Show simple item record

Can Hydrological Models Benefit From Using Global Soil Moisture, Evapotranspiration, and Runoff Products as Calibration Targets?

dc.contributor.authorMei, Yiwen
dc.contributor.authorMai, Juliane
dc.contributor.authorDo, Hong Xuan
dc.contributor.authorGronewold, Andrew
dc.contributor.authorReeves, Howard
dc.contributor.authorEberts, Sandra
dc.contributor.authorNiswonger, Richard
dc.contributor.authorRegan, R. Steven
dc.contributor.authorHunt, Randall J.
dc.date.accessioned2023-03-03T21:11:06Z
dc.date.available2024-03-03 16:11:04en
dc.date.available2023-03-03T21:11:06Z
dc.date.issued2023-02
dc.identifier.citationMei, Yiwen; Mai, Juliane; Do, Hong Xuan; Gronewold, Andrew; Reeves, Howard; Eberts, Sandra; Niswonger, Richard; Regan, R. Steven; Hunt, Randall J. (2023). "Can Hydrological Models Benefit From Using Global Soil Moisture, Evapotranspiration, and Runoff Products as Calibration Targets?." Water Resources Research 59(2): n/a-n/a.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/175943
dc.description.abstractHydrological models are usually calibrated to in-situ streamflow observations with reasonably long and uninterrupted records. This is challenging for poorly gage or ungaged basins where such information is not available. Even for gaged basins, the single-objective calibration to gaged streamflow cannot guarantee reliable forecasts because, as has been documented elsewhere, the inverse problem is mathematically ill-posed. Therefore, the inclusion of other observations, and the reproduction of other hydrological variables beyond streamflow, become critical components of accurate hydrological forecasting. In this study, six single- and multi-objective model calibration schemes based on different combinations of gaged streamflow, global-scale gridded soil moisture, actual evapotranspiration (ET), and runoff products are used for the calibration of a process-based hydrological model for 20 catchments located within the Lake Michigan watershed, of the Laurentian Great Lakes. Results show that the addition of gridded soil moisture to gaged streamflow in model calibration improves the ET simulation performance for most of the catchments, leading to the overall best-performing models. The monthly streamflow simulation performance for the experiments using gridded runoff products to inform the model is outperformed by those using the gaged streamflow, but the discrepancy is mitigated with increasing catchment scale. A new visualization method that effectively synthesizes model performance for the simulations of streamflow, soil moisture, and ET was also proposed. Based on the method, it is revealed that the streamflow simulation performance is relatively weak for baseflow-dominated catchments; overall, the 20 catchment models simulate streamflow and ET better than soil moisture.Key PointsUsing soil moisture in addition to streamflow to constrain hydrological model calibration improves the evapotranspiration simulationThe global gridded runoff products show higher potential in streamflow calibration for larger catchmentsTernary diagram is used to visualize the performances of three hydrological variables considering all possible variable importance
dc.publisherNASA Socioeconomic Data and Applications Center (SEDAC)
dc.publisherWiley Periodicals, Inc.
dc.subject.othermulti-objective calibration
dc.subject.otherhydrological modeling
dc.subject.othersoil moisture
dc.subject.otherevapotranspiration
dc.subject.otherrunoff
dc.subject.otherternary diagram
dc.titleCan Hydrological Models Benefit From Using Global Soil Moisture, Evapotranspiration, and Runoff Products as Calibration Targets?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175943/1/wrcr26460_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175943/2/wrcr26460.pdf
dc.identifier.doi10.1029/2022WR032064
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferenceMostafaie, A., Forootan, E., Safari, A., & Schumacher, M. ( 2018 ). Comparing multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data. Computational Geosciences, 22 ( 3 ), 789 – 814. https://doi.org/10.1007/s10596-018-9726-8
dc.identifier.citedreferenceLiu, J., Liu, Q., & Yang, H. ( 2016 ). Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecological Indicator, 60, 434 – 441. https://doi.org/10.1016/j.ecolind.2015.07.019
dc.identifier.citedreferenceLivneh, B., & Lettenmaier, D. P. ( 2012 ). Multi-criteria parameter estimation for the unified land model. Hydrology and Earth System Sciences, 16 ( 8 ), 3029 – 3048. https://doi.org/10.5194/hess-16-3029-2012
dc.identifier.citedreferenceLópez López, P. L., Sutanudjaja, E. H., Schellekens, J., Sterk, G., & Bierkens, M. F. P. ( 2017 ). Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrology and Earth System Sciences, 21 ( 6 ), 3125 – 3144. https://doi.org/10.5194/hess-21-3125-2017
dc.identifier.citedreferenceLuojus, K., Pullianin, J., Takala, M., Lemmityinen, J., Kangwa, M., Smolander, T., et al. ( 2013 ). Global snow monitoring for climate research: Algorithm Theoretical basis document (ATBD) – SWE-algorithm. European Space Agency.
dc.identifier.citedreferenceMai, J., Shen, H., Tolson, B. A., Gaborit, E., Arsenault, R., Craig, J. R., et al. ( 2022 ). The Great lakes runoff intercomparison project Phase 4: The Great lakes (GRIP-GL). Hydrology and Earth System Sciences, 26 ( 13 ), 3537 – 3572. https://doi.org/10.5194/hess-26-3537-2022
dc.identifier.citedreferenceMarkstrom, S. L., Niswonger, R. G., Steve Regan, R., Prudic, D. E., & Barlow, P. M. ( 2008 ). GSFLOW-coupled ground-water and surface-water FLOW model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005). U.S. Geological Survey Techniques and Methods, 6–D1, 240.
dc.identifier.citedreferenceMarkstrom, S. L., Steve Regan, R., Viger, R. J., Webb, R. M., Payn, R. A., & LaFontaine, J. H. ( 2015 ). PRMS-IV, the precipitation-runoff modeling system, version 4. U.S. Geological Survey Techniques and Methods, 6–B7, 158.
dc.identifier.citedreferenceMartens, B., Miralles, D. G., Lievens, H., vander Schalie, R., de Jeu, R. A. M., Fernandez-Prieto, D., et al. ( 2017 ). GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10 ( 5 ), 1903 – 1925. https://doi.org/10.5194/gmd-10-1903-2017
dc.identifier.citedreferenceMatott, L. S. ( 2016 ). OSTRICH–An optimization software Toolkit for research involving computational Heuristics. State University of New York at Buffalo.
dc.identifier.citedreferenceMcMillan, H. K., Westerberg, I. K., & Krueger, T. ( 2018 ). Hydrological data uncertainty and its implications. WIREs Water, 5 ( 6 ), e1319. https://doi.org/10.1002/wat2.1319
dc.identifier.citedreferenceMei, Y., Reeves, H., & Mai, J. ( 2022 ). PRMS model archive for selected catchments in the Lake Michigan basin used in eamination of multi-objective model calibration: U.S. Geological Survey data release. https://doi.org/10.5066/P9DOVISZ
dc.identifier.citedreferenceMenne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. ( 2012 ). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29 ( 7 ), 897 – 910. https://doi.org/10.1175/jtech-d-11-00103.1
dc.identifier.citedreferenceMiralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. J. ( 2011 ). Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15 ( 2 ), 453 – 469. https://doi.org/10.5194/hess-15-453-2011
dc.identifier.citedreferenceO, S., & Orth, R. ( 2021 ). Global soil moisture data derived through machine learning trained with in-situ measurements. Scientific Data, 8 ( 1 ), 170. https://doi.org/10.1038/s41597-021-00964-1
dc.identifier.citedreferencePriestley, C. H. B., & Taylor, R. J. ( 1972 ). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100 ( 2 ), 81 – 92. https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
dc.identifier.citedreferenceRajib, A., Evenson, G. R., Golden, H. E., & Lane, C. R. ( 2018 ). Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters. Journal of Hydrology, 567, 668 – 683. https://doi.org/10.1016/j.jhydrol.2018.10.024
dc.identifier.citedreferenceRajib, M. A., Merwade, V., & Yu, Z. ( 2016 ). Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. Journal of Hydrology, 536, 192 – 207. https://doi.org/10.1016/j.jhydrol.2016.02.037
dc.identifier.citedreferenceRakovec, O., Kumar, R., Attinger, S., & Samaniego, L. ( 2016 ). Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resources Research, 52 ( 10 ), 7779 – 7792. https://doi.org/10.1002/2016wr019430
dc.identifier.citedreferenceRegan, R. S., Juracek, K., Hay, L., Markstrom, S., Viger, R., Driscoll, J., et al. ( 2019 ). The U. S. Geological Survey National Hydrologic Model infrastructure: Rationale, description, and application of a watershed-scale model for the conterminous United States. Environmental Modelling and Software, 111, 192 – 203. https://doi.org/10.1016/j.envsoft.2018.09.023
dc.identifier.citedreferenceRientjes, T. H. M., Muthuwatta, L., Bos, M., Booij, M., & Bhatti, H. ( 2013 ). Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration. Journal of Hydrology, 505, 276 – 290. https://doi.org/10.1016/j.jhydrol.2013.10.006
dc.identifier.citedreferenceThornton, M. M., Shrestha, R., Kao, S. C., Wei, Y., & Wilson, B. E. ( 2021 ). Gridded daily weather data for North America with comprehensive uncertainty quantification. Scientific Data, 8 ( 1 ), 190. https://doi.org/10.1038/s41597-021-00973-0
dc.identifier.citedreferenceThornton, P. E., Running, S. W., & White, M. A. ( 1997 ). Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology, 190 ( 3 ), 214 – 251. https://doi.org/10.1016/s0022-1694(96)03128-9
dc.identifier.citedreferenceTolson, B. A., & Shoemaker, C. A. ( 2007 ). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43 ( 1 ). https://doi.org/10.1029/2005wr004723
dc.identifier.citedreferenceValente, F., David, J. S., & Gash, J. H. C. ( 1997 ). Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology, 190 ( 1 ), 141 – 162. https://doi.org/10.1016/s0022-1694(96)03066-1
dc.identifier.citedreferenceVan Loon, A. F., & Laaha, G. ( 2015 ). Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology, 526, 3 – 14. https://doi.org/10.1016/j.jhydrol.2014.10.059
dc.identifier.citedreferenceWolock, D. M. ( 2003 ). Base-flow index grid for the conterminous United States. U.S. Geological Survey data release, https://doi.org/10.3133/ofr03263
dc.identifier.citedreferenceXie, K., Liu, P., Zhang, J., Wang, G., Zhang, X., & Zhou, L. ( 2021 ). Identification of spatially distributed parameters of hydrological models using the dimension-adaptive key grid calibration strategy. Journal of Hydrology, 598, 125772. https://doi.org/10.1016/j.jhydrol.2020.125772
dc.identifier.citedreferenceXu, S., Frey, S., Erler, A., Khader, O., Berg, S., Hwang, H., et al. ( 2021 ). Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model. Journal of Hydrology, 594, 125911. https://doi.org/10.1016/j.jhydrol.2020.125911
dc.identifier.citedreferenceXu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., et al. ( 2019 ). Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology, 578, 124105. https://doi.org/10.1016/j.jhydrol.2019.124105
dc.identifier.citedreferenceYassin, F., Razavi, S., Wheater, H., Sapriza-Azuri, G., Davison, B., & Pietroniro, A. ( 2017 ). Enhanced identification of a hydrologic model using streamflow and satellite water storage data: A multicriteria sensitivity analysis and optimization approach. Hydrological Processes, 31 ( 19 ), 3320 – 3333. https://doi.org/10.1002/hyp.11267
dc.identifier.citedreferenceAsadzadeh, M., & Tolson, B. ( 2013 ). Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization. Engineering Optimization, 45 ( 12 ), 1489 – 1509. https://doi.org/10.1080/0305215x.2012.748046
dc.identifier.citedreferenceBai, P. X. L., & Liu, C. ( 2018 ). Improving hydrological simulations by incorporating GRACE data for model calibration. Journal of Hydrology, 557, 291 – 304. https://doi.org/10.1016/j.jhydrol.2017.12.025
dc.identifier.citedreferenceBeck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., & Bruijnzeel, L. A. ( 2016 ). Global-scale regionalization of hydrologic model parameters. Water Resources Research, 52 ( 5 ), 3599 – 3622. https://doi.org/10.1002/2015wr018247
dc.identifier.citedreferenceBeven, K. ( 2006 ). A manifesto for the equifinality thesis. Journal of Hydrology, 320 ( 1 ), 18 – 36. https://doi.org/10.1016/j.jhydrol.2005.07.007
dc.identifier.citedreferenceBrown de Colstoun, E. C., Huang, C., Wang, J. C., Tilton, B., Tan, J., Philips, S., et al. ( 2017 ). Documentation for the global Man-made impervious surface (GMIS) dataset from Landsat. NASA Socioeconomic Data and Applications Center (SEDAC).
dc.identifier.citedreferenceChampagne, O., Arain, M. A., Leduc, M., Coulibaly, P., & McKenzie, S. ( 2020 ). Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario. Journal of Hydrology, 24 ( 6 ), 3077 – 3096. https://doi.org/10.5194/hess-24-3077-2020
dc.identifier.citedreferenceChristiansen, D. E., Walker, J. F., & Hunt, R. J. ( 2014 ). Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States, U.S. Geological Survey Scientific Investigations Report 2014-5175.
dc.identifier.citedreferenceCunge, J. A. ( 1969 ). On the subject of a flood propagation computation method (Muskingum method). Journal of Hydraulic Research, 7 ( 2 ), 205 – 230. https://doi.org/10.1080/00221686909500264
dc.identifier.citedreferenceDembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariethoz, G., & Schaefli, B. ( 2020 ). Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets. Water Resources Research, 56 ( 1 ), e2019WR026085. https://doi.org/10.1029/2019wr026085
dc.identifier.citedreferenceDemirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L., & Stisen, S. ( 2018 ). Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrology and Earth System Sciences, 22 ( 2 ), 1299 – 1315. https://doi.org/10.5194/hess-22-1299-2018
dc.identifier.citedreferenceDiMiceli, C. ( 2015 ). MOD44B MODIS/Terra vegetation continuous Fields yearly L3 global 250m SIN grid V006 [Dataset]. NASA EOSDIS Land Processes DAAC. Retrieved from https://lpdaac.usgs.gov/products/mod44bv006/
dc.identifier.citedreferenceDo, H. X., Gudmundsson, L., Leonard, M., & Westra, S. ( 2018 ). The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata. Earth System Science Data, 10 ( 2 ), 765 – 785. https://doi.org/10.5194/essd-10-765-2018
dc.identifier.citedreferenceFalcone, J. A. ( 2017 ). U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences. U.S. Geological Survey data release, https://doi.org/10.5066/F7HQ3XS4
dc.identifier.citedreferenceFry, L. M., Gronewold, A. D., Fortin, V., Buan, S., Clites, A. H., Luukkonen, C., et al. ( 2014 ). The Great lakes runoff Intercomparison project Phase 1: Lake Michigan (GRIP-M). Journal of Hydrology, 519, 3448 – 3465. https://doi.org/10.1016/j.jhydrol.2014.07.021
dc.identifier.citedreferenceGardner, M. A., Morton, C. G., Huntington, J. L., Niswonger, R. G., & Henson, W. R. ( 2018 ). Input data processing tools for the integrated hydrologic model GSFLOW. Environmental Modelling & Software, 109, 41 – 53. https://doi.org/10.1016/j.envsoft.2018.07.020
dc.identifier.citedreferenceGhiggi, G., Humphrey, V., Seneviratne, S. I., & Gudmundsson, L. ( 2019 ). Grun: An observation-based global gridded runoff dataset from 1902 to 2014. Hydrology and Earth System Sciences, 11 ( 4 ), 1655 – 1674. https://doi.org/10.5194/essd-11-1655-2019
dc.identifier.citedreferenceGupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. ( 2009 ). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377 ( 1 ), 80 – 91. https://doi.org/10.1016/j.jhydrol.2009.08.003
dc.identifier.citedreferenceHay, L. E., Leavesley, G. H., Clark, M. P., Markstrom, S. L., Viger, R. J., & Umemoto, M. ( 2006 ). Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin. Journal of American Water Resources Association, 42 ( 4 ), 877 – 890. https://doi.org/10.1111/j.1752-1688.2006.tb04501.x
dc.identifier.citedreferenceHe, X., Bryant, B. P., Moran, T., Mach, K. J., Wei, Z., & Freyberg, D. L. ( 2021 ). Climate-informed hydrologic modeling and policy typology to guide managed aquifer recharge. Science Advances, 7 ( 17 ), eabe6025. https://doi.org/10.1126/sciadv.abe6025
dc.identifier.citedreferenceHengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., et al. ( 2017 ). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12 ( 2 ), e0169748. https://doi.org/10.1371/journal.pone.0169748
dc.identifier.citedreferenceHerman, M. R., Nejadhashemi, A. P., Abouali, M., Hernandez-Suarez, J. S., Daneshvar, F., Zhang, Z., et al. ( 2018 ). Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. Journal of Hydrology, 556, 39 – 49. https://doi.org/10.1016/j.jhydrol.2017.11.009
dc.identifier.citedreferenceHobeichi, S., Abramowitz, G., Evans, J., & E, B. H. ( 2019 ). Linear optimal runoff aggregate (LORA): A global gridded synthesis runoff. Hydrology and Earth System Sciences, 23 ( 2 ), 851 – 870. https://doi.org/10.5194/hess-23-851-2019
dc.identifier.citedreferenceHowarth, R. J. ( 1996 ). Sources for a history of the ternary diagram. The British Journal of the History of Science, 29 ( 3 ), 337 – 356. https://doi.org/10.1017/s000708740003449x
dc.identifier.citedreferenceHuang, Q., Qin, G., Zhang, Y., Tang, Q., Liu, C., Xia, J., et al. ( 2020 ). Using remote sensing data-based hydrological model calibrations for predicting runoff in ungauged or poorly gauged catchments. Water Resources Research, 56 ( 8 ), e2020WR028205. https://doi.org/10.1029/2020wr028205
dc.identifier.citedreferenceHunt, R. J., Walker, J. F., Selbig, W. R., Westenbroek, S. M., & etSteve Regan, R. ( 2013 ). Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout lake watershed, U.S. Geological Survey.
dc.identifier.citedreferenceHunt, R. J., Feinstein, D. T., Pint, C. D., & Anderson, M. P. ( 2006 ). The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, northern Wisconsin. Journal of Hydrology, 321 ( 1–4 ), 286 – 296. https://doi.org/10.1016/j.jhydrol.2005.08.005
dc.identifier.citedreferenceHuntington, J. L., & Niswonger, R. G. ( 2012 ). Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resources Research, 48 ( 11 ), W11524. https://doi.org/10.1029/2012wr012319
dc.identifier.citedreferenceJensen, M. E., Robb, D. C. N., & Franzoy, C. E. ( 1970 ). Scheduling irrigations using climate-crop-soil data. Journal of Irrigation and Drainage Division, 96 ( 1 ), 25 – 38. https://doi.org/10.1061/jrcea4.0000699
dc.identifier.citedreferenceKnoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., & Woods, R. A. ( 2020 ). A brief analysis of conceptual model structure uncertainty using 36 models and 559 catchments. Water Resources Research, 56 ( 9 ), e2019WR025975. https://doi.org/10.1029/2019wr025975
dc.identifier.citedreferenceKunnath-Poovakka, A., Ryu, D., Renzullo, L. J., & George, B. ( 2016 ). The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. Journal of Hydrology, 535, 509 – 524. https://doi.org/10.1016/j.jhydrol.2016.02.018
dc.identifier.citedreferenceLehner, B., Verdin, K., & Jarvis, A. ( 2008 ). New global hydrography derived from spaceborne elevation data. Eos Transaction AGU, 89 ( 10 ), 93. https://doi.org/10.1029/2008eo100001
dc.identifier.citedreferenceLi, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. ( 2018 ). Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. Journal of Hydrology, 557, 897 – 909. https://doi.org/10.1016/j.jhydrol.2018.01.013
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.