Show simple item record

Development and international validation of logistic regression and machine-learning models for the prediction of 10-year molar loss

dc.contributor.authorTroiano, Giuseppe
dc.contributor.authorNibali, Luigi
dc.contributor.authorPetsos, Hari
dc.contributor.authorEickholz, Peter
dc.contributor.authorSaleh, Muhammad H. A.
dc.contributor.authorSantamaria, Pasquale
dc.contributor.authorJian, Jao
dc.contributor.authorShi, Shuwen
dc.contributor.authorMeng, Huanxin
dc.contributor.authorZhurakivska, Khrystyna
dc.contributor.authorWang, Hom-Lay
dc.contributor.authorRavidà, Andrea
dc.date.accessioned2023-03-03T21:10:48Z
dc.date.available2024-04-03 16:10:46en
dc.date.available2023-03-03T21:10:48Z
dc.date.issued2023-03
dc.identifier.citationTroiano, Giuseppe; Nibali, Luigi; Petsos, Hari; Eickholz, Peter; Saleh, Muhammad H. A.; Santamaria, Pasquale; Jian, Jao; Shi, Shuwen; Meng, Huanxin; Zhurakivska, Khrystyna; Wang, Hom-Lay ; Ravidà, Andrea (2023). "Development and international validation of logistic regression and machine- learning models for the prediction of 10- year molar loss." Journal of Clinical Periodontology 50(3): 348-357.
dc.identifier.issn0303-6979
dc.identifier.issn1600-051X
dc.identifier.urihttps://hdl.handle.net/2027.42/175937
dc.description.abstractAimTo develop and validate models based on logistic regression and artificial intelligence for prognostic prediction of molar survival in periodontally affected patients.Materials and MethodsClinical and radiographic data from four different centres across four continents (two in Europe, one in the United States, and one in China) including 515 patients and 3157 molars were collected and used to train and test different types of machine-learning algorithms for their prognostic ability of molar loss over 10 years. The following models were trained: logistic regression, support vector machine, K-nearest neighbours, decision tree, random forest, artificial neural network, gradient boosting, and naive Bayes. In addition, different models were aggregated by means of the ensembled stacking method. The primary outcome of the study was related to the prediction of overall molar loss (MLO) in patients after active periodontal treatment.ResultsThe general performance in the external validation settings (aggregating three cohorts) revealed that the ensembled model, which combined neural network and logistic regression, showed the best performance among the different models for the prediction of MLO with an area under the curve (AUC) = 0.726. The neural network model showed the best AUC of 0.724 for the prediction of periodontitis-related molar loss. In addition, the ensembled model showed the best calibration performance.ConclusionsThrough a multi-centre collaboration, both prognostic models for the prediction of molar loss were developed and externally validated. The ensembled model showed the best performance in terms of both discrimination and validation, and it is made freely available to clinicians for widespread use in clinical practice.
dc.publisherWiley Periodicals, Inc.
dc.publisherBlackwell Publishing Ltd
dc.subject.otherfurcation involvement
dc.subject.otherperiodontitis
dc.subject.othertooth loss
dc.subject.otherartificial intelligence
dc.titleDevelopment and international validation of logistic regression and machine-learning models for the prediction of 10-year molar loss
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175937/1/jcpe13739-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175937/2/jcpe13739_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175937/3/jcpe13739.pdf
dc.identifier.doi10.1111/jcpe.13739
dc.identifier.sourceJournal of Clinical Periodontology
dc.identifier.citedreferenceRavida, A., Troiano, G., Qazi, M., Saleh, M. H. A., Lo Russo, L., Greenwell, H., Giannobile, W. V., & Wang, H. L. ( 2020 ). Development of a nomogram for the prediction of periodontal tooth loss using the staging and grading system: A long-term cohort study. Journal of Clinical Periodontology, 47 ( 11 ), 1362 – 1370. https://doi.org/10.1111/jcpe.13362
dc.identifier.citedreferenceCollins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. ( 2015 ). Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ, 350, g7594. https://doi.org/10.1136/bmj.g7594
dc.identifier.citedreferenceDeo, R. C. ( 2015 ). Machine learning in medicine. Circulation, 132 ( 20 ), 1920 – 1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
dc.identifier.citedreferenceDhiman, P., Ma, J., Andaur Navarro, C. L., Speich, B., Bullock, G., Damen, J. A. A., Hooft, L., Kirtley, S., Riley, R. D., Van Calster, B., Moons, K. G. M., & Collins, G. S. ( 2022 ). Methodological conduct of prognostic prediction models developed using machine learning in oncology: A systematic review. BMC Medical Research Methodology, 22 ( 1 ), 101. https://doi.org/10.1186/s12874-022-01577-x
dc.identifier.citedreferenceDu, M., Bo, T., Kapellas, K., & Peres, M. A. ( 2018 ). Prediction models for the incidence and progression of periodontitis: A systematic review. Journal of Clinical Periodontology, 45 ( 12 ), 1408 – 1420. https://doi.org/10.1111/jcpe.13037
dc.identifier.citedreferenceEickholz, P., Runschke, M., Dannewitz, B., Nickles, K., Petsos, H., Kronsteiner, D., & Pretzl, B. ( 2021 ). Long-term prognosis of teeth with class III furcation involvement. Journal of Clinical Periodontology, 48 ( 12 ), 1528 – 1536. https://doi.org/10.1111/jcpe.13551
dc.identifier.citedreferenceGuo, J., Ban, J. H., Li, G., Wang, X., Feng, X. P., Tai, B. J., Hu, D. Y., Lin, H. C., Wang, B., Si, Y., Wang, C. X., Rong, W. S., Wang, W. J., Zheng, S. G., Liu, X. N., & Wang, S. C. ( 2018 ). Status of tooth loss and denture restoration in Chinese adult population: Findings from the 4th National Oral Health Survey. The Chinese Journal of Dental Research, 21 ( 4 ), 249 – 257. https://doi.org/10.3290/j.cjdr.a41083
dc.identifier.citedreferenceHamp, S. E., Nyman, S., & Lindhe, J. ( 1975 ). Periodontal treatment of multirooted teeth. Results after 5 years. Journal of Clinical Periodontology, 2 ( 3 ), 126 – 135. https://doi.org/10.1111/j.1600-051x.1975.tb01734.x
dc.identifier.citedreferenceHarrison, C. J., & Sidey-Gibbons, C. J. ( 2021 ). Machine learning in medicine: A practical introduction to natural language processing. BMC Medical Research Methodology, 21 ( 1 ), 158. https://doi.org/10.1186/s12874-021-01347-1
dc.identifier.citedreferenceHou, G. L., & Tsai, C. C. ( 1997 ). Types and dimensions of root trunk correlating with diagnosis of molar furcation involvements. Journal of Clinical Periodontology, 24 ( 2 ), 129 – 135. https://doi.org/10.1111/j.1600-051x.1997.tb00479.x
dc.identifier.citedreferenceKantarjian, H., & Yu, P. P. ( 2015 ). Artificial intelligence, big data, and cancer. JAMA Oncology, 1 ( 5 ), 573 – 574. https://doi.org/10.1001/jamaoncol.2015.1203
dc.identifier.citedreferenceKim, C., You, S. C., Reps, J. M., Cheong, J. Y., & Park, R. W. ( 2021 ). Machine-learning model to predict the cause of death using a stacking ensemble method for observational data. Journal of the American Medical Informatics Association, 28 ( 6 ), 1098 – 1107. https://doi.org/10.1093/jamia/ocaa277
dc.identifier.citedreferenceKrois, J., Graetz, C., Holtfreter, B., Brinkmann, P., Kocher, T., & Schwendicke, F. ( 2019 ). Evaluating modeling and validation strategies for tooth loss. Journal of Dental Research, 98 ( 10 ), 1088 – 1095. https://doi.org/10.1177/0022034519864889
dc.identifier.citedreferenceLang, N. P., & Tonetti, M. S. ( 2003 ). Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health & Preventive Dentistry, 1 ( 1 ), 7 – 16.
dc.identifier.citedreferenceLeow, N. M., Moreno, F., Marletta, D., Hussain, S. B., Buti, J., Almond, N., & Needleman, I. ( 2022 ). Recurrence and progression of periodontitis and methods of management in long-term care: A systematic review and meta-analysis. Journal of Clinical Periodontology, 49 ( Suppl 24 ), 291 – 313. https://doi.org/10.1111/jcpe.13553
dc.identifier.citedreferenceLindhe, J., & Nyman, S. ( 1977 ). The role of occlusion in periodontal disease and the biological rationale for splinting in treatment of periodontitis. Oral Sciences Reviews, 10, 11 – 43.
dc.identifier.citedreferenceMohammad-Rahimi, H., Motamedian, S. R., Pirayesh, Z., Haiat, A., Zahedrozegar, S., Mahmoudinia, E., Rohban, M. H., Krois, J., Lee, J. H., & Schwendicke, F. ( 2022 ). Deep learning in periodontology and oral implantology: A scoping review. Journal of Periodontal Research, 57, 942 – 951. https://doi.org/10.1111/jre.13037
dc.identifier.citedreferenceNgiam, K. Y., & Khor, I. W. ( 2019 ). Big data and machine learning algorithms for health-care delivery. The Lancet Oncology, 20 ( 5 ), e262 – e273. https://doi.org/10.1016/S1470-2045(19)30149-4
dc.identifier.citedreferencePetsos, H., Ramich, T., Nickles, K., Dannewitz, B., Pfeifer, L., Zuhr, O., & Eickholz, P. ( 2021 ). Tooth loss in periodontally compromised patients: Retrospective long-term results 10 years after active periodontal therapy - tooth-related outcomes. Journal of Periodontology, 92 ( 12 ), 1761 – 1775. https://doi.org/10.1002/JPER.21-0056
dc.identifier.citedreferencePretzl, B., Kaltschmitt, J., Kim, T. S., Reitmeir, P., & Eickholz, P. ( 2008 ). Tooth loss after active periodontal therapy. 2: Tooth-related factors. Journal of Clinical Periodontology, 35 ( 2 ), 175 – 182. https://doi.org/10.1111/j.1600-051X.2007.01182.x
dc.identifier.citedreferenceRischke, R., Schneider, L., Muller, K., Samek, W., Schwendicke, F., & Krois, J. ( 2022 ). Federated learning in dentistry: Chances and challenges. Journal of Dental Research, 101, 1269 – 1273. https://doi.org/10.1177/00220345221108953
dc.identifier.citedreferenceSaleh, M. H. A., Dukka, H., Troiano, G., Ravida, A., Galli, M., Qazi, M., … Wang, H. L. ( 2021 ). External validation and comparison of the predictive performance of 10 different tooth-level prognostic systems. Journal of Clinical Periodontology, 48 ( 11 ), 1421 – 1429. https://doi.org/10.1111/jcpe.13542
dc.identifier.citedreferenceSaleh, M. H. A., Dukka, H., Troiano, G., Ravida, A., Qazi, M., Wang, H. L., & Greenwell, H. ( 2022 ). Long term comparison of the prognostic performance of PerioRisk, periodontal risk assessment, periodontal risk calculator, and staging and grading systems. Journal of Periodontology, 93 ( 1 ), 57 – 68. https://doi.org/10.1002/JPER.20-0662
dc.identifier.citedreferenceSaydzai, S., Buontempo, Z., Patel, P., Hasan, F., Sun, C., Akcali, A., Lin, G. H., Donos, N., & Nibali, L. ( 2022 ). Comparison of the efficacy of periodontal prognostic systems in predicting tooth loss. Journal of Clinical Periodontology, 49 ( 8 ), 740 – 748. https://doi.org/10.1111/jcpe.13672
dc.identifier.citedreferenceSchwendicke, F., Schmietendorf, E., Plaumann, A., Salzer, S., Dorfer, C. E., & Graetz, C. ( 2018 ). Validation of multivariable models for predicting tooth loss in periodontitis patients. Journal of Clinical Periodontology, 45 ( 6 ), 701 – 710. https://doi.org/10.1111/jcpe.12900
dc.identifier.citedreferenceSchwendicke, F., Stolpe, M., & Graetz, C. ( 2017 ). Cost comparison of prediction-based decision-making for periodontally affected molars. Journal of Clinical Periodontology, 44 ( 11 ), 1145 – 1152. https://doi.org/10.1111/jcpe.12796
dc.identifier.citedreferenceShi, S., Meng, Y., Li, W., Jiao, J., Meng, H., & Feng, X. ( 2020 ). A nomogram prediction for mandibular molar survival in Chinese patients with periodontitis: A 10-year retrospective cohort study. Journal of Clinical Periodontology, 47 ( 9 ), 1121 – 1131. https://doi.org/10.1111/jcpe.13343
dc.identifier.citedreferenceSidey-Gibbons, J. A. M., & Sidey-Gibbons, C. J. ( 2019 ). Machine learning in medicine: A practical introduction. BMC Medical Research Methodology, 19 ( 1 ), 64. https://doi.org/10.1186/s12874-019-0681-4
dc.identifier.citedreferenceVan Calster, B., McLernon, D. J., van Smeden, M., Wynants, L., Steyerberg, E. W., & Topic Group "Evaluating diagnostic tests & prediction models" of the STRATOS initiative. ( 2019 ). Calibration: The Achilles heel of predictive analytics. BMC Medicine, 17 ( 1 ), 230. https://doi.org/10.1186/s12916-019-1466-7
dc.identifier.citedreferenceZee, K. Y., Chiu, M. L., Holmgren, C. J., Walker, R. T., & Corbet, E. F. ( 1991 ). Cervical enamel projections in Chinese first permanent molars. Australian Dental Journal, 36 ( 5 ), 356 – 360. https://doi.org/10.1111/j.1834-7819.1991.tb01356.x
dc.identifier.citedreferenceZhai, B., & Chen, J. ( 2018 ). Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in Beijing, China. Science of The Total Environment, 635, 644 – 658. https://doi.org/10.1016/j.scitotenv.2018.04.040
dc.identifier.citedreferenceBashir, N. Z., Rahman, Z., & Chen, S. L. ( 2022 ). Systematic comparison of machine learning algorithms to develop and validate predictive models for periodontitis. Journal of Clinical Periodontology, 49, 958 – 969. https://doi.org/10.1111/jcpe.13692
dc.identifier.citedreferenceBates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. ( 2014 ). Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33 ( 7 ), 1123 – 1131. https://doi.org/10.1377/hlthaff.2014.0041
dc.identifier.citedreferenceBlagus, R., & Lusa, L. ( 2013 ). SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14, 106. https://doi.org/10.1186/1471-2105-14-106
dc.identifier.citedreferenceBower, R. C. ( 1979 ). Furcation morphology relative to periodontal treatment. Furcation entrance architecture. Journal of Periodontology, 50 ( 1 ), 23 – 27. https://doi.org/10.1902/jop.1979.50.1.23
dc.identifier.citedreferenceChristodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., & Van Calster, B. ( 2019 ). A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology, 110, 12 – 22. https://doi.org/10.1016/j.jclinepi.2019.02.004
dc.identifier.citedreferenceCollins, G. S., Dhiman, P., Andaur Navarro, C. L., Ma, J., Hooft, L., Reitsma, J. B., Logullo, P., Beam, A. L., Peng, L., Van Calster, B., van Smeden, M., Riley, R. D., & Moons, K. G. ( 2021 ). Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 11 ( 7 ), e048008. https://doi.org/10.1136/bmjopen-2020-048008
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.