A framework for advancing sustainable magnetic resonance imaging access in Africa
dc.contributor.author | Anazodo, Udunna C. | |
dc.contributor.author | Ng, Jinggang J. | |
dc.contributor.author | Ehiogu, Boaz | |
dc.contributor.author | Obungoloch, Johnes | |
dc.contributor.author | Fatade, Abiodun | |
dc.contributor.author | Mutsaerts, Henk J. M. M. | |
dc.contributor.author | Secca, Mario Forjaz | |
dc.contributor.author | Diop, Mamadou | |
dc.contributor.author | Opadele, Abayomi | |
dc.contributor.author | Alexander, Daniel C. | |
dc.contributor.author | Dada, Michael O. | |
dc.contributor.author | Ogbole, Godwin | |
dc.contributor.author | Nunes, Rita | |
dc.contributor.author | Figueiredo, Patricia | |
dc.contributor.author | Figini, Matteo | |
dc.contributor.author | Aribisala, Benjamin | |
dc.contributor.author | Awojoyogbe, Bamidele O. | |
dc.contributor.author | Aduluwa, Harrison | |
dc.contributor.author | Sprenger, Christian | |
dc.contributor.author | Wagner, Rachel | |
dc.contributor.author | Olakunle, Alausa | |
dc.contributor.author | Romeo, Dominic | |
dc.contributor.author | Sun, Yusha | |
dc.contributor.author | Fezeu, Francis | |
dc.contributor.author | Orunmuyi, Akintunde T. | |
dc.contributor.author | Geethanath, Sairam | |
dc.contributor.author | Gulani, Vikas | |
dc.contributor.author | Nganga, Edward Chege | |
dc.contributor.author | Adeleke, Sola | |
dc.contributor.author | Ntobeuko, Ntusi | |
dc.contributor.author | Minja, Frank J. | |
dc.contributor.author | Webb, Andrew G. | |
dc.contributor.author | Asllani, Iris | |
dc.contributor.author | Dako, Farouk | |
dc.date.accessioned | 2023-03-03T21:10:00Z | |
dc.date.available | 2024-04-03 16:09:58 | en |
dc.date.available | 2023-03-03T21:10:00Z | |
dc.date.issued | 2023-03 | |
dc.identifier.citation | Anazodo, Udunna C.; Ng, Jinggang J.; Ehiogu, Boaz; Obungoloch, Johnes; Fatade, Abiodun; Mutsaerts, Henk J. M. M.; Secca, Mario Forjaz; Diop, Mamadou; Opadele, Abayomi; Alexander, Daniel C.; Dada, Michael O.; Ogbole, Godwin; Nunes, Rita; Figueiredo, Patricia; Figini, Matteo; Aribisala, Benjamin; Awojoyogbe, Bamidele O.; Aduluwa, Harrison; Sprenger, Christian; Wagner, Rachel; Olakunle, Alausa; Romeo, Dominic; Sun, Yusha; Fezeu, Francis; Orunmuyi, Akintunde T.; Geethanath, Sairam; Gulani, Vikas; Nganga, Edward Chege; Adeleke, Sola; Ntobeuko, Ntusi; Minja, Frank J.; Webb, Andrew G.; Asllani, Iris; Dako, Farouk (2023). "A framework for advancing sustainable magnetic resonance imaging access in Africa." NMR in Biomedicine 36(3): n/a-n/a. | |
dc.identifier.issn | 0952-3480 | |
dc.identifier.issn | 1099-1492 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/175918 | |
dc.description.abstract | Magnetic resonance imaging (MRI) technology has profoundly transformed current healthcare systems globally, owing to advances in hardware and software research innovations. Despite these advances, MRI remains largely inaccessible to clinicians, patients, and researchers in low-resource areas, such as Africa. The rapidly growing burden of noncommunicable diseases in Africa underscores the importance of improving access to MRI equipment as well as training and research opportunities on the continent. The Consortium for Advancement of MRI Education and Research in Africa (CAMERA) is a network of African biomedical imaging experts and global partners, implementing novel strategies to advance MRI access and research in Africa. Upon its inception in 2019, CAMERA sets out to identify challenges to MRI usage and provide a framework for addressing MRI needs in the region. To this end, CAMERA conducted a needs assessment survey (NAS) and a series of symposia at international MRI society meetings over a 2-year period. The 68-question NAS was distributed to MRI users in Africa and was completed by 157 clinicians and scientists from across Sub-Saharan Africa (SSA). On average, the number of MRI scanners per million people remained at less than one, of which 39% were obsolete low-field systems but still in use to meet daily clinical needs. The feasibility of coupling stable energy supplies from various sources has contributed to the growing number of higher-field (1.5 T) MRI scanners in the region. However, these systems are underutilized, with only 8% of facilities reporting clinical scans of 15 or more patients per day, per scanner. The most frequently reported MRI scans were neurological and musculoskeletal. The CAMERA NAS combined with the World Health Organization and International Atomic Energy Agency data provides the most up-to-date data on MRI density in Africa and offers a unique insight into Africa’s MRI needs. Reported gaps in training, maintenance, and research capacity indicate ongoing challenges in providing sustainable high-value MRI access in SSA. Findings from the NAS and focused discussions at international MRI society meetings provided the basis for the framework presented here for advancing MRI capacity in SSA. While these findings pertain to SSA, the framework provides a model for advancing imaging needs in other low-resource settings.Africa has a massive population with few infrastructural resources and an untapped potential to effect transformative change in healthcare. To advance magnetic resonance imaging (MRI) access across all African countries and improve health and well-being in low-resource settings over the next decade, the MRI community is called to partner with the Consortium for Advancement of MRI Education and Research in Africa (CAMERA) to create enabling clinical and research MRI environments that will utilize the rich intellectual resources in Africa to realize lasting and equitable MRI for all Africans and the world at large. | |
dc.publisher | RAD-AID International | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | MRI Access | |
dc.subject.other | MRI scanner density | |
dc.subject.other | needs assessment survey | |
dc.subject.other | magnetic resonance imaging (MRI) | |
dc.subject.other | Africa | |
dc.subject.other | capacity building | |
dc.subject.other | global radiology | |
dc.title | A framework for advancing sustainable magnetic resonance imaging access in Africa | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Electrical Engineering | |
dc.subject.hlbsecondlevel | Physics | |
dc.subject.hlbtoplevel | Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175918/1/nbm4846_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175918/2/nbm4846.pdf | |
dc.identifier.doi | 10.1002/nbm.4846 | |
dc.identifier.source | NMR in Biomedicine | |
dc.identifier.citedreference | Elahi A, Dako F, Zember J, et al. Overcoming challenges for successful PACS installation in low-resource regions: our experience in Nigeria. J Digit Imaging. 2020; 33: 996 - 1001. doi: 10.1007/s10278-020-00352-y | |
dc.identifier.citedreference | Ogbole GI, Adeyomoye AO, Badu-Peprah A, Mensah Y, Nzeh DA. Survey of magnetic resonance imaging availability in West Africa. Pan Afr Med J. 2018; 30: 240. | |
dc.identifier.citedreference | Hricak H, Abdel-Wahab M, Atun R, et al. Medical imaging and nuclear medicine: a Lancet Oncology Commission. Lancet Oncol. 2021; 22: e136 - e172. doi: 10.1016/S1470-2045(20)30751-8 | |
dc.identifier.citedreference | Frumkin H, Haines A. Global environmental change and noncommunicable disease risks. Annu Rev Public Health. 2019; 40: 261 - 282. doi: 10.1146/annurev-publhealth-040218-043706 | |
dc.identifier.citedreference | Milanzi E, Nkoka O, Kanje V, Ntenda P. Air pollution and non-communicable diseases in Sub-Saharan Africa. Sci African. 2021; 11: e00702. doi: 10.1016/j.sciaf.2021.e00702 | |
dc.identifier.citedreference | Ajayi IO, Adebamowo C, Adami HO, et al. Urban-rural and geographic differences in overweight and obesity in four sub-Saharan African adult populations: a multi-country cross-sectional study. BMC Public Health. 2016; 16: 1126. doi: 10.1186/s12889-016-3789-z | |
dc.identifier.citedreference | Gyasi RM, Phillips DR. Aging and the rising burden of noncommunicable diseases in Sub-Saharan Africa and other low- and middle-income countries: A call for holistic action. Gerontologist. 2020; 60: 806 - 811. doi: 10.1093/geront/gnz102 | |
dc.identifier.citedreference | Gouda HN, Charlson F, Sorsdahl K, et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990 to 2017: results from the Global Burden of Disease Study 2017. Lancet Glob Health. 2019; 7: e1375 - e1387. doi: 10.1016/S2214-109X(19)30374-2 | |
dc.identifier.citedreference | Kroll C, Warchold A, Pradhan P. Sustainable Development Goals (SDGs): Are we successful in turning trade-offs into synergies? Palgrave Commun. 2019; 5: 140. doi: 10.1057/s41599-019-0335-5 | |
dc.identifier.citedreference | Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol. 2019; 74: 2529 - 2532. doi: 10.1016/j.jacc.2019.10.009 | |
dc.identifier.citedreference | Sliwa K, Ntusi N. Battling cardiovascular diseases in a perfect storm. Circulation. 2019; 139: 1658 - 1660. doi: 10.1161/CIRCULATIONAHA.118.038001 | |
dc.identifier.citedreference | Ntusi N. Cardiovascular disease in sub-Saharan Africa. SA Hear. 2021; 18: 74 - 77. doi: 10.24170/18-2-4877 | |
dc.identifier.citedreference | Borghammer P, Jonsdottir KY, Cumming P, et al. Normalization in PET group comparison studies--the importance of a valid reference region. NeuroImage. 2008; 40: 529 - 540. doi: 10.1016/j.neuroimage.2007.12.057 | |
dc.identifier.citedreference | Qin C, Murali S, Lee E, et al. Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J. 2022; 23 ( 6 ): e246 - e260. doi: 10.1093/ehjci/jeab286 | |
dc.identifier.citedreference | Bernasconi A, Cendes F, Theodore WH, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia. 2019; 60: 1054 - 1068. doi: 10.1111/epi.15612 | |
dc.identifier.citedreference | Bhat SS, Fernandes TT, Poojar P, et al. Low-field MRI of stroke: challenges and opportunities. J Magn Reson Imaging. 2020; 54: 372 - 390. doi: 10.1002/jmri.27324 | |
dc.identifier.citedreference | Okorie CK, Ogbole GI, Owolabi MO, Ogun O, Adeyinka A, Ogunniyi A. Role of diffusion-weighted imaging in acute stroke management using low-field magnetic resonance imaging in resource-limited settings. West African J Radiol. 2015; 22: 61 - 66. doi: 10.4103/1115-3474.162168 | |
dc.identifier.citedreference | Frisoni GB, Fox NC, Jack CRJ, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010; 6: 67 - 77. doi: 10.1038/nrneurol.2009.215 | |
dc.identifier.citedreference | Akinyemi RO, Yaria J, Ojagbemi A, et al. Dementia in Africa: current evidence, knowledge gaps, and future directions. Alzheimers Dement. 2021; 4: 790 - 809. doi: 10.1002/alz.12432 | |
dc.identifier.citedreference | Mallon D, Doig D, Dixon L, Gontsarova A, Jan W, Tona F. Neuroimaging in sickle cell disease: a review. J Neuroimaging. 2020; 30: 725 - 735. doi: 10.1111/jon.12766 | |
dc.identifier.citedreference | Bernard C, Dilharreguy B, Font H, et al. Cerebral alterations in West African HIV and non-HIV adults aged ≥50: An MRI study. Int J Infect Dis. 2021; 103: 457 - 463. | |
dc.identifier.citedreference | Sakai M, Higashi M, Fujiwara T, et al. MRI imaging features of HIV-related central nervous system diseases: diagnosis by pattern recognition in daily practice. Jpn J Radiol. 2021; 39: 1023 - 1038. doi: 10.1007/s11604-021-01150-4 | |
dc.identifier.citedreference | Maude RJ, Barkhof F, Hassan MU, et al. Magnetic resonance imaging of the brain in adults with severe falciparum malaria. Malar J. 2014; 13: 177. doi: 10.1186/1475-2875-13-177 | |
dc.identifier.citedreference | Brown LC, Ahmed HU, Faria R, et al. Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health Technol Assess. 2018; 22: 1 - 176. doi: 10.3310/hta22390 | |
dc.identifier.citedreference | Gatta G, Trama A, Capocaccia R. Variations in cancer survival and patterns of care across Europe: roles of wealth and health-care organization. J Natl Cancer Inst Monogr. 2013; 46: 79 - 87. doi: 10.1093/jncimonographs/lgt004 | |
dc.identifier.citedreference | RAD-AID. Radiology-Readiness: A Framework for Implementing Radiology in Resource-Limited Regions. RAD-AID International. | |
dc.identifier.citedreference | Global Health Observatory data repository. World Health Organization. 2016. Accessed March 18, 2022. https://apps.who.int/gho/data/node.main.510 | |
dc.identifier.citedreference | Human Health Campus. IMAGINE - IAEA Medical imAGIng and Nuclear mEdicine global resources database. International Atomic Energy Agency (IAEA). Accessed March 18, 2022. https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINE.html | |
dc.identifier.citedreference | Journal Citation ReportsTM (JCR). 2020 Journal Impact FactorTM (JIF). Clarivate; 2021. | |
dc.identifier.citedreference | Saidi T, Douglas T. Medical Device Regulation in Africa. In: Douglas T, ed. Biomedical Engineering For Africa. University of Cape Town Libraries; 2016. 10.15641/0-7992-2544-0 | |
dc.identifier.citedreference | Ntshebe O. Sub-Saharan Africa’s brain drain of medical doctors to the United States: An exploratory study. Insight Africa. 2010; 2: 103 - 111. doi: 10.1177/0975087814411123 | |
dc.identifier.citedreference | Raji A, Joel A, Ebenezer J, Attah E. The Effect of Brain Drain on the Economic Development of Developing Countries: Evidence from Selected African Countries. J Health Soc Issues. 2018; 7 ( 2 ): 66 - 76. | |
dc.identifier.citedreference | Emetere ME, Agubo O, Chikwendu L. Erratic electric power challenges in Africa and the way forward via the adoption of human biogas resources. Energy Explor Exploit. 2021; 39: 1349 - 1377. doi: 10.1177/01445987211003678 | |
dc.identifier.citedreference | Geethanath S, Vaughan JT. Accessible magnetic resonance imaging: A review. J Magn Reson Imaging. 2019; 49: e65 - e77. doi: 10.1002/jmri.26638 | |
dc.identifier.citedreference | GE Healthcare. Kenyan Small and Medium Healthcare providers to get boost in accessing financing for Medical Equipment purchases. 2019. Accessed March 18, 2022. https://ge.africa-newsroom.com/press/kenyan-small-and-medium-healthcare-providers-to-get-boost-in-accessing-financing-for-medical-equipment-purchases | |
dc.identifier.citedreference | Harper JR, Cherukuri V, O’Reilly T, et al. Assessing the utility of low resolution brain imaging: treatment of infant hydrocephalus. NeuroImage Clin. 2021; 32: 102896. doi: 10.1016/j.nicl.2021.102896 | |
dc.identifier.citedreference | Marques JP, Simonis FFJ, Webb AG. Low-field MRI: An MR physics perspective. J Magn Reson Imaging. 2019; 49: 1528 - 1542. doi: 10.1002/jmri.26637 | |
dc.identifier.citedreference | Alexander DC, Zikic D, Ghosh A, et al. Image quality transfer and applications in diffusion MRI. NeuroImage. 2017; 152: 283 - 298. doi: 10.1016/j.neuroimage.2017.02.089 | |
dc.identifier.citedreference | de Leeuw den Bouter ML, Ippolito G, O’Reilly TPA, Remis RF, van Gijzen MB, Webb AG. Deep learning-based single image super-resolution for low-field MR brain images. Sci Rep. 2022; 12: 6362. doi: 10.1038/s41598-022-10298-6 | |
dc.identifier.citedreference | Laage Gaupp FM, Solomon N, Rukundo I, et al. Tanzania IR Initiative: Training the first generation of interventional radiologists. J Vasc Interv Radiol. 2019; 30: 2036 - 2040. doi: 10.1016/j.jvir.2019.08.002 | |
dc.identifier.citedreference | Kawooya MG. Training for rural radiology and imaging in sub-saharan Africa: addressing the mismatch between services and population. J Clin Imaging Sci. 2012; 2: 37. doi: 10.4103/2156-7514.97747 | |
dc.identifier.citedreference | Mollura DJ, Culp MP, Pollack E, et al. Artificial intelligence in low- and middle-income countries: Innovating global health radiology. Radiology. 2020; 297: 513 - 520. doi: 10.1148/radiol.2020201434 | |
dc.identifier.citedreference | Obungoloch J, Harper JR, Consevage S, et al. Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus. MAGMA. 2018; 31: 665 - 676. doi: 10.1007/s10334-018-0683-y | |
dc.identifier.citedreference | Stanwix B. What do minimum wages look like in sub-Saharan Africa? World Economic Forum; 2015. | |
dc.identifier.citedreference | Ezzati M, Pearson-Stuttard J, Bennett JE, Mathers CD. Acting on non-communicable diseases in low- and middle-income tropical countries. Nature. 2018; 559: 507 - 516. doi: 10.1038/s41586-018-0306-9 | |
dc.identifier.citedreference | Figini M, Lin H, Ogbole G, Image Quality Transfer Enhances Contrast and Resolution of Low-Field Brain MRI in African Paediatric Epilepsy Patients. arXiv Prepr. arXiv2003.07216. 2020. | |
dc.identifier.citedreference | Zhang L, Hefke A, Figiel J, Schwarz U, Rominger M, Klose KJ. Enhancing same-day access to magnetic resonance imaging. J Am Coll Radiol. 2011; 8: 649 - 656. doi: 10.1016/j.jacr.2011.04.001 | |
dc.identifier.citedreference | Frija G, Blažić I, Frush DP, et al. How to improve access to medical imaging in low- and middle-income countries? eClinicalMed. 2021; 38: 101034. doi: 10.1016/j.eclinm.2021.101034 | |
dc.identifier.citedreference | Canadian Agency for Drugs and Technologies in Health. The Canadian Medical Imaging Inventory 2019–2020. Canadian Agency for Drugs and Technologies in Health. | |
dc.identifier.citedreference | Tabakov S. Global number of medical physicists and its growth 1965-2015. Med Phys Int. 2016; 4: 78 - 81. | |
dc.identifier.citedreference | WHO Biomedical engineers and technicians. Data by country. Global Health Observatory Data Repository. World Health Organization; 2016. https://apps.who.int/gho/data/node.main.HRMDBIO?lang=en | |
dc.identifier.citedreference | Warnert EAH, Kasper L, Meltzer CC, et al. Resonate: reaching excellence through equity, diversity, and inclusion in ISMRM. J Magn Reson Imaging. 2021; 53: 1608 - 1611. doi: 10.1002/jmri.27476 | |
dc.identifier.citedreference | Chew T-L. Africa Microscopy Initiative & M-POWR Microscope. Keynote Lecture. Chan Zuckerberg Initiative Expanding Global Access to BioImaging Kickoff Meeting. Virtual Meeting. Feburary 24, 2021. | |
dc.identifier.citedreference | Poirier SE, Kwan BYM, Jurkiewicz MT, et al. 18F-FDG PET-guided diffusion tractography reveals white matter abnormalities around the epileptic focus in medically refractory epilepsy: implications for epilepsy surgical evaluation. Eur J Hybrid Imaging. 2020; 4: 10. doi: 10.1186/s41824-020-00079-7 | |
dc.identifier.citedreference | Kissani N, Nafia S, el Khiat A, et al. Epilepsy surgery in Africa: state of the art and challenges. Epilepsy Behav. 2021; 118: 107910. doi: 10.1016/j.yebeh.2021.107910 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.