Show simple item record

Respiratory virus circulation during the first year of the COVID-19 pandemic in the Household Influenza Vaccine Evaluation (HIVE) cohort

dc.contributor.authorFine, Sydney R.
dc.contributor.authorBazzi, Latifa A.
dc.contributor.authorCallear, Amy P.
dc.contributor.authorPetrie, Joshua G.
dc.contributor.authorMalosh, Ryan E.
dc.contributor.authorFoster-Tucker, Joshua E.
dc.contributor.authorSmith, Matthew
dc.contributor.authorIbiebele, Jessica
dc.contributor.authorMcDermott, Adrian
dc.contributor.authorRolfes, Melissa A.
dc.contributor.authorMonto, Arnold S.
dc.contributor.authorMartin, Emily T.
dc.date.accessioned2023-03-03T21:11:08Z
dc.date.available2024-04-03 16:11:06en
dc.date.available2023-03-03T21:11:08Z
dc.date.issued2023-03
dc.identifier.citationFine, Sydney R.; Bazzi, Latifa A.; Callear, Amy P.; Petrie, Joshua G.; Malosh, Ryan E.; Foster-Tucker, Joshua E. ; Smith, Matthew; Ibiebele, Jessica; McDermott, Adrian; Rolfes, Melissa A.; Monto, Arnold S.; Martin, Emily T. (2023). "Respiratory virus circulation during the first year of the COVID- 19 pandemic in the Household Influenza Vaccine Evaluation (HIVE) cohort." Influenza and Other Respiratory Viruses 17(3): n/a-n/a.
dc.identifier.issn1750-2640
dc.identifier.issn1750-2659
dc.identifier.urihttps://hdl.handle.net/2027.42/175944
dc.description.abstractBackgroundThe annual reappearance of respiratory viruses has been recognized for decades. COVID-19 mitigation measures taken during the pandemic were targeted at respiratory transmission and broadly impacted the burden of acute respiratory illnesses (ARIs).MethodsWe used the longitudinal Household Influenza Vaccine Evaluation (HIVE) cohort in southeast Michigan to characterize the circulation of respiratory viruses from March 1, 2020, to June 30, 2021, using RT-PCR of respiratory specimens collected at illness onset. Participants were surveyed twice during the study period, and SARS-CoV-2 antibodies were measured in serum by electrochemiluminescence immunoassay. Incidence rates of ARI reports and virus detections were compared between the study period and a preceding pre-pandemic period of similar duration.ResultsOverall, 437 participants reported a total of 772 ARIs; 42.6% had respiratory viruses detected. Rhinoviruses were the most frequent virus, but seasonal coronaviruses, excluding SARS-CoV-2, were also common. Illness reports and percent positivity were lowest from May to August 2020, when mitigation measures were most stringent. Seropositivity for SARS-CoV-2 was 5.3% in summer 2020 and increased to 11.3% in spring 2021. The incidence rate of total reported ARIs for the study period was 50% lower (95% CI: 0.5, 0.6; p < 0.001) than the incidence rate from a pre-pandemic comparison period (March 1, 2016, to June 30, 2017).ConclusionsThe burden of ARI in the HIVE cohort during the COVID-19 pandemic fluctuated, with declines occurring concurrently with the widespread use of public health measures. Rhinovirus and seasonal coronaviruses continued to circulate even when influenza and SARS-CoV-2 circulation was low.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCOVID-19
dc.subject.otherinfluenza
dc.subject.otherrespiratory virus
dc.subject.otherserological surveillance
dc.subject.otherhousehold cohort
dc.titleRespiratory virus circulation during the first year of the COVID-19 pandemic in the Household Influenza Vaccine Evaluation (HIVE) cohort
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175944/1/irv13106_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175944/2/irv13106.pdf
dc.identifier.doi10.1111/irv.13106
dc.identifier.sourceInfluenza and Other Respiratory Viruses
dc.identifier.citedreferenceEden JS, Sikazwe C, Xie R, et al. Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nat Commun. 2022; 13 ( 1 ): 2884. doi: 10.1038/s41467-022-30485-3
dc.identifier.citedreferenceChao DL, Halloran ME, Obenchain VJ, Longini IM Jr. FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput Biol. 2010; 6 ( 1 ): e1000656. doi: 10.1371/journal.pcbi.1000656
dc.identifier.citedreferenceLiu Y, Morgenstern C, Kelly J, Lowe R, CMMID COVID-19 Working Group, Jit M. The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Med. 2021; 19 ( 1 ): 40. doi: 10.1186/s12916-020-01872-8
dc.identifier.citedreferenceMalosh RE, Petrie JG, Callear A, et al. Effectiveness of influenza vaccines in the HIVE household cohort over 8 years: is there evidence of indirect protection? Clin Infect Dis. 2021; 73 ( 7 ): 1248 - 1256. doi: 10.1093/cid/ciab395
dc.identifier.citedreferenceZambon MC. Epidemiology and pathogenesis of influenza. Journal of Antimicrobial Chemotherapy. 1999; 44 ( suppl_2 ): 3 - 9. doi: 10.1093/jac/44.suppl_2.3
dc.identifier.citedreferenceChoi K, Thacker SB. Mortality during influenza epidemics in the United States, 1967-1978. Am J Public Health. 1982; 72 ( 11 ): 1280 - 1283. doi: 10.2105/AJPH.72.11.1280
dc.identifier.citedreferenceMonto AS. Occurrence of respiratory virus: time, place and person. Pediatr Infect Dis J. 2004; 23 ( 1 ): S58 - S64. doi: 10.1097/01.inf.0000108193.91607.34
dc.identifier.citedreferenceArruda E, Pitkäranta AN, Witek TJ Jr, Doyle CA, Hayden FG. Frequency and natural history of rhinovirus infections in adults during autumn. Journal of Clinical Microbiology. 1997; 35 ( 11 ): 2864 - 2868. doi: 10.1128/jcm.35.11.2864-2868.1997
dc.identifier.citedreferenceTurner RB. Rhinovirus: more than just a common cold virus. J Infect Dis. 2007; 195 ( 6 ): 765 - 766. doi: 10.1086/511829
dc.identifier.citedreferenceShek LPC, Lee BW. Epidemiology and seasonality of respiratory tract virus infections in the tropics. Paediatr Respir Rev. 2003; 4 ( 2 ): 105 - 111. doi: 10.1016/S1526-0542(03)00024-1
dc.identifier.citedreferenceLopman B, Armstrong B, Atchison C, Gray JJ. Host, weather and virological factors drive norovirus epidemiology: time-series analysis of laboratory surveillance data in England and Wales. PLOS One. 2009; 4 ( 8 ): e6671. doi: 10.1371/journal.pone.0006671
dc.identifier.citedreferenceGuo L, Yang Z, Guo L, et al. Study on the decay characteristics and transmission risk of respiratory viruses on the surface of objects. Environ Res. 2021; 194: 110716. doi: 10.1016/j.envres.2021.110716
dc.identifier.citedreferenceKrammer F, Smith GJD, Fouchier RAM, et al. Influenza. Nat Rev Dis Primers. 2018; 4 ( 1 ): 3. doi: 10.1038/s41572-018-0002-y
dc.identifier.citedreferenceMonto AS, Malosh RE, Evans R, et al. Data resource profile: Household Influenza Vaccine Evaluation (HIVE) Study. Int J Epidemiol. 2019; 48 ( 4 ): 1040 - 1040g. doi: 10.1093/ije/dyz086
dc.identifier.citedreferencePetrie JG, Bazzi LA, McDermott AB, et al. Coronavirus occurrence in the Household Influenza Vaccine Evaluation (HIVE) cohort of Michigan households: reinfection frequency and serologic responses to seasonal and severe acute respiratory syndrome coronaviruses. J Infect Dis. 2021; 224 ( 1 ): 49 - 59. doi: 10.1093/infdis/jiab161
dc.identifier.citedreferenceDeJonge PM, Monto AS, Malosh RE, et al. Distinct influenza surveillance networks and their agreement in recording regional influenza circulation: experience from Southeast Michigan. Influenza Other Respi Viruses. 2022; 16 ( 3 ): 521 - 531. doi: 10.1111/irv.12944
dc.identifier.citedreferenceMonto AS, Malosh RE, Petrie JG, Thompson MG, Ohmit SE. Frequency of acute respiratory illnesses and circulation of respiratory viruses in households with children over 3 surveillance seasons. J Infect Dis. 2014; 210 ( 11 ): 1792 - 1799. doi: 10.1093/infdis/jiu327
dc.identifier.citedreferenceMalosh RE, Petrie JG, Callear AP, Monto AS, Martin ET. Home collection of nasal swabs for detection of influenza in the Household Influenza Vaccine Evaluation Study. Influenza Other Respi Viruses. 2021; 15 ( 2 ): 227 - 234. doi: 10.1111/irv.12822
dc.identifier.citedreferenceBaker RE, Park SW, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proc Natl Acad Sci U S A. 2020; 117 ( 48 ): 30547 - 30553. doi: 10.1073/pnas.2013182117
dc.identifier.citedreferenceTrenholme A, Webb R, Lawrence S, et al. COVID-19 and infant hospitalizations for seasonal respiratory virus infections, New Zealand, 2020. Emerg Infect Dis. 2021; 27 ( 2 ): 641 - 643. doi: 10.3201/eid2702.204041
dc.identifier.citedreferenceKuitunen I, Artama M, Mäkelä L, Backman K, Heiskanen-Kosma T, Renko M. Effect of social distancing due to the COVID-19 pandemic on the incidence of viral respiratory tract infections in children in Finland during early 2020. Pediatr Infect Dis J. 2020; 39 ( 12 ): e423 - e427. doi: 10.1097/INF.0000000000002845
dc.identifier.citedreferenceFerguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an influenza pandemic. Nature. 2006; 442 ( 7101 ): 448 - 452. doi: 10.1038/nature04795
dc.identifier.citedreferenceLi Y, Wang X, Msosa T, de Wit F, Murdock J, Nair H. The impact of the 2009 influenza pandemic on the seasonality of human respiratory syncytial virus: a systematic analysis. Influenza Other Respi Viruses. 2021; 15 ( 6 ): 804 - 812. doi: 10.1111/irv.12884
dc.identifier.citedreferenceOpatowski L, Baguelin M, Eggo RM. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: a key role for mathematical modelling. PLoS Pathog. 2018; 14 ( 2 ): e1006770. doi: 10.1371/journal.ppat.1006770
dc.identifier.citedreferenceKloepfer KM, Olenec JP, Lee WM, et al. Increased H1N1 infection rate in children with asthma. Am J Respir Crit Care Med. 2012; 185 ( 12 ): 1275 - 1279. doi: 10.1164/rccm.201109-1635OC
dc.identifier.citedreferenceChan KF, Carolan LA, Korenkov D, et al. Investigating viral interference between influenza a virus and human respiratory syncytial virus in a ferret model of infection. J Infect Dis. 2018; 218 ( 3 ): 406 - 417. doi: 10.1093/infdis/jiy184
dc.identifier.citedreferenceNickbakhsh S, Mair C, Matthews L, et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. PNAS. 2019; 116 ( 52 ): 27142 - 27150. doi: 10.1073/pnas.1911083116
dc.identifier.citedreferenceKitanovski S, Horemheb-Rubio G, Adams O, et al. Rhinovirus prevalence as indicator for efficacy of measures against SARS-CoV-2. BMC Public Health. 2021; 21 ( 1 ): 1178. doi: 10.1186/s12889-021-11178-w
dc.identifier.citedreferenceHaddadin Z, Schuster JE, Spieker AJ, et al. Acute respiratory illnesses in children in the SARS-CoV-2 pandemic: prospective multicenter study. Pediatrics. 2021; 148 ( 2 ): e2021051462. doi: 10.1542/peds.2021-051462
dc.identifier.citedreferenceWang P. Combination of serological total antibody and RT-PCR test for detection of SARS-COV-2 infections. J Virol Methods. 2020; 283: 113919. doi: 10.1016/j.jviromet.2020.113919
dc.identifier.citedreferenceMurad D, Chandrasekaran S, Pillai A, Garner OB, Denny CT. SARS-CoV-2 infection detection by PCR and serologic testing in clinical practice. Journal of Clinical Microbiology. 2021; 59 ( 7 ): e0043121. doi: 10.1128/JCM.00431-21
dc.identifier.citedreferenceHaddadin Z, Rankin DA, Lipworth L, et al. Respiratory virus surveillance in infants across different clinical settings. J Pediatr. 2021; 234: 164 - 171.e2. doi: 10.1016/j.jpeds.2021.03.036
dc.identifier.citedreferenceHaddadin Z, Beveridge S, Fernandez K, et al. Respiratory syncytial virus disease severity in young children. Clin Infect Dis. 2021; 73 ( 11 ): e4384 - e4391. doi: 10.1093/cid/ciaa1612
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.