Show simple item record

Athabasca River Avulsion Underway in the Peace-Athabasca Delta, Canada

dc.contributor.authorWang, Bo
dc.contributor.authorSmith, Laurence C.
dc.contributor.authorGleason, Colin
dc.contributor.authorKyzivat, Ethan D.
dc.contributor.authorFayne, Jessica V.
dc.contributor.authorHarlan, Merritt E.
dc.contributor.authorLanghorst, Theodore
dc.contributor.authorFeng, Dongmei
dc.contributor.authorEidam, Emily
dc.contributor.authorMunoz, Sebastian
dc.contributor.authorDavis, Julianne
dc.contributor.authorPavelsky, Tamlin M.
dc.contributor.authorPeters, Daniel L.
dc.date.accessioned2023-03-03T21:11:13Z
dc.date.available2024-04-03 16:11:11en
dc.date.available2023-03-03T21:11:13Z
dc.date.issued2023-03
dc.identifier.citationWang, Bo; Smith, Laurence C.; Gleason, Colin; Kyzivat, Ethan D.; Fayne, Jessica V.; Harlan, Merritt E.; Langhorst, Theodore; Feng, Dongmei; Eidam, Emily; Munoz, Sebastian; Davis, Julianne; Pavelsky, Tamlin M.; Peters, Daniel L. (2023). "Athabasca River Avulsion Underway in the Peace-Athabasca Delta, Canada." Water Resources Research 59(3): n/a-n/a.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/175946
dc.description.abstractAvulsions change river courses and transport water and sediment to new channels impacting infrastructure, floodplain evolution, and ecosystems. Abrupt avulsion events (occurring over days to weeks) are potentially catastrophic to society and thus receive more attention than slow avulsions, which develop over decades to centuries and can be challenging to identify. Here, we examine gradual channel changes of the Peace-Athabasca River Delta (PAD), Canada using in situ measurements and 37 years of Landsat satellite imagery. A developing avulsion of the Athabasca River is apparent along the Embarras River–Mamawi Creek (EM) distributary. Its opening and gradual enlargement since 1982 are evident from multiple lines of observation: Between 1984 and 2021 the discharge ratio between the EM and the Athabasca River more than doubled, increasing from 9% to 21%. The EM has widened by +53% since 1984, whereas the Athabasca River channel width has remained stable. The downstream Mamawi Creek delta is growing at a discharge-normalized rate roughly twice that of the Athabasca River delta in surface area. Longitudinal global navigation satellite systems field surveys of water surface elevation reveal the EM possesses a ∼2X slope advantage (8 × 10−5 vs. 4 × 10−5) over the Athabasca River, and unit stream power and bed shear stress suggest enhanced sediment transport and erosional capacity through the evolving flow path. Our findings: (a) indicate that a slow avulsion of the Athabasca River is underway with potentially long-term implications for inundation patterns, ecosystems, and human use of the PAD; and (b) demonstrate an observational approach for identifying other slow avulsions at river bifurcations globally.Plain Language SummaryAvulsions shift river courses and move water and sediment to new channels, which affect infrastructure, floodplains, and ecosystems. Slow avulsions take decades to develop and are more difficult to identify. Using on-the-ground measurements and 37 years of Landsat satellite imagery, we analyze gradual channel changes in the Peace-Athabasca River Delta (PAD), Canada. The Athabasca River is changing course such that more of its water enters its westernmost outlet, the Embarras River–Mamawi Creek (EM) channel. Multiple lines of evidence demonstrate that the EM channel has been gradually opening since 1982. Between 1984 and 2021, the water entering the EM channel increased from 9% to 21% of the river’s total flow. Since 1984, the EM channel has widened by 53%, while the Athabasca River channel has remained stable. The delta forming at the EM mouth (i.e., Mamawi Creek delta) has grown twice as fast as the Athabasca River delta. Field measurements of water surface elevation show the slope of the EM channel is twice as steep as the slope of the lower Athabasca River (8 × 10−5 vs. 4 × 10−5). Because water tends to flow down the steepest slope, we expect more water to flow down the EM channel in the future. Our findings indicate a slow capture of Athabasca River water into its EM channel, with potential long-term implications for the delta’s inundation pattern, ecosystems, and traditional Indigenous activities.Key PointsWe assess a potential avulsion of the Athabasca River in the Peace-Athabasca Delta, Canada using field measurements and remote sensingAnalysis of hydrological and morphological observations affirm that a slow avulsion is currently underwayThe avulsion may accelerate in the future and cause transformative effects on the delta’s vegetation, habitat, and ecosystems
dc.publisherAlberta Research Council, ARC/AGS Open File Report
dc.publisherWiley Periodicals, Inc.
dc.subject.otheravulsion
dc.subject.otherinland delta
dc.subject.otherGoogle Earth Engine
dc.subject.otherremote sensing
dc.subject.otherSWOT
dc.subject.otherPeace-Athabasca River Delta
dc.titleAthabasca River Avulsion Underway in the Peace-Athabasca Delta, Canada
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175946/1/wrcr26488.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175946/2/wrcr26488_am.pdf
dc.identifier.doi10.1029/2022WR034114
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferenceSmith, D. G. ( 2003 ). 1100 years of ice-jam flooding in the Peace River Delta interpreted from flood bed sediments and ice-scarred trees report.
dc.identifier.citedreferenceRosen, T., & Xu, Y. J. ( 2013 ). Recent decadal growth of the Atchafalaya River Delta complex: Effects of variable riverine sediment input and vegetation succession. Geomorphology, 194, 108 – 120. https://doi.org/10.1016/j.geomorph.2013.04.020
dc.identifier.citedreferenceSchumm, S. A., Erskine, W. D., & Tilleard, J. W. ( 1996 ). Morphology, hydrology, and evolution of the anastomosing Ovens and King Rivers, Victoria, Australia. The Geological Society of America Bulletin, 108 ( 10 ), 1212. https://doi.org/10.1130/0016-7606(1996)108<1212:mhaeot>2.3.co;2
dc.identifier.citedreferenceSinha, R. ( 2009 ). The Great avulsion of Kosi on 18 August 2008. Current Science, 97 ( 3 ), 429 – 433.
dc.identifier.citedreferenceSinha, R., Sripriyanka, K., Jain, V., & Mukul, M. ( 2014 ). Avulsion threshold and planform dynamics of the Kosi River in north Bihar (India) and Nepal: A GIS framework. Geomorphology, 216, 157 – 170. https://doi.org/10.1016/j.geomorph.2014.03.035
dc.identifier.citedreferenceSlingerland, R., & Smith, N. D. ( 1998 ). Necessary conditions for a meandering-river avulsion. Geology, 26 ( 5 ), 435 – 438. https://doi.org/10.1130/0091-7613(1998)026<0435:NCFAMR>2.3.CO;2
dc.identifier.citedreferenceSlingerland, R., & Smith, N. D. ( 2004 ). River avulsions and their deposits. Annual Review of Earth and Planetary Sciences, 32 ( 1 ), 257 – 285. https://doi.org/10.1146/annurev.earth.32.101802.120201
dc.identifier.citedreferenceSmith, D. G. ( 1994 ). Glacial Lake McConnell: Paleogeography, age, duration, and associated river deltas, Mackenzie River basin, western Canada. Quaternary Science Reviews, 13 ( 9 ), 829 – 843. https://doi.org/10.1016/0277-3791(94)90004-3
dc.identifier.citedreferenceSmith, L. C. ( 2020 ). Rivers of power: How a natural force raised kingdoms, destroyed civilizations, and shapes our world. Little Brown Spark/Hachette Book Group.
dc.identifier.citedreferenceSmith, N. D., Cross, T. A., Dufficy, J. P., & Clough, S. R. ( 1989 ). Anatomy of an avulsion. Sedimentology, 36 ( 1 ), 1 – 23. https://doi.org/10.1111/j.1365-3091.1989.tb00817.x
dc.identifier.citedreferenceSmith, N. D., Morozova, G. S., & Gibling, M. R. ( 2014 ). Channel enlargement by avulsion-induced sediment starvation in the Saskatchewan River. Geology, 42 ( 4 ), 355 – 358. https://doi.org/10.1130/g35258.1
dc.identifier.citedreferenceSmith, N. D., Slingerland, R. L., Pérez-Arlucea, M., & Morozova, G. S. ( 1998 ). The 1870s avulsion of the Saskatchewan River. Canadian Journal of Earth Sciences, 35 ( 4 ), 453 – 466. https://doi.org/10.1139/e97-113
dc.identifier.citedreferenceStouthamer, E., & Berendsen, H. J. A. ( 2001 ). Avulsion frequency, avulsion duration, and interavulsion period of Holocene channel belts in the Rhine-Meuse Delta, the Netherlands. Journal of Sedimentary Research, 71 ( 4 ), 589 – 598. https://doi.org/10.1306/112100710589
dc.identifier.citedreferenceSun, T., Paola, C., Parker, G., & Meakin, P. ( 2002 ). Fluvial fan deltas: Linking channel processes with large-scale morphodynamics. Water Resources Research, 38 ( 8 ), 26-1 – 26-10. https://doi.org/10.1029/2001wr000284
dc.identifier.citedreferenceTimoney, K. ( 2002 ). A dyin delta? A case study of a wetland paradigm. Wetlands, 22 ( 2 ), 282 – 300. https://doi.org/10.1672/0277-5212(2002)022[0282:addacs]2.0.co;2
dc.identifier.citedreferenceTimoney, K. ( 2013 ). The Peace-Athabasca delta: Portrait of a dynamic ecosystem. The University of Alberta Press.
dc.identifier.citedreferenceTimoney, K., & Lee, P. ( 2016 ). Changes in the areal extents of the Athabasca River, Birch River, and Cree Creek Deltas, 1950–2014, Peace-Athabasca Delta, Canada. Geomorphology, 258, 95 – 107. https://doi.org/10.1016/j.geomorph.2016.01.011
dc.identifier.citedreferenceTimoney, K. P. ( 2021 ). Flooding in the Peace-Athabasca Delta: Climatic and hydrologic change and variation over the past 120 years. Climatic Change, 169 ( 3–4 ), 26. https://doi.org/10.1007/s10584-021-03257-z
dc.identifier.citedreferenceTornqvist, T. E. ( 1994 ). Middle and late Holocene avulsion history of the River Rhine (Rhine-Meuse delta, Netherlands). Geology, 22 ( 8 ), 711 – 714. https://doi.org/10.1130/0091-7613(1994)022<0711:malhah>2.3.co;2
dc.identifier.citedreferenceTörnqvist, T. E., & Bridge, J. S. ( 2002 ). Spatial variation of overbank aggradation rate and its influence on avulsion frequency. Sedimentology, 49 ( 5 ), 891 – 905. https://doi.org/10.1046/j.1365-3091.2002.00478.x
dc.identifier.citedreferenceToyra, J., Pietroniro, A., Martz, L. W., & Prowse, T. D. ( 2002 ). A multi-sensor approach to wetland flood monitoring. Hydrological Processes, 16 ( 8 ), 1569 – 1581. https://doi.org/10.1002/hyp.1021
dc.identifier.citedreferenceValenza, J. M., Edmonds, D. A., Hwang, T., & Roy, S. ( 2020 ). Downstream changes in river avulsion style are related to channel morphology. Nature Communications, 11 ( 1 ), 2116. https://doi.org/10.1038/s41467-020-15859-9
dc.identifier.citedreferenceVespremeanu-Stroe, A., Zainescu, F., Preoteasa, L., Tatui, F., Rotaru, S., Morhange, C., et al. ( 2017 ). Holocene evolution of the Danube delta: An integral reconstruction and a revised chronology. Marine Geology, 388, 38 – 61. https://doi.org/10.1016/j.margeo.2017.04.002
dc.identifier.citedreferenceWang, B., & Xu, Y. J. ( 2018 ). Decadal-scale riverbed deformation and sand budget of the last 500 km of the Mississippi River: Insights Into natural and river engineering effects on a large Alluvial River. Journal of Geophysical Research: Earth Surface, 123 ( 5 ), 874 – 890. https://doi.org/10.1029/2017JF004542
dc.identifier.citedreferenceWang, B., Xu, Y. J., Xu, W., Cheng, H., Chen, Z., & Zhang, W. ( 2020 ). Riverbed changes of the uppermost Atchafalaya River, USA—A case study of channel dynamics in large man-controlled alluvial river confluences. Water, 12 ( 8 ), 2139. https://doi.org/10.3390/w12082139
dc.identifier.citedreferenceWeissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Owen, A., Wright, S., et al. ( 2015 ). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187 – 219. https://doi.org/10.1016/j.geomorph.2015.09.005
dc.identifier.citedreferenceWolfe, B. B., Hall, R. I., Last, W. M., Edwards, T. W. D., English, M. C., Karst-Riddoch, T. L., et al. ( 2006 ). Reconstruction of multi-century flood histories from oxbow lake sediments, Peace-Athabasca Delta, Canada. Hydrological Processes, 20 ( 19 ), 4131 – 4153. https://doi.org/10.1002/hyp.6423
dc.identifier.citedreferenceXu, H. ( 2006 ). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27 ( 14 ), 3025 – 3033. https://doi.org/10.1080/01431160600589179
dc.identifier.citedreferenceXue, C. ( 1993 ). Historical changes in the Yellow River delta, China. Marine Geology, 113 ( 3 ), 321 – 330. https://doi.org/10.1016/0025-3227(93)90025-Q
dc.identifier.citedreferenceYang, C. T. ( 1979 ). Unit stream power equations for total load. Journal of Hydrology, 40 ( 1–2 ), 123 – 138. https://doi.org/10.1016/0022-1694(79)90092-1
dc.identifier.citedreferenceYang, X., Pavelsky, T. M., Allen, G. H., & Donchyts, G. ( 2020 ). RivWidthCloud: An automated Google Earth engine algorithm for river width extraction from remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters, 17 ( 2 ), 217 – 221. https://doi.org/10.1109/lgrs.2019.2920225
dc.identifier.citedreferenceYochum, S. E., Sholtes, J. S., Scott, J. A., & Bledsoe, B. P. ( 2017 ). Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood. Geomorphology, 292, 178 – 192. https://doi.org/10.1016/j.geomorph.2017.03.004
dc.identifier.citedreferenceZhang, X., & Fang, X. ( 2017 ). Temporal and spatial variation of catastrophic river floodings in the Lower Yellow River from AD 960 to 1938. The Holocene, 27 ( 9 ), 1359 – 1369. https://doi.org/10.1177/0959683617690590
dc.identifier.citedreferenceLong, C. M., & Pavelsky, T. M. ( 2013 ). Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sensing of Environment, 129, 197 – 209. https://doi.org/10.1016/j.rse.2012.10.019
dc.identifier.citedreferenceMalmon, D. V., Reneau, S. L., Katzman, D., Lavine, A., & Lyman, J. ( 2007 ). Suspended sediment transport in an ephemeral stream following wildfire. Journal of Geophysical Research, 112 ( F2 ), F02006. https://doi.org/10.1029/2005JF000459
dc.identifier.citedreferenceAllen, G. H., & Pavelsky, T. M. ( 2018 ). Global extent of rivers and streams. Science, 361 ( 6402 ), 585 – 588. https://doi.org/10.1126/science.aat0636
dc.identifier.citedreferenceAllen, J. R. L. ( 1965 ). A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5 ( 2 ), 89 – 191. https://doi.org/10.1111/j.1365-3091.1965.tb01561.x
dc.identifier.citedreferenceAshworth, P. J., Best, J. L., & Jones, M. ( 2004 ). Relationship between sediment supply and avulsion frequency in braided rivers. Geology, 32 ( 1 ), 21 – 24. https://doi.org/10.1130/g19919.1
dc.identifier.citedreferenceAslan, A., Autin, W. J., & Blum, M. D. ( 2005 ). Causes of River Avulsion: Insights from the late Holocene avulsion history of the Mississippi River, U.S.A. Journal of Sedimentary Research, 75 ( 4 ), 650 – 664. https://doi.org/10.2110/jsr.2005.053
dc.identifier.citedreferenceBabaeyan-Koopaei, K., Ervine, D. A., Carling, P. A., & Cao, Z. ( 2002 ). Velocity and turbulence measurements for two overbank flow events in River Severn. Journal of Hydraulic Engineering, 128 ( 10 ), 891 – 900. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(891)
dc.identifier.citedreferenceBagnold, R. A. ( 1960 ). Sediment discharge and stream power—A preliminary announcement, report 421.
dc.identifier.citedreferenceBagnold, R. A. ( 1966 ). An approach to the sediment transport problem from general physics, report 422I.
dc.identifier.citedreferenceBayrock, L. A., & Root, J. D. ( 1972 ). Geology of the Peace-Athabasca River Delta region, Alberta Report (p. 58 ). Alberta Research Council, ARC/AGS Open File Report.
dc.identifier.citedreferenceBeltaos, S. ( 2023 ). The drying peace–Athabasca Delta, Canada: Review and synthesis of cryo-hydrologic controls and projections to future climatic conditions. Sustainability, 15 ( 3 ), 2103. https://doi.org/10.3390/su15032103
dc.identifier.citedreferenceBeltaos, S., Prowse, T., Bonsal, B., MacKay, R., Romolo, L., Pietroniro, A., & Toth, B. ( 2006 ). Climatic effects on ice-jam flooding of the Peace-Athabasca Delta. Hydrological Processes, 20 ( 19 ), 4031 – 4050. https://doi.org/10.1002/hyp.6418
dc.identifier.citedreferenceBeltaos, S., Prowse, T. D., & Carter, T. ( 2006 ). Ice regime of the lower Peace River and ice-jam flooding of the Peace-Athabasca Delta. Hydrological Processes, 20 ( 19 ), 4009 – 4029. https://doi.org/10.1002/hyp.6417
dc.identifier.citedreferenceBentley, S. J., Blum, M. D., Maloney, J., Pond, L., & Paulsell, R. ( 2016 ). The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth-Science Reviews, 153, 139 – 174. https://doi.org/10.1016/j.earscirev.2015.11.001
dc.identifier.citedreferenceBiancamaria, S., Lettenmaier, D. P., & Pavelsky, T. M. ( 2016 ). The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics, 37 ( 2 ), 307 – 337. https://doi.org/10.1007/s10712-015-9346-y
dc.identifier.citedreferenceBrooke, S., Chadwick, A. J., Silvestre, J., Lamb, M. P., Edmonds, D. A., & Ganti, V. ( 2022 ). Where rivers jump course. Science, 376 ( 6596 ), 987 – 990. https://doi.org/10.1126/science.abm1215
dc.identifier.citedreferenceBryant, M., Falk, P., & Paola, C. ( 1995 ). Experimental study of avulsion frequency and rate of deposition. Geology, 23 ( 4 ), 365 – 368. https://doi.org/10.1130/0091-7613(1995)023<0365:ESOAFA>2.3.CO;2
dc.identifier.citedreferenceBuehler, H. A., Weissmann, G. S., Scuderi, L. A., & Hartley, A. J. ( 2011 ). Spatial and temporal evolution of an avulsion on the Taquari River distributive fluvial system from satellite image analysis. Journal of Sedimentary Research, 81 ( 8 ), 630 – 640. https://doi.org/10.2110/jsr.2011.040
dc.identifier.citedreferenceChadwick, A. J., Lamb, M. P., & Ganti, V. ( 2020 ). Accelerated river avulsion frequency on lowland deltas due to sea-level rise. Proceedings of the National Academy of Sciences, 117 ( 30 ), 17590. https://doi.org/10.1073/pnas.1912351117
dc.identifier.citedreferenceChen, Y., Syvitski, J. P. M., Gao, S., Overeem, I., & Kettner, A. J. ( 2012 ). Socio-economic impacts on flooding: A 4000-year history of the Yellow River, China. AMBIO, 41 ( 7 ), 682 – 698. https://doi.org/10.1007/s13280-012-0290-5
dc.identifier.citedreferenceCorreggiari, A., Cattaneo, A., & Trincardi, F. ( 2005 ). The modern Po Delta system: Lobe switching and asymmetric prodelta growth. Marine Geology, 222–223, 49 – 74. https://doi.org/10.1016/j.margeo.2005.06.039
dc.identifier.citedreferenceDibike, Y., Shakibaeinia, A., Eum, H. I., Prowse, T., & Droppo, I. ( 2018 ). Effects of projected climate on the hydrodynamic and sediment transport regime of the lower Athabasca River in Alberta, Canada. River Research and Applications, 34 ( 5 ), 417 – 429. https://doi.org/10.1002/rra.3273
dc.identifier.citedreferenceDonselaar, M. E., Cuevas Gozalo, M. C., & Moyano, S. ( 2013 ). Avulsion processes at the terminus of low-gradient semi-arid fluvial systems: Lessons from the Río Colorado, Altiplano endorheic basin, Bolivia. Sedimentary Geology, 283, 1 – 14. https://doi.org/10.1016/j.sedgeo.2012.10.007
dc.identifier.citedreferenceEdmonds, D. A., Hajek, E. A., Downton, N., & Bryk, A. B. ( 2016 ). Avulsion flow-path selection on rivers in foreland basins. Geology, 44 ( 9 ), 695 – 698. https://doi.org/10.1130/g38082.1
dc.identifier.citedreferenceEdmonds, D. A., Hoyal, D. C. J. D., Sheets, B. A., & Slingerland, R. L. ( 2009 ). Predicting delta avulsions: Implications for coastal wetland restoration. Geology, 37 ( 8 ), 759 – 762. https://doi.org/10.1130/G25743A.1
dc.identifier.citedreferenceEthridge, F. G., Skelly, R. L., & Bristow, C. S. ( 1999 ). Avulsion and crevassing in the sandy, braided Niobrara River: Complex response to base-level rise and aggradation. In Fluvial sedimentology VI (pp. 179 – 191 ). https://doi.org/10.1002/9781444304213.ch14
dc.identifier.citedreferenceEum, H.-I., Dibike, Y., & Prowse, T. ( 2017 ). Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada. Journal of Hydrology, 544, 327 – 342. https://doi.org/10.1016/j.jhydrol.2016.11.034
dc.identifier.citedreferenceFisk, H. N. ( 1944 ). Geological investigation of the alluvial valley of the lower Mississippi River (p. 78.). U.S. Department of the Army, Mississippi River Commission Report.
dc.identifier.citedreferenceGanti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J., & Lamb, M. P. ( 2016 ). Avulsion cycles and their stratigraphic signature on an experimental backwater-controlled delta. Journal of Geophysical Research: Earth Surface, 121 ( 9 ), 1651 – 1675. https://doi.org/10.1002/2016JF003915
dc.identifier.citedreferenceGartner, J. D., Dade, W. B., Renshaw, C. E., Magilligan, F. J., & Buraas, E. M. ( 2015 ). Gradients in stream power influence lateral and downstream sediment flux in floods. Geology, 43 ( 11 ), 983 – 986. https://doi.org/10.1130/g36969.1
dc.identifier.citedreferenceGradziński, R., Baryła, J., Doktor, M., Gmur, D., Gradziński, M., Kędzior, A., et al. ( 2003 ). Vegetation-controlled modern anastomosing system of the upper Narew River (NE Poland) and its sediments. Sedimentary Geology, 157 ( 3 ), 253 – 276. https://doi.org/10.1016/S0037-0738(02)00236-1
dc.identifier.citedreferenceHajek, E., & Edmonds, D. ( 2014 ). Is river avulsion style controlled by floodplain morphodynamics? Geology, 42 ( 3 ), 199 – 202. https://doi.org/10.1130/G35045.1
dc.identifier.citedreferenceHarlan, M. E., Gleason, C. J., Altenau, E. H., Butman, D., Carter, T., Chu, V. W., et al. ( 2021 ). Discharge estimation from dense arrays of pressure transducers. Water Resources Research, 57 ( 3 ), e2020WR028714. https://doi.org/10.1029/2020wr028714
dc.identifier.citedreferenceIacobucci, G., Troiani, F., Milli, S., Mazzanti, P., Piacentini, D., Zocchi, M., & Nadali, D. ( 2020 ). Combining satellite multispectral imagery and topographic data for the detection and mapping of fluvial avulsion processes in lowland areas. Remote Sensing, 12 ( 14 ), 2243. https://doi.org/10.3390/rs12142243
dc.identifier.citedreferenceJensen, J. R. ( 2008 ). Remote sensing of the environment: An earth resource perspective, Pearson Education, [Delhi, India].
dc.identifier.citedreferenceJerolmack, D. J., & Paola, C. ( 2007 ). Complexity in a cellular model of river avulsion. Geomorphology, 91 ( 3–4 ), 259 – 270. https://doi.org/10.1016/j.geomorph.2007.04.022
dc.identifier.citedreferenceJones, L. S., & Harper, J. T. ( 1998 ). Channel avulsions and related processes, and large-scale sedimentation patterns since 1875, Rio Grande, San Luis Valley, Colorado. The Geological Society of America Bulletin, 110 ( 4 ), 411 – 421. https://doi.org/10.1130/0016-7606(1998)110<0411:Caarpa>2.3.Co;2
dc.identifier.citedreferenceJones, L. S., & Schumm, S. A. ( 1999 ). Causes of Avulsion: An Overview. In N. D. Smith & J. C. Roger (Eds.), Fluvial sedimentology VI (pp. 169 – 178 ). https://doi.org/10.1002/9781444304213.ch13
dc.identifier.citedreferenceKay, M. L., Wiklund, J. A., Remmer, C. R., Neary, L. K., Brown, K., Ghosh, A., et al. ( 2019 ). Bi-directional hydrological changes in perched basins of the Athabasca Delta (Canada) in recent decades caused by natural processes. Environmental Research Communications, 1 ( 8 ), 081001. https://doi.org/10.1088/2515-7620/ab37e7
dc.identifier.citedreferenceKendall, M. G. ( 1975 ). Rank correlation methods. Griffin.
dc.identifier.citedreferenceKleinhans, M. G., Jagers, H. R. A., Mosselman, E., & Sloff, C. J. ( 2008 ). Bifurcation dynamics and avulsion duration in meandering rivers by one-dimensional and three-dimensional models. Water Resources Research, 44 ( 8 ), W08454. https://doi.org/10.1029/2007wr005912
dc.identifier.citedreferenceLauzon, R., & Murray, A. B. ( 2022 ). Discharge determines avulsion regime in model experiments with vegetated and unvegetated deltas. Journal of Geophysical Research: Earth Surface, 127 ( 2 ), e2021JF006225. https://doi.org/10.1029/2021jf006225
dc.identifier.citedreferenceLi, J. G., Yang, X. C., Maffei, C., Tooth, S., & Yao, G. Q. ( 2018 ). Applying independent component analysis on Sentinel-2 imagery to characterize geomorphological responses to an extreme flood event near the non-vegetated Rio Colorado terminus, Salar de Uyuni, Bolivia. Remote Sensing, 10 ( 5 ), 725. https://doi.org/10.3390/rs10050725
dc.identifier.citedreferenceLombardo, U. ( 2016 ). Alluvial plain dynamics in the southern Amazonian foreland basin. Earth System Dynamics, 7 ( 2 ), 453 – 467. https://doi.org/10.5194/esd-7-453-2016
dc.identifier.citedreferenceLouzada, R. O., Bergier, I., Roque, F. O., McGlue, M. M., Silva, A., & Assine, M. L. ( 2021 ). Avulsions drive ecosystem services and economic changes in the Brazilian Pantanal wetlands. Current Research in Environmental Sustainability, 3, 100057. https://doi.org/10.1016/j.crsust.2021.100057
dc.identifier.citedreferenceMackey, S. D., & Bridge, J. S. C. ( 1995 ). Three-dimensional model of alluvial stratigraphy; theory and applications. Journal of Sedimentary Research, 65 ( 1b ), 7 – 31. https://doi.org/10.1306/d42681d5-2b26-11d7-8648000102c1865d
dc.identifier.citedreferenceMakaske, B., Maathuis, B. H. P., Padovani, C. R., Stolker, C., Mosselman, E., & Jongman, R. H. G. ( 2012 ). Upstream and downstream controls of recent avulsions on the Taquari megafan, Pantanal, south-western Brazil. Earth Surface Processes and Landforms, 37 ( 12 ), 1313 – 1326. https://doi.org/10.1002/esp.3278
dc.identifier.citedreferenceMann, H. B. ( 1945 ). Nonparametric tests against trend. Econometrica, 13 ( 3 ), 245 – 259. https://doi.org/10.2307/1907187
dc.identifier.citedreferenceMohrig, D., Heller, P. L., Paola, C., & Lyons, W. J. ( 2000 ). Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). The Geological Society of America Bulletin, 112 ( 12 ), 1787 – 1803. https://doi.org/10.1130/0016-7606(2000)112<1787:Iapfaa>2.0.Co;2
dc.identifier.citedreferenceNanson, G. C., & Knighton, A. D. ( 1996 ). Anabranching rivers: Their cause, character and classification. Earth Surface Processes and Landforms, 21 ( 3 ), 217 – 239. https://doi.org/10.1002/(sici)1096-9837(199603)21:3<217::Aid-esp611>3.0.Co;2-u
dc.identifier.citedreferencePavelsky, T. M., & Smith, L. C. ( 2008 ). Remote sensing of hydrologic recharge in the Peace-Athabasca Delta, Canada. Geophysical Research Letters, 35 ( 8 ), L08403. https://doi.org/10.1029/2008gl033268
dc.identifier.citedreferencePavelsky, T. M., & Smith, L. C. ( 2009 ). Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada. Water Resources Research, 45 ( 11 ), W11417. https://doi.org/10.1029/2008wr007424
dc.identifier.citedreferencePekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. ( 2016 ). High-resolution mapping of global surface water and its long-term changes. Nature, 540 ( 7633 ), 418 – 422. https://doi.org/10.1038/nature20584
dc.identifier.citedreferencePeters, D. L., Prowse, T. D., Pietroniro, A., & Leconte, R. ( 2006 ). Flood hydrology of the Peace-Athabasca Delta, northern Canada. Hydrological Processes, 20 ( 19 ), 4073 – 4096. https://doi.org/10.1002/hyp.6420
dc.identifier.citedreferencePeters, D. L., Watt, D., Devito, K., Monk, W. A., Shrestha, R. R., & Baird, D. J. ( 2022 ). Changes in geographical runoff generation in regions affected by climate and resource development: A case study of the Athabasca River. Journal of Hydrology: Regional Studies, 39, 100981. https://doi.org/10.1016/j.ejrh.2021.100981
dc.identifier.citedreferencePhillips, J. D. ( 2009 ). Avulsion regimes in southeast Texas rivers. Earth Surface Processes and Landforms, 34 ( 1 ), 75 – 87. https://doi.org/10.1002/esp.1692
dc.identifier.citedreferencePhillips, J. D. ( 2012 ). Log-jams and avulsions in the San Antonio River Delta, Texas. Earth Surface Processes and Landforms, 37 ( 9 ), 936 – 950. https://doi.org/10.1002/esp.3209
dc.identifier.citedreferencePittaluga, M. B., Coco, G., & Kleinhans, M. G. ( 2015 ). A unified framework for stability of channel bifurcations in gravel and sand fluvial systems. Geophysical Research Letters, 42 ( 18 ), 7521 – 7536. https://doi.org/10.1002/2015gl065175
dc.identifier.citedreferencePrasojo, O. A., Hoey, T. B., Owen, A., & Williams, R. D. ( 2022 ). Slope break and avulsion locations scale consistently in global deltas. Geophysical Research Letters, 49 ( 2 ), e2021GL093656. https://doi.org/10.1029/2021GL093656
dc.identifier.citedreferenceProwse, T. D., Aitken, B., Demuth, M. N., & Peterson, M. ( 1996 ). Strategies for restoring spring flooding to a drying northern delta. Regulated Rivers: Research & Management, 12 ( 2–3 ), 237 – 250. https://doi.org/10.1002/(sici)1099-1646(199603)12:2/3<237::Aid-rrr392>3.3.Co;2-b
dc.identifier.citedreferenceProwse, T. D., & Conly, F. M. ( 1998 ). Effects of climatic variability and flow regulation on ice-jam flooding of a northern delta. Hydrological Processes, 12 ( 10–11 ), 1589 – 1610. https://doi.org/10.1002/(sici)1099-1085(199808/09)12:10/11<1589::Aid-hyp683>3.3.Co;2-7
dc.identifier.citedreferenceProwse, T. D., & Lalonde, V. ( 1996 ). Open-Water and ice-jam flooding of a Northern Delta: Paper presented at the 10th northern res. basin symposium (Svalbard, Norwa—28 Aug./3 Sept. 1994). Hydrology Research, 27 ( 1–2 ), 85 – 100. https://doi.org/10.2166/nh.1996.0021
dc.identifier.citedreferenceQian, N. ( 1990 ). Fluvial processes in the lower Yellow River after levee breaching at Tongwaxiang in 1855. International Journal of Sediment Research, 5 ( 2 ), 1 – 13.
dc.identifier.citedreferenceRatliff, K. M., Hutton, E. W. H., & Murray, A. B. ( 2021 ). Modeling long-term delta dynamics reveals persistent geometric river avulsion locations. Earth and Planetary Science Letters, 559, 116786. https://doi.org/10.1016/j.epsl.2021.116786
dc.identifier.citedreferenceRichards, K. S. ( 1982 ). Rivers, form and process in alluvial channels. Methuen.
dc.identifier.citedreferenceRoberts, H. H., Coleman, J. M., Bentley, S. J., & Walker, N. ( 2003 ). An embryonic major delta lobe; a new generation of delta studies in the Atchafalaya-Wax Lake delta system. Transactions: Gulf Coast Association of Geological Societies, 53, 690 – 703.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.