Show simple item record

Initial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover

dc.contributor.authorPolkko, J.
dc.contributor.authorHieta, M.
dc.contributor.authorHarri, A.-M.
dc.contributor.authorTamppari, L.
dc.contributor.authorMartínez, G.
dc.contributor.authorViúdez-Moreiras, D.
dc.contributor.authorSavijärvi, H.
dc.contributor.authorConrad, P.
dc.contributor.authorZorzano Mier, M. P.
dc.contributor.authorLa Torre Juarez, M.
dc.contributor.authorHueso, R.
dc.contributor.authorMunguira, A.
dc.contributor.authorLeino, J.
dc.contributor.authorGómez, F.
dc.contributor.authorJaakonaho, I.
dc.contributor.authorFischer, E.
dc.contributor.authorGenzer, M.
dc.contributor.authorApestigue, V.
dc.contributor.authorArruego, I.
dc.contributor.authorBanfield, D.
dc.contributor.authorLepinette, A.
dc.contributor.authorPaton, M.
dc.contributor.authorRodriguez-Manfredi, J. A.
dc.contributor.authorSánchez Lavega, A.
dc.contributor.authorSebastian, E.
dc.contributor.authorToledo, D.
dc.contributor.authorVicente-Retortillo, A.
dc.date.accessioned2023-03-03T21:10:54Z
dc.date.available2024-03-03 16:10:51en
dc.date.available2023-03-03T21:10:54Z
dc.date.issued2023-02
dc.identifier.citationPolkko, J.; Hieta, M.; Harri, A.-M. ; Tamppari, L.; Martínez, G. ; Viúdez-Moreiras, D. ; Savijärvi, H. ; Conrad, P.; Zorzano Mier, M. P.; La Torre Juarez, M.; Hueso, R.; Munguira, A.; Leino, J.; Gómez, F. ; Jaakonaho, I.; Fischer, E.; Genzer, M.; Apestigue, V.; Arruego, I.; Banfield, D.; Lepinette, A.; Paton, M.; Rodriguez-Manfredi, J. A. ; Sánchez Lavega, A. ; Sebastian, E.; Toledo, D.; Vicente-Retortillo, A. (2023). "Initial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover." Journal of Geophysical Research: Planets 128(2): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/175939
dc.description.abstractThe Mars 2020 mission rover “Perseverance”, launched on 30 July 2020 by NASA, landed successfully 18 February 2021 at Jezero Crater, Mars (Lon. E 77.4509° Lat. N 18.4446°). The landing took place at Mars solar longitude Ls = 5.2°, close to start of the northern spring. Perseverance’s payload includes the relative humidity sensor MEDA HS (Mars Environmental Dynamics Analyzer Humidity Sensor), which operations, performance, and the first observations from sol 80 to sol 410 (Ls 44°–210°) of Perseverance’s operations we describe. The relative humidity measured by MEDA-HS is reliable from late night hours to few tens of minutes after sunrise when the measured humidity is greater than 2% (referenced to sensor temperature). Data delivered to the Planetary Data System include relative humidity, sensor temperature, uncertainty of relative humidity, and volume mixing ratio (VMR). VMR is calculated using the MEDA-PS pressure sensor values. According to observations, nighttime absolute humidity follows a seasonal curve in which release of water vapor from the northern cap with advancing northern spring and summer is visible. At ground level, frost conditions may have been reached a few times during this season (Ls 44°–210°). Volume mixing ratio values show a declining diurnal trend from the midnight toward the morning suggesting adsorption of humidity into the ground. Observations are compared with an adsorptive single-column model, which complies with observations and confirms adsorption. The model allows estimating daytime VMR levels. Short-term subhour timescales show large temporal fluctuations in humidity, which suggest vertical and spatial advection.Plain Language SummaryThe Mars 2020 mission rover “Perseverance” landed successfully on 18 February 2021 at Jezero Crater, Mars. The rover’s payload includes a versatile instrument suite which includes a relative humidity sensor, whose observations for the first 410 Martian days are described here. The observations show how the lowest level of atmosphere is generally dry but still exceeding saturation is feasible because of cold nights. Sensor operations and accuracy estimates are presented. Relative humidity together with MEDA pressure and air temperature observations allow calculating absolute water vapor content of air at the sensor level at nighttime. Humidity observations are also compared with models describing water vapor adsorption and desorption into and out from soil. The results show how atmospheric humidity at the rover’s site experiences large subhour variability. Humidity observations help to understand interchange of humidity between the soil and the atmosphere. Water is mandatory for life, such as on earth, thus understanding these water cycle processes better are important for evaluating possibilities of past and current habitability of Mars. Perseverance is also collecting samples which maybe returned to Earth one day. Knowledge of the conditions at the times when samples were collected maybe useful.Key PointsHumidity observations in Mars by M2020 Perseverance rover during the first 410 sols of operation are shown and discussedHumidity sensor MEDA-HS operations and sensor accuracy are explainedAdsorptive single column model is tested and compared with humidity observations
dc.publisher(“State Research Center (VTT) consultation report with Finnish Meteorological Institute
dc.publisherWiley Periodicals, Inc.
dc.subject.otherobservations
dc.subject.otherinstrument performance
dc.subject.othernear surface
dc.subject.otherMars
dc.subject.otherhumidity
dc.subject.otherwater vapor
dc.titleInitial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175939/1/jgre22121_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175939/2/jgre22121.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175939/3/2022JE007447-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2022JE007447
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceSavijärvi, H. I., Harri, A.-M., & Kemppinen, O. ( 2016 ). The diurnal water cycle at Curiosity: Role of exchange with the regolith. Icarus, 265, 63 – 69. https://doi.org/10.1016/j.icarus.2015.10.008
dc.identifier.citedreferenceJCGM. ( 2008 ). Evaluation of measurement data Guide to the expression of uncertainty in measurement, JCGM 100:2008 [Computer software manual]. Pavillon de Breteuil, F-92312 Sèvres CEDEX, France. (Retrieved from https://www.bipm.org/en/publications/guides )
dc.identifier.citedreferenceLemmon, M. T., Smith, M. D., Viudez-Moreiras, D., de la Torre-Juarez, M., Vicente-Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active martian storm in Jezero Crater. Geophysical Research Letters, 49 ( 17 ), e00126. https://doi.org/10.1029/2022GL100126
dc.identifier.citedreferenceMaltagliati, L., Montmessin, F., Fedorova, A., Korablev, O., Forget, F., & Bertaux, J. L. ( 2011 ). Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science, 333 ( 6051 ), 1868 – 1871. https://doi.org/10.1126/science.1207957
dc.identifier.citedreferenceMangold, N., Gupta, S., Gasnault, O., Dromart, G., Tarnas, J. D., Sholes, S. F., et al. ( 2021 ). Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 374 ( 6568 ), 711 – 717. https://doi.org/10.1126/science.abl4051
dc.identifier.citedreferenceMartínez, G. M., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., et al. ( 2023 ). Surface energy budget, albedo and thermal inertia at Jezero Crater, Mars, as observed from the Mars 2020 MEDA instrument. Journal of Geophysical Research: Planets, 128, e2022JE007537. https://doi.org/10.1029/2022JE007537
dc.identifier.citedreferenceMartínez, G. M., Fischer, E., Rennó, N. O., Sebastián, E., Kemppinen, O., Bridges, N., et al. ( 2016 ). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus, 280, 93 – 102. https://doi.org/10.1016/j.icarus.2015.12.004
dc.identifier.citedreferenceSmith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., et al. ( 1999 ). The global topography of Mars and implications for surface evolution. Science, 284 ( 5419 ), 1495 – 1503. https://doi.org/10.1126/science.284.5419.1495
dc.identifier.citedreferenceMartínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern near-surface martian climate: A review of in-situ meteorological data from Viking to curiosity. Space Science Reviews, 212 ( 1–2 ), 295 – 338. https://doi.org/10.1007/s11214-017-0360-x
dc.identifier.citedreferenceMartín-Torres, F. J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., et al. ( 2015 ). Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8 ( 5 ), 357 – 361. https://doi.org/10.1038/ngeo2412
dc.identifier.citedreferenceMcConnochie, T. H., Smith, M. D., Wolff, M. J., Bender, S., Lemmon, M., Wiens, R. C., et al. ( 2018 ). Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 307, 294 – 326. https://doi.org/10.1016/j.icarus.2017.10.043
dc.identifier.citedreferenceMelchiorri, R., Encrenaz, T., Drossart, P., Fouchet, T., Forget, F., Titov, D., et al. ( 2009 ). OMEGA/Mars Express: South Pole Region, water vapor daily variability. Icarus, 201 ( 1 ), 102 – 112. https://doi.org/10.1016/j.icarus.2008.12.018
dc.identifier.citedreferenceMilton, D. J. ( 1973 ). Water and processes of degradation in the Martian landscape. Journal of Geophysical Research, 78 ( 20 ), 4037 – 4047. https://doi.org/10.1029/JB078i020p04037
dc.identifier.citedreferenceMorris, R. V., Klingelhöfer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W., et al. ( 2006 ). Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research (Planets), 111 ( E12 ), E12S15. https://doi.org/10.1029/2006JE002791
dc.identifier.citedreferenceMunguira, A., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., Martínez, G. M., Newman, C. E., et al. ( 2023 ). Near surface atmospheric temperatures at Jezero from Mars 2020 MEDA measurements. Journal of Geophysical Research: Planets, 128, e2022JE007559. https://doi.org/10.1029/2022JE007559
dc.identifier.citedreferenceNavarro-González, R., Rainey, F. A., Molina, P., Bagaley, D. R., Hollen, B. J., de la Rosa, J., et al. ( 2003 ). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302 ( 5647 ), 1018 – 1021. https://doi.org/10.1126/science.1089143
dc.identifier.citedreferencePla-García, J., Rafkin, S. C. R., Martinez, G. M., Vicente-Retortillo, Á., Newman, C. E., Savijärvi, H., et al. ( 2020 ). Meteorological predictions for Mars 2020 perseverance rover landing site at Jezero Crater. Space Science Reviews, 216 ( 8 ), 148. https://doi.org/10.1007/s11214-020-00763-x
dc.identifier.citedreferencePolkko, J. ( 2022 ). Data for the manuscript “initial results of the relative humidity observations by meda instrument onboard the mMars2020 perseverance rover” submitted to JGR planets m2020 special issue “crater floor” [dataset]. FMI. https://doi.org/10.23728/fmi-b2share.daab03d71fc94bcd893b6c97adce497f
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 MEDA bundle [dataset]. NASA. https://doi.org/10.17189/1522849
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., de la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al.MEDA Team. ( 2021 ). The Mars environmental dynamics analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 48. https://doi.org/10.1007/s11214-021-00816-9
dc.identifier.citedreferenceSavijärvi, H. I., & Harri, A. M. ( 2021 ). Water vapor adsorption on Mars. Icarus, 357, 114270. https://doi.org/10.1016/j.icarus.2020.114270
dc.identifier.citedreferenceSavijärvi, H. I., Harri, A. M., & Kemppinen, O. ( 2015 ). Mars Science Laboratory diurnal moisture observations and column simulations. Journal of Geophysical Research (Planets), 120 ( 5 ), 1011 – 1021. https://doi.org/10.1002/2014JE004732
dc.identifier.citedreferenceSavijärvi, H. I., Martinez, G., Harri, A.-M., & Paton, M. ( 2020a ). Curiosity observations and column model integrations for a Martian global dust event. Icarus, 337, 113515. https://doi.org/10.1016/j.icarus.2019.113515
dc.identifier.citedreferenceSavijärvi, H. I., Martinez, G. M., Fischer, E., Renno, N. O., Tamppari, L. K., Zent, A., & Harri, A. M. ( 2020b ). Humidity observations and column simulations for a warm period at the Mars Phoenix lander site: Constraining the adsorptive properties of regolith. Icarus, 343, 113688. https://doi.org/10.1016/j.icarus.2020.113688
dc.identifier.citedreferenceSavijärvi, H. I., Martinez, G. M., Vicente-Retortillo, A., & Harri, A. M. ( 2022 ). Surface energy budget at Curiosity through observations and column modeling. Icarus, 376, 114900. https://doi.org/10.1016/j.icarus.2022.114900
dc.identifier.citedreferenceSavijärvi, H. I., McConnochie, T. H., Harri, A.-M., & Paton, M. ( 2019 ). Water vapor mixing ratios and air temperatures for three Martian years from Curiosity. Icarus, 326, 170 – 175. https://doi.org/10.1016/j.icarus.2019.03.020
dc.identifier.citedreferenceSavijärvi, H. I., & Siili, T. ( 1993 ). The Martian slope winds and the nocturnal PBL jet. Journal of the Atmospheric Sciences, 50 ( 1 ), 77 – 88. https://doi.org/10.1175/1520-0469(1993)050⟨0077:TMSWAT⟩2.0.CO;2
dc.identifier.citedreferenceSebastián, E., Martínez, G., Ramos, M., Pérez-Grande, I., Sobrado, J., & Rodríguez Manfredi, J. A. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s Perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006
dc.identifier.citedreferenceSindoni, G., Formisano, V., & Geminale, A. ( 2011 ). Observations of water vapour and carbon monoxide in the Martian atmosphere with the SWC of PFS/MEX. Planetary and Space Science, 59 ( 2–3 ), 149 – 162. https://doi.org/10.1016/j.pss.2010.12.006
dc.identifier.citedreferenceSmith, M. D. ( 2002 ). The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. Journal of Geophysical Research: Planets, 107 ( E11 ), 5115 – 5125-19. https://doi.org/10.1029/2001JE001522
dc.identifier.citedreferenceSmith, M. D. ( 2004 ). Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus, 167 ( 1 ), 148 – 165. https://doi.org/10.1016/j.icarus.2003.09.010
dc.identifier.citedreferenceSmith, M. D., Daerden, F., Neary, L., & Khayat, A. ( 2018 ). The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model. Icarus, 301, 117 – 131. https://doi.org/10.1016/j.icarus.2017.09.027
dc.identifier.citedreferenceSmith, M. D., Pearl, J. C., Conrath, B. J., & Christensen, P. R. ( 2001 ). Thermal emission spectrometer results: Mars atmospheric thermal structure and aerosol distribution. Journal of Geophysical Research, 106 ( E10 ), 23929 – 23945. https://doi.org/10.1029/2000JE001321
dc.identifier.citedreferenceSmith, M. D., Wolff, M. J., Clancy, R. T., & Murchie, S. L. ( 2009 ). Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. Journal of Geophysical Research: Planets, 114 ( E9 ), E00D03. https://doi.org/10.1029/2008JE003288
dc.identifier.citedreferenceSmith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., et al. ( 2009 ). H2O at the Phoenix landing s i te. Science, 325 ( 5936 ), 58 – 61. https://doi.org/10.1126/science.1172339
dc.identifier.citedreferenceSpinrad, H., Münch, G., & Kaplan, L. D. ( 1963 ). Letter to the editor: The detection of water vapor on Mars. The Astrophysical Journal, 137, 1319. https://doi.org/10.1086/147613
dc.identifier.citedreferenceSprague, A. L., Hunten, D. M., Doose, L. R., & Hill, R. E. ( 2003 ). Mars atmospheric water vapor abundance: 1996–1997. Icarus, 163 ( 1 ), 88 – 101. https://doi.org/10.1016/S0019-1035(03)00072-1
dc.identifier.citedreferenceSprague, A. L., Hunten, D. M., Hill, R. E., Rizk, B., & Wells, W. K. ( 1996 ). Martian water vapor, 1988-1995. Journal of Geophysical Research, 101 ( E10 ), 23229 – 23254. https://doi.org/10.1029/96JE02265
dc.identifier.citedreferenceSteele, L. J., Balme, M. R., Lewis, S. R., & Spiga, A. ( 2017 ). The water cycle and regolith-atmosphere interaction at Gale crater, Mars. Icarus, 289, 56 – 79. https://doi.org/10.1016/j.icarus.2017.02.010
dc.identifier.citedreferenceTamppari, L. K., & Lemmon, M. T. ( 2020 ). Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site. Icarus, 343, 113624. https://doi.org/10.1016/j.icarus.2020.113624
dc.identifier.citedreferenceVaisala-Oyj ( 2020 ). Humicap technology description (Tech. Rep. No. B210781EN-D). Retrieved from https://www.vaisala.com/sites/default/files/documents/HUMICAP-Technology-description-B210781EN.pdf
dc.identifier.citedreferenceViúdez-Moreiras, D., de la Torre, M., Gómez-Elvira, J., Lorenz, R., Apéstigue, V., Guzewich, S., et al. ( 2022 ). Winds at the Mars 2020 landing site.part 2: Wind variability and turbulence. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007523. https://doi.org/10.1029/2022JE007523
dc.identifier.citedreferenceViúdez-Moreiras, D., Lemmon, M., Newman, C., Guzewich, S., Mischna, M., Gómez-Elvira, J., et al. ( 2022 ). Winds at the Mars 2020 landing site: 1. Near-surface wind patterns at Jezero Crater. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007522. https://doi.org/10.1029/2022JE007522
dc.identifier.citedreferenceViúdez-Moreiras, D., Newman, C. E., de la Torre, M., Martínez, G., Guzewich, S., Lemmon, M., et al. ( 2019 ). Effects of the MY34/2018 global dust storm as measured by MSL REMS in Gale Crater. Journal of Geophysical Research: Planets, 124 ( 7 ), 1899 – 1912. https://doi.org/10.1029/2019JE005985
dc.identifier.citedreferenceVTT-Ltd. ( 2022 ). Uncertainty evaluation of meda hs humidity measurements (Tech. Rep.). (“State Research Center (VTT) consultation report with Finnish Meteorological Institute, 2022 by Tabandeh, S. and Högström, R.”)
dc.identifier.citedreferenceWhiteway, J. A., Komguem, L., Dickinson, C., Cook, C., Illnicki, M., Seabrook, J., et al. ( 2009 ). Mars water-ice clouds and precipitation. Science, 325 ( 5936 ), 68 – 70. https://doi.org/10.1126/science.1172344
dc.identifier.citedreferenceYoung, I., Crawford, J., Nunan, N., Otten, W., & Spiers, A. ( 2008 ). Chapter 4 microbial distribution in soils: Physics and scaling. In (Vol. 100, p. 81 – 121 ). Academic Press. https://doi.org/10.1016/S0065-2113(08)00604-4
dc.identifier.citedreferenceZent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115 ( 2 ), E00E14. https://doi.org/10.1029/2009JE003420
dc.identifier.citedreferenceZent, A. P., Hecht, M. H., Hudson, T. L., Wood, S. E., & Chevrier, V. F. ( 2016 ). A revised calibration function and results for the Phoenix mission TECP relative humidity sensor. Journal of Geophysical Research: Planets, 121 ( 4 ), 626 – 651. https://doi.org/10.1002/2015JE004933
dc.identifier.citedreferenceAoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. ( 2019 ). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124 ( 12 ), 3482 – 3497. https://doi.org/10.1029/2019JE006109
dc.identifier.citedreferenceAzua-Bustos, A., Caro-Lara, L., & Vicuña, R. ( 2015 ). Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environmental Microbiology Reports, 7 ( 3 ), 388 – 394. https://doi.org/10.1111/1758-2229.12261
dc.identifier.citedreferenceBanfield, D., Stern, J., Davila, A., Johnson, S. S., Brain, D., Wordsworth, R., et al. (Eds.) ( 2020 ). Mepag (2020), Mars scientific goals, objectives, investigations, and priorities: 2020 (white paper), (White paper posted March, 2020 by the Mars exploration program analysis group (MEPAG). Retrieved from https://mepag.jpl.nasa.gov/reports.cfm
dc.identifier.citedreferenceBöhm, C., Reyers, M., Schween, J. H., & Crewell, S. ( 2020 ). Water vapor variability in the Atacama Desert during the 20th century. Global and Planetary Change, 190, 103192. https://doi.org/10.1016/j.gloplacha.2020.103192
dc.identifier.citedreferenceBuck, A. L. ( 1981 ). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20 ( 12 ), 1527 – 1532. https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2
dc.identifier.citedreferenceCáCeres, L., Gómez-Silva, B., Garró, X., RodríGuez, V., Monardes, V., & McKay, C. P. ( 2007 ). Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. Journal of Geophysical Research, 112 ( G4 ), G04S14. https://doi.org/10.1029/2006JG000344
dc.identifier.citedreferenceChatain, A., Spiga, A., Banfield, D., Forget, F., & Murdoch, N. ( 2021 ). Seasonal variability of the daytime and nighttime atmospheric turbulence experienced by InSight on Mars. Geophysical Research Letters, 48 ( 22 ), e95453. https://doi.org/10.1029/2021GL095453
dc.identifier.citedreferenceChoe, Y.-H., Kim, M., & Lee, Y. K. ( 2021 ). Distinct microbial communities in adjacent rock and soil substrates on a high arctic polar desert. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.607396
dc.identifier.citedreferenceChristensen, P. R., Anderson, D. L., Chase, S. C., Clark, R. N., Kieffer, H. H., Malin, M. C., et al. ( 1992 ). Thermal emission spectrometer experiment: Mars observer mission. Journal of Geophysical Research, 97 ( E5 ), 7719 – 7734. https://doi.org/10.1029/92JE00453
dc.identifier.citedreferenceClancy, R. T., Grossman, A. W., & Muhleman, D. O. ( 1992 ). Mapping Mars water vapor with the very large array. Icarus, 100 ( 1 ), 48 – 59. https://doi.org/10.1016/0019-1035(92)90017-2
dc.identifier.citedreferenceClancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Rudy, D. J., Billawala, Y. N., et al. ( 1996 ). Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate? Icarus, 122 ( 1 ), 36 – 62. https://doi.org/10.1006/icar.1996.0108
dc.identifier.citedreferenceConrath, B., Curran, R., Hanel, R., Kunde, V., Maguire, W., Pearl, J., et al. ( 1973 ). Atmospheric and surface properties of Mars obtained by infrared spectroscopy on mariner 9. Journal of Geophysical Research, 78 ( 20 ), 4267 – 4278. https://doi.org/10.1029/JB078i020p04267
dc.identifier.citedreferenceEncrenaz, T., Lellouch, E., Cernicharo, J., Paubert, G., & Gulkis, S. ( 1995 ). A tentative detection of the 183-GHz water vapor line in the Martian atmosphere: Constraints upon the H 2 O abundance and vertical distribution. Icarus, 113 ( 1 ), 110 – 118. https://doi.org/10.1006/icar.1995.1009
dc.identifier.citedreferenceEncrenaz, T., Lellouch, E., Paubert, G., & Gulkis, S. ( 2001 ). The water vapor vertical distribution on mars from millimeter transitions of HDO and H 2 18 O. Planetary and Space Science, 49 ( 7 ), 731 – 741. https://doi.org/10.1016/S0032-0633(01)00009-5
dc.identifier.citedreferenceEncrenaz, T., Melchiorri, R., Fouchet, T., Drossart, P., Lellouch, E., Gondet, B., et al. ( 2005 ). A mapping of Martian water sublimation during early northern summer using OMEGA/Mars Express. Astronomy and Astrophysics, 441 ( 3 ), L9 – L12. https://doi.org/10.1051/0004-6361:200500171
dc.identifier.citedreferenceFarmer, C. B., Davies, D. W., Holland, A. L., Laporte, D. D., & Doms, P. E. ( 1977 ). Mars: Water vapor observations from the Viking orbiters. Journal of Geophysical Research, 82 ( B28 ), 4225 – 4248. https://doi.org/10.1029/JS082i028p04225
dc.identifier.citedreferenceFedorova, A., Korablev, O., Bertaux, J.-L., Rodin, A., Kiselev, A., & Perrier, S. ( 2006 ). Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. Journal of Geophysical Research: Planets, 111 ( E9 ), E09S08. https://doi.org/10.1029/2006JE002695
dc.identifier.citedreferenceFedorova, A., Montmessin, F., Korablev, O., Lefèvre, F., Trokhimovskiy, A., & Bertaux, J.-L. ( 2021 ). Multi-Annual monitoring of the water vapor vertical distribution on Mars by SPICAM on Mars express. Journal of Geophysical Research: Planets, 126 ( 1 ), e06616. https://doi.org/10.1029/2020JE006616
dc.identifier.citedreferenceFedorova, A., Rodin, A. V., & Baklanova, I. V. ( 2004 ). MAWD observations revisited: Seasonal behavior of water vapor in the Martian atmosphere. Icarus, 171 ( 1 ), 54 – 67. https://doi.org/10.1016/j.icarus.2004.04.017
dc.identifier.citedreferenceFischer, E., Martínez, G. M., Rennó, N. O., Tamppari, L. K., & Zent, A. P. ( 2019 ). Relative humidity on Mars: New results from the Phoenix TECP sensor. Journal of Geophysical Research: Planets, 124 ( 11 ), 2780 – 2792. https://doi.org/10.1029/2019JE006080
dc.identifier.citedreferenceFouchet, T., Lellouch, E., Ignatiev, N. I., Forget, F., Titov, D. V., Tschimmel, M., et al. ( 2007 ). Martian water vapor: Mars express PFS/LW observations. Icarus, 190 ( 1 ), 32 – 49. https://doi.org/10.1016/j.icarus.2007.03.003
dc.identifier.citedreferenceGomez-Elvira, J. ( 2013 ). Mars Science Laboratory rover environmental monitoring station edr data v1.0 [Dataset]. NASA. https://doi.org/10.17189/1523032
dc.identifier.citedreferenceGómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., et al. ( 2012 ). REMS: The environmental sensor suite for the Mars Science Laboratory rover. Space Science Reviews, 170 ( 1–4 ), 583 – 640. https://doi.org/10.1007/s11214-012-9921-1
dc.identifier.citedreferenceHarri, A. M., Genzer, M., Kemppinen, O., Gomez-Elvira, J., Haberle, R., Polkko, J., et al. ( 2014 ). Mars Science Laboratory relative humidity observations: Initial results. Journal of Geophysical Research: Planets, 119 ( 9 ), 2132 – 2147. https://doi.org/10.1002/2013JE004514
dc.identifier.citedreferenceHeavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., et al. ( 2018 ). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy, 2, 126 – 132. https://doi.org/10.1038/s41550-017-0353-4
dc.identifier.citedreferenceHieta, M., Genzer, M., Polkko, J., Jaakonaho, I., Tabandeh, S., Lorek, A., et al. ( 2022 ). MEDA HS: Relative humidity sensor for the Mars 2020 Perseverance rover. Planetary and Space Science, 223, 105590. https://doi.org/10.1016/j.pss.2022.105590
dc.identifier.citedreferenceImre Friedmann, E. ( 1982 ). Endolithic microorganisms in the Antarctic cold desert. Science, 215 ( 4536 ), 1045 – 1053. https://doi.org/10.1126/science.215.4536.1045
dc.identifier.citedreferenceJakosky, B. M. ( 1985 ). The seasonal cycle of water on Mars. Space Science Reviews, 41 ( 1–2 ), 131 – 200. https://doi.org/10.1007/BF00241348
dc.identifier.citedreferenceJakosky, B. M., & Farmer, C. B. ( 1982 ). The seasonal and global behavior of water vapor in the Mars atmosphere—Complete global results of the Viking atmospheric water detector experiment. Journal of Geophysical Research, 87 ( B4 ), 2999 – 3019. https://doi.org/10.1029/JB087iB04p02999
dc.identifier.citedreferenceJakosky, B. M., & Haberle, R. M. ( 1992 ). In M. George (Ed.), The seasonal behavior of water on Mars (pp. 969 – 1016 ).
dc.identifier.citedreferenceJakosky, B. M., Zent, A. P., & Zurek, R. W. ( 1997 ). The Mars water cycle: Determining the role of exchange with the regolith. Icarus, 130 ( 1 ), 87 – 95. https://doi.org/10.1006/icar.1997.5799
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.