. Eur. J. 2009, 15, 3761 – 3772.
dc.identifier.citedreferenceK.-H. Lee, C. Cabello, L. Hemmingsen, E. N. G. Marsh, V. L. Pecoraro, Angew. Chem. Int. Ed. 2006, 45, 2864 – 2868; Angew. Chem. 2006, 118, 2930 – 2934.
dc.identifier.citedreferenceH. Haas, J. Röder, J. G. Correia, J. Schell, A. S. Fenta, R. Vianden, E. M. H. Larsen, P. A. Aggelund, R. Fromsejer, L. B. S. Hemmingsen, S. P. A. Sauer, D. C. Lupascu, V. S. Amaral, Phys. Rev. Lett. 2021, 126, 103001.
dc.identifier.citedreferenceT. Butz, S. Saibene, T. Fraenzke, M. Weber, Nucl. Instrum. Methods Phys. Res. Sect. A 1989, 284, 417 – 421.
dc.identifier.citedreferenceL. Hemmingsen, R. Bauer, M. J. Bjerrum, M. Zeppezauer, H.-W. Adolph, G. Formicka, E. Cedergren-Zeppezauer, Biochemistry 1995, 34, 7145 – 7153.
dc.identifier.citedreferenceP. G. Squire, M. E. Himmel, Arch. Bioch. Biophys. 1979, 196, 165 – 177.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.