Show simple item record

Surface Energy Fluxes and Temperatures at Jezero Crater, Mars

dc.contributor.authorSavijärvi, H. I.
dc.contributor.authorMartinez, G. M.
dc.contributor.authorHarri, A.-M.
dc.date.accessioned2023-03-03T21:11:54Z
dc.date.available2024-03-03 16:11:52en
dc.date.available2023-03-03T21:11:54Z
dc.date.issued2023-02
dc.identifier.citationSavijärvi, H. I. ; Martinez, G. M.; Harri, A.-M. (2023). "Surface Energy Fluxes and Temperatures at Jezero Crater, Mars." Journal of Geophysical Research: Planets 128(2): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/175959
dc.description.abstractDiurnal ground surface and air temperatures (Tg, Ta) and the five major surface energy budget fluxes are displayed as derived from M2020 mission observations and from column model simulations in two extreme cases (low and high diurnal Tg-variation) along the Perseverance rover track in the Jezero crater. In both cases the fluxes and Tg are well modeled when using diurnally variable apparent ground thermal inertia I derived via a Fourier series method from the hourly observations. Hence the measurements, the diagnostic method and the model results are consistent with high- and low-I nonhomogeneous terrain in the field-of-view (FOV) of the thermal infrared and solar sensors. In contrast less extreme values of I consistent with THEMIS retrievals are necessary for good simulations of observed Ta. We deduce that the measured Tg for the small ∼3 m2 FOV may not always be representative for the larger region around the rover, which controls the near-surface atmospheric temperature profile.Plain Language SummaryWe present comparisons of hourly surface and air temperatures and solar and thermal (atmospheric) radiation as measured by Perseverance during quite low and quite high noon temperature. We also compare the observed values to those produced by a numerical model. It appears that the model can produce excellent simulations of radiation and the ground surface temperature, if the small measurement spot for the latter is assumed to be a thermally extreme and nonhomogeneous mixture of sand and rocks (models usually assume homogeneous ground). Less extreme soil properties, such as measured by satellites, are needed instead for good air temperature predictions at 1.5 m height, as air temperatures are controlled by larger areas of surface temperatures around the rover. These results are important to better interpret local measurements by Perseverance and to provide ground-truth to satellite observations with a much greater spatial resolution.Key PointsMEDA-observed radiative fluxes and ground temperatures Tg are compared to model simulations during weak and strong diurnal variation in TgRadiation and Tg are best modeled with use of diurnally variable apparent thermal inertiasAir temperatures are best modeled with less extreme area-averaged thermal inertias
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMars
dc.subject.othermeteorology
dc.subject.othersurface
dc.subject.otherclimate
dc.titleSurface Energy Fluxes and Temperatures at Jezero Crater, Mars
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175959/1/jgre22070_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175959/2/jgre22070.pdf
dc.identifier.doi10.1029/2022JE007438
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceSavijärvi, H., Martinez, G., Harri, A. M., & Paton, M. ( 2020 ). Curiosity observations and column model integrations for a Martian global dust event. Icarus, 337, 113515. https://doi.org/10.1016/j.icarus.2019.113515
dc.identifier.citedreferenceChen-Chen, H., Perez-Hoyos, S., & Sanchez-Lavega, A. ( 2021 ). Assessing multi-stream radiative transfer schemes for the calculation of aerosol radiative forcing in the Martian atmosphere. Journal of Geophysical Research: Planets, 126 ( 10 ), e2021JE006889. https://doi.org/10.1029/2021JE007889
dc.identifier.citedreferenceChristensen, P. R., Engle, E., Anwar, S., Dickenshied, S., Noss, D., Gorelick, N., & Weiss-Malik, M. ( 2009 ). JMARS – A planetary GIS. Retrieved from http://adsabs.harvard.edu/abs/2009AGUFMIN22A.06C
dc.identifier.citedreferenceHamilton, V. E., Vasavada, A. R., Sebastian, E., de la Torre Juarez, M., Ramos, M., Armiens, C., et al. ( 2014 ). Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale crater. Journal of Geophysical Research: Planets, 119 ( 4 ), 745 – 770. https://doi.org/10.1002/2013JE004520
dc.identifier.citedreferenceMartínez, G. M., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., et al. ( 2023 ). Surface energy budget, albedo and thermal inertia at Jezero Crater, Mars, as observed from the Mars 2020 MEDA instrument. Journal of Geophysical Research: Planets, 128, e2022JE007537. https://doi.org/10.1029/2022JE007537
dc.identifier.citedreferenceMartinez, G. M., Vicente-Retortillo, A., Vasavada, A. R., Newman, C. E., Fischer, E., Renno, N. O., et al. ( 2021 ). The surface energy budget at Gale crater during the first 2500 sols of the Mars Science Laboratory mission. Journal of Geophysical Research: Planets, 126 ( 9 ). https://doi.org/10.1029/2020JE006804
dc.identifier.citedreferenceMunguira, A., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., Martínez, G. M., Newman, C. E., et al. ( 2023 ). Near surface atmospheric temperatures at Jezero from Mars 2020 MEDA measurements. Journal of Geophysical Research: Planets, 128, e2022JE007559. https://doi.org/10.1029/2022JE007559
dc.identifier.citedreferenceNewman, C. E., Hueso, R., Lemmon, M. T., Munguira, A., Vicente-Retortillo, Á., Apestigue, V., & Guzewich, S. D. ( 2022 ). The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 8 ( 21 ), eabn3783.
dc.identifier.citedreferencePérez-Izquierdo, J., Sebastián, E., Martínez, G. M., Bravo, A., Ramos, M., & Manfredi, J. A. R. ( 2018 ). The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis. Measurement, 122, 432 – 442. https://doi.org/10.1016/j.measurement.2017.12.004
dc.identifier.citedreferencePolkko, J., Hieta, M., Harri, A.-M., Tamppari, L., Martínez, G., Viúdez-Moreiras, D., et al. ( 2023 ). Initial results of the relative humidity observations by MEDA instrument onboard the Mars 2020 Perseverance Rover. Journal of Geophysical Research: Planets, 128, e2022JE007447. https://doi.org/10.1029/2022JE007447
dc.identifier.citedreferencePutzig, N. E., Barratt, E. M., Mellon, M. T., & Michaels, T. I. ( 2013 ). MARSTHERM: A web-based System providing thermophysical analysis tools for Mars research. In AGU Fall Meeting. Abstract P43C-2023.
dc.identifier.citedreferencePutzig, N. E., & Mellon, M. T. ( 2007 ). Thermal behavior of horizontally mixed surfaces on Mars. Icarus, 191 ( 1 ), 52 – 67. https://doi.org/10.1016/j.icarus.2007.03.022
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 Perseverance rover Mars environmental Dynamics analyzer (MEDA) experiment data record (EDR) and reduced data record (RDR) data products archive bundle. PDS Atmospheres Node. https://doi.org/10.17189/1522849
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., de la Torre Juarez, M., Alonso, A., Apestigue, V., Arruego, I., Atlenza, T., et al. ( 2021 ). The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217, 48. https://doi.org/10.1007/s11214-021-00816-9
dc.identifier.citedreferenceSavijärvi, H., Crisp, D., & Harri, A. M. ( 2005 ). Effects of CO 2 and dust on present-day solar radiation and climate in Mars. Quarterly Journal of the Royal Meteorological Society, 131 ( 611 ), 2907 – 2922. https://doi.org/10.1256/qj.04.09
dc.identifier.citedreferenceSavijärvi, H., Harri, A.-M., & Kemppinen, O. ( 2016 ). The diurnal water cycle at curiosity: Role of exchange with the regolith. Icarus, 265, 63 – 69. https://doi.org/10.1016/j.icarus.2015.10.008
dc.identifier.citedreferenceSavijärvi, H., & Määttänen, A. ( 2010 ). Boundary-layer simulations for the Mars Phoenix lander site. Quarterly Journal of the Royal Meteorological Society, 136 ( 651 ), 1497 – 1505. https://doi.org/10.1002/qj.650
dc.identifier.citedreferenceSavijärvi, H., Martinez, G. M., & Harri, A.-M. ( 2022 ). SCM dataset for manuscript "Surface energy fluxes and temperatures at Jezero crater, Mars. Retrieved from https://repository.hou.usra.edu/handle/20.500.11753/1838
dc.identifier.citedreferenceSavijärvi, H., Martinez, G. M., Vicente-Retortillo, A., & Harri, A. M. ( 2022 ). Surface energy budget at Curiosity through observations and column modeling. Icarus, 376, 114900. https://doi.org/10.1016/j.icarus.2022.114900
dc.identifier.citedreferenceSebastian, E., Martinez, G. M., Ramos, M., Hanschke, F., Ferrandiz, R., Fernandez, M., & Rodriguez-Manfredi, J. A. ( 2020 ). Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA’s Mars 2020 mission. Measurement, 164, 107968. https://doi.org/10.1016/j.measurement.2020.107968
dc.identifier.citedreferenceSebastian, E., Martinez, G. M., Ramos, M., Perez-Grande, I., Sobrado, J., & Rodriguez-Manfredi, J. A. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s Perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006
dc.identifier.citedreferenceVasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. ( 2017 ). Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372 – 386. https://doi.org/10.1016/j.icarus.2016.11.035
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.