Show simple item record

Targeting MCL-1 and BCL-2 with polatuzumab vedotin and venetoclax overcomes treatment resistance in R/R non-Hodgkin lymphoma: Results from preclinical models and a Phase Ib study

dc.contributor.authorLasater, Elisabeth A.
dc.contributor.authorAmin, Dhara N.
dc.contributor.authorBannerji, Rajat
dc.contributor.authorMali, Raghuveer Singh
dc.contributor.authorBarrett, Kathy
dc.contributor.authorRys, Ryan N.
dc.contributor.authorOeh, Jason
dc.contributor.authorLin, Eva
dc.contributor.authorSterne-Weiler, Tim
dc.contributor.authorIngalla, Ellen Rei
dc.contributor.authorGo, MaryAnn
dc.contributor.authorYu, Shang-Fan
dc.contributor.authorKrem, Maxwell M.
dc.contributor.authorArthur, Chris
dc.contributor.authorHahn, Uwe
dc.contributor.authorJohnston, Anna
dc.contributor.authorKarur, Vinit
dc.contributor.authorKhan, Nadia
dc.contributor.authorMarlton, Paula
dc.contributor.authorPhillips, Tycel
dc.contributor.authorGritti, Giuseppe
dc.contributor.authorSeymour, John F.
dc.contributor.authorTani, Monica
dc.contributor.authorYuen, Sam
dc.contributor.authorMartin, Scott
dc.contributor.authorChang, Matthew T.
dc.contributor.authorRose, Christopher M.
dc.contributor.authorPham, Victoria C.
dc.contributor.authorPolson, Andrew G.
dc.contributor.authorChang, YiMeng
dc.contributor.authorWever, Claudia
dc.contributor.authorJohnson, Nathalie A.
dc.contributor.authorJiang, Yanwen
dc.contributor.authorHirata, Jamie
dc.contributor.authorSampath, Deepak
dc.contributor.authorMusick, Lisa
dc.contributor.authorFlowers, Christopher R.
dc.contributor.authorWertz, Ingrid E.
dc.date.accessioned2023-03-03T21:10:06Z
dc.date.available2024-04-03 16:10:03en
dc.date.available2023-03-03T21:10:06Z
dc.date.issued2023-03
dc.identifier.citationLasater, Elisabeth A.; Amin, Dhara N.; Bannerji, Rajat; Mali, Raghuveer Singh; Barrett, Kathy; Rys, Ryan N.; Oeh, Jason; Lin, Eva; Sterne-Weiler, Tim ; Ingalla, Ellen Rei; Go, MaryAnn; Yu, Shang-Fan ; Krem, Maxwell M.; Arthur, Chris; Hahn, Uwe; Johnston, Anna; Karur, Vinit; Khan, Nadia; Marlton, Paula; Phillips, Tycel; Gritti, Giuseppe; Seymour, John F.; Tani, Monica; Yuen, Sam; Martin, Scott; Chang, Matthew T.; Rose, Christopher M.; Pham, Victoria C.; Polson, Andrew G.; Chang, YiMeng; Wever, Claudia; Johnson, Nathalie A.; Jiang, Yanwen; Hirata, Jamie; Sampath, Deepak; Musick, Lisa; Flowers, Christopher R.; Wertz, Ingrid E. (2023). "Targeting MCL‐1 and BCL‐2 with polatuzumab vedotin and venetoclax overcomes treatment resistance in R/R non‐Hodgkin lymphoma: Results from preclinical models and a Phase Ib study." American Journal of Hematology 98(3): 449-463.
dc.identifier.issn0361-8609
dc.identifier.issn1096-8652
dc.identifier.urihttps://hdl.handle.net/2027.42/175920
dc.description.abstractThe treatment of patients with relapsed or refractory lymphoid neoplasms represents a significant clinical challenge. Here, we identify the pro-survival BCL-2 protein family member MCL-1 as a resistance factor for the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma (NHL) cell lines and primary NHL samples. Mechanistically, we show that the antibody-drug conjugate polatuzumab vedotin promotes MCL-1 degradation via the ubiquitin/proteasome system. This targeted MCL-1 antagonism, when combined with venetoclax and the anti-CD20 antibodies obinutuzumab or rituximab, results in tumor regressions in preclinical NHL models, which are sustained even off-treatment. In a Phase Ib clinical trial (NCT02611323) of heavily pre-treated patients with relapsed or refractory NHL, 25/33 (76%) patients with follicular lymphoma and 5/17 (29%) patients with diffuse large B-cell lymphoma achieved complete or partial responses with an acceptable safety profile when treated with the recommended Phase II dose of polatuzumab vedotin in combination with venetoclax and an anti-CD20 antibody.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleTargeting MCL-1 and BCL-2 with polatuzumab vedotin and venetoclax overcomes treatment resistance in R/R non-Hodgkin lymphoma: Results from preclinical models and a Phase Ib study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175920/1/ajh26809_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175920/2/ajh26809.pdf
dc.identifier.doi10.1002/ajh.26809
dc.identifier.sourceAmerican Journal of Hematology
dc.identifier.citedreferencePohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019; 366: 818 - 822.
dc.identifier.citedreferenceSwerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127: 2375 - 2390.
dc.identifier.citedreferenceTeras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016; 66: 443 - 459.
dc.identifier.citedreferenceFlowers CR, Sinha R, Vose JM. Improving outcomes for patients with diffuse large B-cell lymphoma. CA Cancer J Clin. 2010; 60: 393 - 408.
dc.identifier.citedreferenceMaddocks K, Barr PM, Cheson BD, et al. Recommendations for clinical trial development in follicular lymphoma. J Natl Cancer Inst. 2016; 109: djw255.
dc.identifier.citedreferenceRoberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016; 37: 311 - 322.
dc.identifier.citedreferenceStilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016; 17: 768 - 778.
dc.identifier.citedreferenceWei AH, Strickland SA Jr, Hou J-Z, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019; 37: 1277 - 1284.
dc.identifier.citedreferenceDavids MS, Roberts AW, Seymour JF, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J Clin Oncol. 2017; 35: 826 - 833.
dc.identifier.citedreferenceSeymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018; 378: 1107 - 1120.
dc.identifier.citedreferenceFlinn IW, Gribben JG, Dyer MJS, et al. Phase 1b study of venetoclax-obinutuzumab in previously untreated and relapsed/refractory chronic lymphocytic leukemia. Blood. 2019; 133: 2765 - 2775.
dc.identifier.citedreferenceAdams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018; 25: 27 - 36.
dc.identifier.citedreferenceTao Z, Hasvold L, Wang L, et al. Discovery of a potent and selective BCL-X L inhibitor with in vivo activity. ACS Med Chem Lett. 2014; 5: 1088 - 1093.
dc.identifier.citedreferenceTse C, Shoemaker AR, Adickes J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008; 68: 3421 - 3428.
dc.identifier.citedreferenceKotschy A, Szlavik Z, Murray J, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016; 538: 477 - 482.
dc.identifier.citedreferenceMontero J, Sarosiek KA, DeAngelo JD, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015; 26: 977 - 989.
dc.identifier.citedreferenceMason KD, Carpinelli MR, Fletcher JI, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007; 128: 1173 - 1186.
dc.identifier.citedreferenceRoberts AW, Seymour JF, Brown JR, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012; 30: 488 - 496.
dc.identifier.citedreferenceWei AH, Roberts AW, Spencer A, et al. Targeting MCL-1 in hematologic malignancies: rationale and progress. Blood Rev. 2020; 44: 100672.
dc.identifier.citedreferenceRoberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021; 138: 1120 - 1136.
dc.identifier.citedreferenceWertz IE, Kusam S, Lam C, et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 2011; 471: 110 - 114.
dc.identifier.citedreferenceTopham CH, Taylor SS. Mitosis and apoptosis: how is the balance set? Curr Opin Cell Biol. 2013; 25: 780 - 785.
dc.identifier.citedreferenceBliss CI. The toxicity of poisons applied jointly. Ann Appl Biol. 1939; 26: 585 - 615.
dc.identifier.citedreferenceSehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020; 38: 155 - 165.
dc.identifier.citedreferenceF. Hoffmann-La Roche. POLIVY (polatuzumab vedotin) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761121s000lbl.pdf. Revised June 2019. Accessed January 2022.
dc.identifier.citedreferencePalanca-Wessels MCA, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015; 16: 704 - 715.
dc.identifier.citedreferenceTilly H, Morschhauser F, Sehn LH, et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N Engl J Med. 2022; 386: 351 - 363.
dc.identifier.citedreferenceGuikema JE, Amiot M, Eldering E. Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets. 2017; 21: 767 - 779.
dc.identifier.citedreferenceEichhorn JM, Sakurikar N, Alford SE, Chu R, Chambers TC. Critical role of anti-apoptotic Bcl-2 protein phosphorylation in mitotic death. Cell Death Dis. 2013; 4: e834.
dc.identifier.citedreferenceCaenepeel S, Brown SP, Belmontes B, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018; 8: 1582 - 1597.
dc.identifier.citedreferencePolson AG, Yu S-F, Elkins K, et al. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood. 2007; 110: 616 - 623.
dc.identifier.citedreferenceDiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019; 133: 7 - 17.
dc.identifier.citedreferenceTobinai K, Klein C, Oya N, Fingerle-Rowson G. A review of obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv Ther. 2017; 34: 324 - 356.
dc.identifier.citedreferenceMorschhauser F, Flinn IW, Advani R, et al. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: final results from a phase 2 randomised study (ROMULUS). Lancet Haematol. 2019; 6: e254 - e265.
dc.identifier.citedreferencePhillips T, Brunvand M, Chen A, et al. Polatuzumab vedotin combined with obinutuzumab for patients with relapsed or refractory non-Hodgkin lymphoma: preliminary safety and clinical activity of a phase Ib/II study. Blood. 2016; 128: 622.
dc.identifier.citedreferenceSampath D, Herter S, Herting F, et al. Combination of the glycoengineered type II CD20 antibody obinutuzumab (GA101) and the novel Bcl-2 selective inhibitor GDC-0199 results in superior in vitro and in vivo anti-tumor activity in models of B-cell malignancies. Blood. 2013; 122: 4412.
dc.identifier.citedreferenceRys RN, Wever CM, Geoffrion D, et al. Apoptotic blocks in primary non-Hodgkin B cell lymphomas identified by BH3 profiling. Cancer. 2021; 13: 1002.
dc.identifier.citedreferenceDeng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell. 2007; 12: 171 - 185.
dc.identifier.citedreferenceCasulo C, Dixon JG, Le-Rademacher J, et al. Validation of POD24 as a robust early clinical endpoint of poor survival in FL from 5,225 patients on 13 clinical trials. Blood. 2022; 139: 1684 - 1693.
dc.identifier.citedreferenceKrem MM, Press OW, Horwitz MS, Tidwell T. Mechanisms and clinical applications of chromosomal instability in lymphoid malignancy. Br J Haematol. 2015; 171: 13 - 28.
dc.identifier.citedreferencede Vos S, Leonard JP, Friedberg JW, et al. Safety and efficacy of navitoclax, a BCL-2 and BCL-XL inhibitor, in patients with relapsed or refractory lymphoid malignancies: results from a phase 2a study. Leuk Lymphoma. 2021; 62: 810 - 818.
dc.identifier.citedreferenceMarcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017; 377: 1331 - 1344.
dc.identifier.citedreferenceSehn LH, Chua N, Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016; 17 ( 8 ): 1081 - 1093.
dc.identifier.citedreferenceMabThera SmPC. https://www.ema.europa.eu/en/documents/product-information/mabthera-epar-product-information_en.pdf. Last updated: 26/08/2022. Accessed: 09/11/2022.
dc.identifier.citedreferenceSehn LH, Salles G. Diffuse large B-cell lymphoma. N Engl J Med. 2021; 384 ( 9 ): 842 - 858.
dc.identifier.citedreferenceZinzani PL, Flinn IW, Yuen SLS, et al. Venetoclax-rituximab with or without bendamustine vs bendamustine-rituximab in relapsed/refractory follicular lymphoma. Blood. 2020; 136: 2628 - 2637.
dc.identifier.citedreferenceLu P, Fleischmann R, Curtis C, et al. Safety and pharmacodynamics of venetoclax (ABT-199) in a randomized single and multiple ascending dose study in women with systemic lupus erythematosus. Lupus. 2018; 27: 290 - 302.
dc.identifier.citedreferenceNCT04659044. Clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT04659044. Accessed 09/11/2022.
dc.identifier.citedreferenceSenichkin VV, Streletskaia AY, Gorbunova AS, Zhivotovsky B, Kopeina GS. Saga of Mcl-1: regulation from transcription to degradation. Cell Death Differ. 2020; 27: 405 - 419.
dc.identifier.citedreferenceKonopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016; 6: 1106 - 1117.
dc.identifier.citedreferenceDiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020; 383: 617 - 629.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.