Show simple item record

MESSENGER Observations of Reconnection in Mercury’s Magnetotail Under Strong IMF Forcing

dc.contributor.authorZhong, Jun
dc.contributor.authorLee, Lou-Chuang
dc.contributor.authorSlavin, James A.
dc.contributor.authorZhang, Hui
dc.contributor.authorWei, Yong
dc.date.accessioned2023-03-03T21:11:03Z
dc.date.available2024-03-03 16:11:01en
dc.date.available2023-03-03T21:11:03Z
dc.date.issued2023-02
dc.identifier.citationZhong, Jun; Lee, Lou-Chuang ; Slavin, James A.; Zhang, Hui; Wei, Yong (2023). "MESSENGER Observations of Reconnection in Mercury’s Magnetotail Under Strong IMF Forcing." Journal of Geophysical Research: Space Physics 128(2): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/175942
dc.description.abstractThe MESSENGER spacecraft typically crossed Mercury’s magnetotail current sheet relatively close to the planet, that is, less than 2.5 RM (planet radius; 2,440 km). Magnetometer measurements are used to detect active reconnection events by identifying the quadrupole Hall magnetic field signatures that form about X-lines. Statistical analyses of the 51 active reconnection events detected in this manner indicate that they occur most frequently on the duskside and typically at a mean altitude greater than 1.5 RM. In contrast, the dawnside events occur at altitudes of ∼1 RM. In addition, a higher recurrence rate of flux ropes formed in the Hall region was observed on the dawnside. Applying the Kan-Lee solar wind-magnetosphere coupling function confirmed that these near-tail reconnection events at Mercury are observed under strong forcing by the interplanetary magnetic field. We further propose that the reconnection-driven nightside magnetosphere-planet interaction is characterized by a pronounced dawn-dusk asymmetry and may significantly influence the near-Mercury space environment.Key PointsFirst statistical survey of near-tail reconnection events under strong interplanetary magnetic field (IMF) forcing at MercuryMore reconnection events were observed on the duskside and they were located farther down the tail than on the dawnsideMultiple flux rope events formed in Hall region were observed most frequently on the dawnside
dc.publisherAmerican Geophysical Union
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetic reconnection
dc.subject.othermagnetotail
dc.subject.othermagnetosphere
dc.subject.otherMercury
dc.subject.otherdawn-dusk asymmetry
dc.titleMESSENGER Observations of Reconnection in Mercury’s Magnetotail Under Strong IMF Forcing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175942/1/jgra57639.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175942/2/jgra57639_am.pdf
dc.identifier.doi10.1029/2022JA031134
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., Tanskanen, E. I., Hesse, M., Owen, C. J., Dunlop, M. W., Imber, S., et al. ( 2005 ). Cluster observations of traveling compression regions in the near-tail. Journal of Geophysical Research, 110, A06207. https://doi.org/10.1029/2004JA010878
dc.identifier.citedreferenceRong, Z. J., Ding, Y., Slavin, J. A., Zhong, J., Poh, G., Sun, W. J., et al. ( 2018 ). The magnetic field structure of Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 123, 548 – 566. https://doi.org/10.1002/2017JA024923
dc.identifier.citedreferenceSaito, Y., Delcourt, D., Hirahara, M., Barabash, S., Andre, N., Takashima, T., et al. ( 2021 ). Pre-flight calibration and near-Earth commissioning results of the Mercury plasma particle experiment (MPPE) onboard MMO (Mio). Space Science Reviews, 217 ( 5 ), 70. https://doi.org/10.1007/s11214-021-00839-2
dc.identifier.citedreferenceSee, V., Jardine, M., Vidotto, A. A., Petit, P., Marsden, S. C., Jeffers, S. V., & do Nascimento, J. D. ( 2014 ). The effects of stellar winds on the magnetospheres and potential habitability of exoplanets. A&A, 570, A99. https://doi.org/10.1051/0004-6361/201424323
dc.identifier.citedreferenceShay, M. A., & Swisdak, M. ( 2004 ). Three-species collisionless reconnection: Effect of O+ on magnetotail reconnection. Physical Review Letters, 93 ( 17 ), 175001. https://doi.org/10.1103/PhysRevLett.93.175001
dc.identifier.citedreferenceSlavin, J. A., Acuna, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., et al. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 – 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., et al. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 – 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., et al. ( 2012 ). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. Journal of Geophysical Research, 117, A01215. https://doi.org/10.1029/2011JA016900
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1979 ). The effect of erosion on the solar wind stand-off distance at Mercury. Journal of Geophysical Research, 84 ( A5 ), 2076 – 2082. https://doi.org/10.1029/JA084iA05p02076
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., & Raines, J. M. ( 2021 ). A Dungey cycle in the life of Mercury’s magnetosphere. In R. Maggiolo, N. André, H. Hasegawa, D. T. Welling, Y. Zhang, & L. J. Paxton (Eds.), Magnetospheres in the solar system. American Geophysical Union.
dc.identifier.citedreferenceSlavin, J. A., Middleton, H. R., Raines, J. M., Jia, X., Zhong, J., Sun, W., et al. ( 2019 ). MESSENGER observations of disappearing dayside magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 6613 – 6635. https://doi.org/10.1029/2019JA026892
dc.identifier.citedreferenceSmith, A. W., Jackman, C. M., Frohmaier, C. M., Coxon, J. C., Slavin, J. A., & Fear, R. C. ( 2018 ). Evaluating single-spacecraft observations of planetary magnetotails with simple Monte Carlo simulations: 1. Spatial distributions of the neutral line. Journal of Geophysical Research: Space Physics, 123, 10109 – 110123. https://doi.org/10.1029/2018JA025958
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Poh, G. K., & Fear, R. C. ( 2017 ). Flux ropes in the Hermean magnetotail: Distribution, properties, and formation. Journal of Geophysical Research: Space Physics, 122, 8136 – 8153. https://doi.org/10.1002/2017JA024295
dc.identifier.citedreferenceSonnerup, B. U. Ö. ( 1974 ). Magnetopause reconnection rate. Journal of Geophysical Research, 79 ( 10 ), 1546 – 1549. https://doi.org/10.1029/JA079i010p01546
dc.identifier.citedreferenceSonnerup, B. U. O. ( 1979 ). Magnetic field reconnection. In L. J. Lanzerotti, C. F. Kennel, & E. N. Parker (Eds.), Solar system plasma Physics III. (pp. 45 – 108 ). North Holland.
dc.identifier.citedreferenceSonnerup, B. U. Ö., & Scheible, M. ( 1998 ). Minimum and maximum variance analysis. In G. Paschmann, & P. W. Daly (Eds.), Analysis methods for multi-spacecraft data (pp. 185 – 220 ). International Space Science Institute.
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 121, 7590 – 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Chen, Y., DiBraccio, G. A., Raines, J. M., et al. ( 2020 ). MESSENGER observations of Mercury’s nightside magnetosphere under extreme solar wind conditions: Reconnection-generated structures and steady convection. Journal of Geophysical Research: Space Physics, 125, e2019JA027490. https://doi.org/10.1029/2019JA027490
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Smith, A. W., Dewey, R. M., Poh, G. K., Jia, X., et al. ( 2020 ). Flux transfer event Showers at Mercury: Dependence on plasma β and magnetic shear and their contribution to the Dungey cycle. Geophysical Research Letters, 47, e2020GL089784. https://doi.org/10.1029/2020GL089784
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., et al. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 – 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceWinslow, R. M., Johnson, C. L., Anderson, B. J., Gershman, D. J., Raines, J. M., Lillis, R. J., et al. ( 2014 ). Mercury’s surface magnetic field determined from proton-reflection magnetometry. Geophysical Research Letters, 41, 4463 – 4470. https://doi.org/10.1002/2014GL060258
dc.identifier.citedreferenceZhao, J.-T., Zong, Q.-G., Slavin, J. A., Sun, W.-J., Zhou, X.-Z., Yue, C., et al. ( 2020a ). Proton properties in Mercury’s magnetotail: A statistical study. Geophysical Research Letters, 47, e2020GL088075. https://doi.org/10.1029/2020GL088075
dc.identifier.citedreferenceZhong, J., Lee, L. C., Wang, X. G., Pu, Z. Y., He, J. S., Wei, Y., & Wan, W. X. ( 2020b ). Multiple X-line reconnection observed in Mercury’s magnetotail driven by an interplanetary coronal mass ejection. The Astrophysical Journal Letters, 893 ( 1 ), L11. https://doi.org/10.3847/2041-8213/ab8380
dc.identifier.citedreferenceZhong, J., Wan, W. X., Slavin, J. A., Wei, Y., Lin, R. L., Chai, L. H., et al. ( 2015 ). Mercury’s three-dimensional asymmetric magnetopause. Journal of Geophysical Research: Space Physics, 120, 7658 – 7671. https://doi.org/10.1002/2015JA021425
dc.identifier.citedreferenceZhong, J., Wei, Y., Lee, L. C., He, J. S., Slavin, J. A., Pu, Z. Y., et al. ( 2020b ). Formation of macroscale flux transfer events at Mercury. The Astrophysical Journal Letters, 893 ( 1 ), L18. https://doi.org/10.3847/2041-8213/ab8566
dc.identifier.citedreferenceZhong, J., Wei, Y., Pu, Z. Y., Wang, X. G., Wan, W. X., Slavin, J. A., et al. ( 2018 ). MESSENGER observations of rapid and impulsive magnetic reconnection in Mercury’s magnetotail. The Astrophysical Journal Letters, 860 ( 2 ), L20. https://doi.org/10.3847/2041-8213/aaca92
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1–4 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., et al. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., et al. ( 2007 ). The energetic particle and plasma Spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1–4 ), 523 – 556. https://doi.org/10.1007/s11214-007-9272-5
dc.identifier.citedreferenceAngelopoulos, V., Artemyev, A., Phan, T. D., & Miyashita, Y. ( 2020 ). Near-Earth magnetotail reconnection powers space storms. Nature Physics, 16 ( 3 ), 317 – 321. https://doi.org/10.1038/s41567-019-0749-4
dc.identifier.citedreferenceAngelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., et al., ( 2008 ). Tail reconnection triggering substorm onset. Science, 321 ( 5891 ), 931 – 935. https://doi.org/10.1126/science.1160495
dc.identifier.citedreferenceArtemyev, A. V., Angelopoulos, V., Runov, A., & Petrokovich, A. A. ( 2016 ). Properties of current sheet thinning at x ∼− 10 to −12 RE. Journal of Geophysical Research: Space Physics, 121 ( 7 ), 6718 – 6731. https://doi.org/10.1002/2016JA022779
dc.identifier.citedreferenceChen, Y., Tóth, G., Jia, X., Slavin, J. A., Sun, W., Markidis, S., et al. ( 2019 ). Studying dawn-dusk asymmetries of Mercury’s magnetotail using MHD-EPIC simulations. Journal of Geophysical Research: Space Physics, 124, 8954 – 8973. https://doi.org/10.1029/2019JA026840
dc.identifier.citedreferenceDelcourt, D. C. ( 2013 ). On the supply of heavy planetary material to the magnetotail of Mercury. Annales Geophysicae, 31 ( 10 ), 1673 – 1679. https://doi.org/10.5194/angeo-31-1673-2013
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Azari, A. R., & Sun, W. ( 2020 ). MESSENGER observations of flow Braking and flux pileup of dipolarizations in Mercury’s magnetotail: Evidence for current wedge formation. Journal of Geophysical Research: Space Physics, 125, e2020JA028112. https://doi.org/10.1029/2020JA028112
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., et al. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDong, C., Wang, L., Hakim, A., Bhattacharjee, A., Slavin, J. A., DiBraccio, G. A., & Germaschewski, K. ( 2019 ). Global ten-moment multifluid simulations of the solar wind interaction with Mercury: From the planetary conducting core to the dynamic magnetosphere. Geophysical Research Letters, 46, 11584 – 11596. https://doi.org/10.1029/2019GL083180
dc.identifier.citedreferenceEastwood, J. P., Shay, M. A., Phan, T. D., & Øieroset, M. ( 2010 ). Asymmetry of the ion diffusion region Hall electric and magnetic fields during guide field reconnection: Observations and comparison with simulations. Physical Review Letters, 104 ( 20 ), 205001. https://doi.org/10.1103/physrevlett.104.205001
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., et al. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118, 7181 – 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11402 – 11412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceKan, J. R., & Lee, L. C. ( 1979 ). Energy coupling function and solar wind-magnetosphere dynamo. Geophysical Research Letters, 6 ( 7 ), 577 – 580. https://doi.org/10.1029/GL006i007p00577
dc.identifier.citedreferenceKorth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., et al. ( 2014 ). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER magnetometer and fast imaging plasma spectrometer observations. Journal of Geophysical Research: Space Physics, 119, 2917 – 2932. https://doi.org/10.1002/2013JA019567
dc.identifier.citedreferenceLee, L. C., & Lee, K. H. ( 2020 ). Fluid and kinetic aspects of magnetic reconnection and some related magnetospheric phenomena. Reviews of Modern Plasma Physics, 4 ( 1 ), 9. https://doi.org/10.1007/s41614-020-00045-7
dc.identifier.citedreferenceLindsay, S. T., James, M. K., Bunce, E. J., Imber, S. M., Korth, H., Martindale, A., & Yeoman, T. K. ( 2016 ). MESSENGER X-ray observations of magnetosphere–surface interaction on the nightside of Mercury. Planetary and Space Science, 125, 72 – 79. https://doi.org/10.1016/j.pss.2016.03.005
dc.identifier.citedreferenceLiu, Y.-H., Li, T. C., Hesse, M., Sun, W. J., Liu, J., Burch, J., et al. ( 2019 ). Three-dimensional magnetic reconnection with a spatially Confined X-line extent: Implications for dipolarizing flux bundles and the dawn-dusk asymmetry. Journal of Geophysical Research: Space Physics, 124, 2819 – 2830. https://doi.org/10.1029/2019JA026539
dc.identifier.citedreferenceLu, S., Pritchett, P. L., Angelopoulos, V., & Artemyev, A. V. ( 2018 ). Formation of dawn-dusk asymmetry in Earth’s magnetotail thin current sheet: A three-dimensional particle-in-cell simulation. Journal of Geophysical Research: Space Physics, 123, 2801 – 2814. https://doi.org/10.1002/2017JA025095
dc.identifier.citedreferenceLuhmann, J. G., Russell, C. T., & Tsyganenko, N. A. ( 1998 ). Disturbances in Mercury’s magnetosphere: Are the Mariner 10 “substorms” simply driven? Journal of Geophysical Research, 103 ( A5 ), 9113 – 9119. https://doi.org/10.1029/97JA03667
dc.identifier.citedreferenceMilillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., et al. ( 2020 ). Investigating Mercury’s environment with the two-spacecraft BepiColombo mission. Space Science Reviews, 216 ( 5 ), 93. https://doi.org/10.1007/s11214-020-00712-8
dc.identifier.citedreferenceNagai, T., Fujimoto, M., Nakamura, R., Baumjohann, W., Ieda, A., Shinohara, I., et al. ( 2005 ). Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail. Journal of Geophysical Research, 110, A09208. https://doi.org/10.1029/2005JA011207
dc.identifier.citedreferenceNagai, T., Shinohara, I., & Zenitani, S. ( 2015 ). The dawn-dusk length of the X line in the near-Earth magnetotail: Geotail survey in 1994–2014. Journal of Geophysical Research: Space Physics, 120, 8762 – 8773. https://doi.org/10.1002/2015JA021606
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.-J., et al. ( 2017a ). Coupling between Mercury and its nightside magnetosphere: Cross-tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 – 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.-J., et al. ( 2017b ). Mercury’s cross-tail current sheet: Structure, X-line location and stress balance. Geophysical Research Letters, 44, 678 – 686. https://doi.org/10.1002/2016GL071612
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., et al. ( 2013 ). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. Journal of Geophysical Research: Space Physics, 118, 1604 – 1619. https://doi.org/10.1029/2012JA018073
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Zurbuchen, T. H., Gloeckler, G., Anderson, B. J., Baker, D. N., et al. ( 2011 ). MESSENGER observations of the plasma environment near Mercury. Planetary and Space Science, 59 ( 15 ), 2004 – 2015. https://doi.org/10.1016/j.pss.2011.02.004
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.