Show simple item record

Therapeutic potential of curcumin in ARDS and COVID-19

dc.contributor.authorSuresh, Madathilparambil V.
dc.contributor.authorFrancis, Sairah
dc.contributor.authorAktay, Sinan
dc.contributor.authorKralovich, Georgia
dc.contributor.authorRaghavendran, Krishnan
dc.date.accessioned2023-03-03T21:11:56Z
dc.date.available2024-05-03 16:11:55en
dc.date.available2023-03-03T21:11:56Z
dc.date.issued2023-04
dc.identifier.citationSuresh, Madathilparambil V.; Francis, Sairah; Aktay, Sinan; Kralovich, Georgia; Raghavendran, Krishnan (2023). "Therapeutic potential of curcumin in ARDS and COVID-19." Clinical and Experimental Pharmacology and Physiology 50(4): 267-276.
dc.identifier.issn0305-1870
dc.identifier.issn1440-1681
dc.identifier.urihttps://hdl.handle.net/2027.42/175960
dc.description.abstractCurcumin is a safe, non-toxic, readily available and naturally occurring compound, an active constituent of Curcuma longa (turmeric). Curcumin could potentially treat diseases, but faces poor physicochemical and pharmacological characteristics. To overcome these limitations, we developed a stable, water-soluble formulation of curcumin called cyclodextrin-complexed curcumin (CDC). We have previously shown that direct delivery of CDC to the lung following lipopolysaccharides exposure reduces acute lung injury (ALI) and effectively reduces lung injury, inflammation and mortality in mice following Klebsiella pneumoniae. Recently, we found that administration of CDC led to a significant reduction in angiotensin-converting enzyme 2 and signal transducer and activator of transcription 3 expression in gene and protein levels following pneumonia, indicating its potential in treating coronavirus disease 2019 (COVID-19). In this review, we consider the clinical features of ALI and acute respiratory distress syndrome (ARDS) and the role of curcumin in modulating the pathogenesis of bacterial/viral-induced ARDS and COVID-19.The schematics represent the potential mechanisms by which CDC effectively protects against ARDS/COVID-19. Antiviral curcumin against SARS-CoV-2 mediated by distracting the ACE2, which prevents the entry of the virus into the cells. CDC induces antiviral responses by positively repressing the expression of ACE2, Nrf2, STAT-3 and C–X–C motif chemokine 10 (CXCL10). CDC mediates immunomodulatory responses by inhibiting inflammation, cytokines, apoptosis and oxidative stress, therefore mitigating the progression to KP/ARDS following SARS-CoV-2 infection. CDC, cyclodextrin-complexed curcumin; ARDS, acute respiratory distress syndrome; coronavirus disease 2019, COVID-19; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ACE2, angiotensin-converting enzyme 2; Nrf2, nuclear factor erythroid 2 related factor 2; STAT-3, signal transducer and activator of transcription 3; KP, Klebsiella pneumoniae
dc.publisherWiley Periodicals, Inc.
dc.subject.otherALI
dc.subject.otherCOVID-19
dc.subject.otherARDS
dc.subject.otherpneumonia
dc.subject.otherNF-κB
dc.subject.othercurcumin
dc.titleTherapeutic potential of curcumin in ARDS and COVID-19
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175960/1/cep13744_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175960/2/cep13744.pdf
dc.identifier.doi10.1111/1440-1681.13744
dc.identifier.sourceClinical and Experimental Pharmacology and Physiology
dc.identifier.citedreferenceDhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: a review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods. 2021; 82: 104503.
dc.identifier.citedreferenceAlbertine KH, Soulier MF, Wang Z, et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol. 2002; 161 ( 5 ): 1783 - 1796.
dc.identifier.citedreferenceHuang YD, Fang Y, Ma L, et al. Kindlin-2 mediates lipopolysaccharide-induced acute lung injury partially via Pyroptosis in mice. Inflammation. 2022; 45: 1199 - 1208.
dc.identifier.citedreferenceAdams AB, Cakar N, Marini JJ. Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir Care. 2001; 46 ( 7 ): 686 - 693.
dc.identifier.citedreferenceARDS_Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome Network. N Engl J Med. 2000; 342: 1301 - 1308.
dc.identifier.citedreferenceLevitt JE, Matthay MA. Clinical review: early treatment of acute lung injury--paradigm shift toward prevention and treatment prior to respiratory failure. Crit Care. 2012; 16 ( 3 ): 223.
dc.identifier.citedreferenceUhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol. 1998; 275 ( 6 Pt 1 ): L1192 - L1199.
dc.identifier.citedreferenceArroliga AC, Ghamra ZW, Perez Trepichio A, et al. Incidence of ARDS in an adult population of Northeast Ohio. Chest. 2002; 121: 1972 - 1976.
dc.identifier.citedreferenceBernard GR, Luce JM, Sprung CL, et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med. 1987; 317 ( 25 ): 1565 - 1570.
dc.identifier.citedreferenceZhang Y, Liang D, Dong L, et al. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respir Res. 2015; 16: 43.
dc.identifier.citedreferenceZhu RF, Zhou M, He JL, Ding FY, Yu SQ, Xu GL. Protective effect of curcumin on oleic-induced acute lung injury in rats. Zhongguo Zhong Yao Za Zhi. 2008; 33 ( 17 ): 2141 - 2145.
dc.identifier.citedreferenceNahra R, Dellinger RP. Targeting the lipopolysaccharides: still a matter of debate? Curr Opin Anaesthesiol. 2008; 21 ( 2 ): 98 - 104.
dc.identifier.citedreferenceBenjamim CF, Hogaboam CM, Kunkel SL. The chronic consequences of severe sepsis. J Leukoc Biol. 2004; 75 ( 3 ): 408 - 412.
dc.identifier.citedreferenceGuzel A, Kanter M, Aksu B, et al. Preventive effects of curcumin on different aspiration material-induced lung injury in rats. Pediatr Surg Int. 2009; 25 ( 1 ): 83 - 92.
dc.identifier.citedreferenceGouda MM, Prabhu A, Bhandary YP. Curcumin alleviates IL-17A-mediated p53-PAI-1 expression in bleomycin-induced alveolar basal epithelial cells. J Cell Biochem. 2018; 119 ( 2 ): 2222 - 2230.
dc.identifier.citedreferenceAdnet F, Baud F. Relation between Glasgow coma scale and aspiration pneumonia. Lancet. 1996; 348 ( 9020 ): 123 - 124.
dc.identifier.citedreferenceAgrawal A, Suresh MV, Singh SK, Ferguson DA Jr. The protective function of human C-reactive protein in mouse models of Streptococcus pneumoniae infection. Endocr Metab Immune Disord Drug Targets. 2008; 8 ( 4 ): 231 - 237.
dc.identifier.citedreferenceBauer TT, Ferrer R, Angrill J, Schultze-Werninghaus G, Torres A. Ventilator-associated pneumonia: incidence, risk factors, and microbiology. Semin Respir Infect. 2000; 15: 272 - 279.
dc.identifier.citedreferenceBoonsarngsuk V, Thungtitigul P, Suwatanapongched T. Chronic Klebsiella pneumonia: a rare manifestation of Klebsiella pneumonia. J Thorac Dis. 2015; 7 ( 9 ): 1661 - 1664.
dc.identifier.citedreferenceBalamayooran G, Batra S, Theivanthiran B, Cai S, Pacher P, Jeyaseelan S. Intrapulmonary G-CSF rescues neutrophil recruitment to the lung and neutrophil release to blood in gram-negative bacterial infection in MCP-1−/− mice. J Immunol. 2012; 189 ( 12 ): 5849 - 5859.
dc.identifier.citedreferenceNegi N, Prakash P, Gupta ML, Mohapatra TM. Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Clin Diagn Res. 2014; 8 ( 10 ): DC04 - DC07.
dc.identifier.citedreferenceMun SH, Kim SB, Kong R, et al. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 2014; 19 ( 11 ): 18283 - 18295.
dc.identifier.citedreferenceOkwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: a brief review. AIMS Microbiol. 2019; 5 ( 2 ): 117 - 137.
dc.identifier.citedreferenceKhameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control. 2019; 8: 118.
dc.identifier.citedreferenceKali A, Bhuvaneshwar D, Charles PM, Seetha KS. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. J Basic Clin Pharm. 2016; 7 ( 3 ): 93 - 96.
dc.identifier.citedreferenceGunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016; 32 ( 2 ): 246 - 250.
dc.identifier.citedreferenceAlikiaii B, Bagherniya M, Askari G, Sathyapalan T, Sahebkar A. Evaluation of the effect of curcumin on pneumonia: A systematic review of preclinical studies. Phytother Res. 2021; 35 ( 4 ): 1939 - 1952.
dc.identifier.citedreferenceTonnesen HH, Masson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002; 244 ( 1–2 ): 127 - 135.
dc.identifier.citedreferenceGupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013; 15 ( 1 ): 195 - 218.
dc.identifier.citedreferenceHewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017; 6 ( 10 ):92.
dc.identifier.citedreferenceSharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol. 2020; 11: 01021.
dc.identifier.citedreferenceLao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006; 6: 10.
dc.identifier.citedreferenceAggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009; 41 ( 1 ): 40 - 59.
dc.identifier.citedreferencePanahi Y, Hosseini MS, Khalili N, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016; 82: 578 - 582.
dc.identifier.citedreferenceKuptniratsaikul V, Dajpratham P, Taechaarpornkul W, et al. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clin Interv Aging. 2014; 9: 451 - 458.
dc.identifier.citedreferenceGiblin J, Podesta R, White J. Dimensional stability of impression materials immersed in an iodophor disinfectant. Int J Prosthodont. 1990; 3 ( 1 ): 72 - 77.
dc.identifier.citedreferenceBasnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011; 16 ( 6 ): 4567 - 4598.
dc.identifier.citedreferenceFossey SL, Bear MD, Lin J, et al. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines. BMC Cancer. 2011; 11: 112.
dc.identifier.citedreferenceShoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998; 64 ( 4 ): 353 - 356.
dc.identifier.citedreferenceHatamipour M, Johnston TP, Sahebkar A. One molecule, many targets and numerous effects: the pleiotropy of curcumin lies in its chemical structure. Curr Pharm Des. 2018; 24 ( 19 ): 2129 - 2136.
dc.identifier.citedreferenceAmalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—a review. J Tradit Complement Med. 2017; 7 ( 2 ): 205 - 233.
dc.identifier.citedreferenceJagetia GC, Aggarwal BB. ‘Spicing up’ of the immune system by curcumin. J Clin Immunol. 2007; 27 ( 1 ): 19 - 35.
dc.identifier.citedreferenceCho JW, Lee KS, Kim CW. Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int J Mol Med. 2007; 19 ( 3 ): 469 - 474.
dc.identifier.citedreferenceSuresh MV, Wagner MC, Rosania GR, et al. Pulmonary administration of a water-soluble curcumin complex reduces severity of acute lung injury. Am J Respir Cell Mol Biol. 2012; 47 ( 3 ): 280 - 287.
dc.identifier.citedreferenceSa G, Das T. Anti cancer effects of curcumin: cycle of life and death. Cell Div. 2008; 3: 14.
dc.identifier.citedreferenceChen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130 ( 5 ): 2620 - 2629.
dc.identifier.citedreferenceGhalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int. 2014; 2014: 394264.
dc.identifier.citedreferenceGaldoporpora JM, Martinena C, Bernabeu E, et al. Inhalable Mannosylated rifampicin-curcumin Co-loaded Nanomicelles with enhanced In vitro antimicrobial efficacy for an optimized pulmonary tuberculosis therapy. Pharmaceutics. 2010; 299 (4):G833-G843.
dc.identifier.citedreferenceTahmasebi S, El-Esawi MA, Mahmoud ZH, et al. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J Cell Physiol. 2021; 236 ( 7 ): 5325 - 5338.
dc.identifier.citedreferenceSaidi SA, Meurisse N, Jochmans I, et al. Hepatocellular uptake of cyclodextrin-complexed curcumin during liver preservation: a feasibility study. Biopharm Drug Dispos. 2018; 39 ( 1 ): 18 - 29.
dc.identifier.citedreferenceZhang B, Swamy S, Balijepalli S, et al. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J. 2019; 33 ( 12 ): 13294 - 13309.
dc.identifier.citedreferenceJung YJ, Isaacs JS, Lee S, Trepel J, Neckers L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 2003; 17 ( 14 ): 2115 - 2117.
dc.identifier.citedreferenceLiu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017; 2:17023.
dc.identifier.citedreferenceLiu AR, Ramakrishnan P. Regulation of nuclear factor-kappaB function by O-GlcNAcylation in inflammation and cancer. Front Cell Dev Biol. 2021; 9: 751761.
dc.identifier.citedreferenceLiu Z, Ying Y. The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front Cell Dev Biol. 2020; 8: 479.
dc.identifier.citedreferenceJimenez-Flores LM, Lopez-Briones S, Macias-Cervantes MH, Ramirez-Emiliano J, Perez-Vazquez V. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules. 2014; 19 ( 6 ): 8289 - 8302.
dc.identifier.citedreferenceJiang H, He H, Chen Y, et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017; 214 ( 11 ): 3219 - 3238.
dc.identifier.citedreferenceSahoo M, Ceballos-Olvera I, del Barrio L, Re F. Role of the inflammasome, IL-1beta, and IL-18 in bacterial infections. ScientificWorldJournal. 2011; 11: 2037 - 2050.
dc.identifier.citedreferencePuri G, Naura AS. Implication of mitochondrial ROS-NLRP3 inflammasome axis during two-hit mediated acute lung injury in mice. Free Radic Res. 2022; 56: 1 - 15.
dc.identifier.citedreferenceAhmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 ( 2 ): 585 - 597.
dc.identifier.citedreferenceSaeedi-Boroujeni A, Mahmoudian-Sani MR, Bahadoram M, Alghasi A. COVID-19: a case for inhibiting NLRP3 inflammasome, suppression of inflammation with curcumin? Basic Clin Pharmacol Toxicol. 2021; 128 ( 1 ): 37 - 45.
dc.identifier.citedreferenceLi X, Xu DQ, Sun DY, Zhang T, He X, Xiao DM. Curcumin ameliorates monosodium urate-induced gouty arthritis through nod-like receptor 3 inflammasome mediation via inhibiting nuclear factor-kappa B signaling. J Cell Biochem. 2019; 120 ( 4 ): 6718 - 6728.
dc.identifier.citedreferenceZhao C, Zhao W. NLRP3 inflammasome-a key player in antiviral responses. Front Immunol. 2020; 11: 211.
dc.identifier.citedreferenceChen B, Li H, Ou G, Ren L, Yang X, Zeng M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IkappaBalpha and blocking mitochondrial damage. Arthritis Res Ther. 2019; 21 ( 1 ): 193.
dc.identifier.citedreferenceMitchell TJ, John S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology. 2005; 114 ( 3 ): 301 - 312.
dc.identifier.citedreferenceJafarzadeh A, Nemati M, Jafarzadeh S. Contribution of STAT3 to the pathogenesis of COVID-19. Microb Pathog. 2021; 154: 104836.
dc.identifier.citedreferenceFeinman R, Deitch EA, Watkins AC, et al. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2010; 299 ( 4 ): G833 - G843.
dc.identifier.citedreferenceKrick S, Eul BG, Hanze J, et al. Role of hypoxia-inducible factor-1alpha in hypoxia-induced apoptosis of primary alveolar epithelial type II cells. Am J Respir Cell Mol Biol. 2005; 32 ( 5 ): 395 - 403.
dc.identifier.citedreferenceHuang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996; 271 ( 50 ): 32253 - 32259.
dc.identifier.citedreferenceJiang H, Huang Y, Xu H, Hu R, Li QF. Inhibition of hypoxia inducible factor-1alpha ameliorates lung injury induced by trauma and hemorrhagic shock in rats. Acta Pharmacol Sin. 2012; 33 ( 5 ): 635 - 643.
dc.identifier.citedreferenceBahrami A, Atkin SL, Majeed M, Sahebkar A. Effects of curcumin on hypoxia-inducible factor as a new therapeutic target. Pharmacol Res. 2018; 137: 159 - 169.
dc.identifier.citedreferenceBae MK, Kim SH, Jeong JW, et al. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006; 15 ( 6 ): 1557 - 1562.
dc.identifier.citedreferenceDavidson BA, Vethanayagam RR, Grimm MJ, et al. NADPH oxidase and Nrf2 regulate gastric aspiration-induced inflammation and acute lung injury. J Immunol. 2013; 190 ( 4 ): 1714 - 1724.
dc.identifier.citedreferenceAshrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr Mol Med. 2020; 20 ( 2 ): 116 - 133.
dc.identifier.citedreferenceGodeau D, Petit A, Richard I, Roquelaure Y, Descatha A. Return-to-work, disabilities and occupational health in the age of COVID-19. Scand J Work Environ Health. 2021; 47 ( 5 ): 408 - 409.
dc.identifier.citedreferenceGuha S, Chakraborty A. Coronavirus management and control: nutrition and alternative medicines. Nutr Health. 2022;28(4):635-645.
dc.identifier.citedreferenceWen W, Su W, Tang H, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020; 6: 31.
dc.identifier.citedreferenceSimonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020; 28 ( 7 ): 1195 - 1199.
dc.identifier.citedreferenceWu J, Sheng L, Ma Y, et al. The analysis of risk factors of impacting mortality rate in severe multiple trauma patients with posttraumatic acute respiratory distress syndrome. Am J Emerg Med. 2008; 26 ( 4 ): 419 - 424.
dc.identifier.citedreferenceWu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020; 323 ( 13 ): 1239 - 1242.
dc.identifier.citedreferencePawar KS, Mastud RN, Pawar SK, et al. Oral curcumin with Piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial. Front Pharmacol. 2021; 12: 669362.
dc.identifier.citedreferenceRattis BAC, Ramos SG, Celes MRN. Curcumin as a potential treatment for COVID-19. Front Pharmacol. 2021; 12: 675287.
dc.identifier.citedreferenceSimmons G, Bertram S, Glowacka I, et al. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion. Virology. 2011; 413 ( 2 ): 265 - 274.
dc.identifier.citedreferenceNi W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020; 24 ( 1 ): 422.
dc.identifier.citedreferenceValizadeh H, Abdolmohammadi-Vahid S, Danshina S, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol. 2020; 89 (Pt B):107088.
dc.identifier.citedreferenceGunathilake TMSU, Ching YC, Uyama H, Hai ND, Chuah CH. Enhanced curcumin loaded nanocellulose: a possible inhalable nanotherapeutic to treat COVID-19. Cellulose (Lond). 2022; 29 (3):1821-1840.
dc.identifier.citedreferenceGunathilake T, Ching YC, Uyama H, Hai ND, Chuah CH. Enhanced curcumin loaded nanocellulose: a possible inhalable nanotherapeutic to treat COVID-19. Cellulose (Lond). 2022; 29 ( 3 ): 1821 - 1840.
dc.identifier.citedreferenceNieuwenhuizen L, de Groot PG, Grutters JC, Biesma DH. A review of pulmonary coagulopathy in acute lung injury, acute respiratory distress syndrome and pneumonia. Eur J Haematol. 2009; 82 ( 6 ): 413 - 425.
dc.identifier.citedreferenceAguilar-Lemarroy A, Lopez-Uribe A, Sanchez-Corona J, Jave-Suarez LF. Severe acute respiratory syndrome coronavirus 2 ORF3a induces the expression of ACE2 in oral and pulmonary epithelial cells and the food supplement Vita Deyun((R)) diminishes this effect. Exp Ther Med. 2021; 21 ( 5 ): 485.
dc.identifier.citedreferenceHanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol. 2022; 198: 101 - 110.
dc.identifier.citedreferenceHanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol. 2022; 198:101-110.
dc.identifier.citedreferenceMarin-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, et al. Curcumin inhibits In vitro SARS-CoV-2 infection In Vero E6 cells through multiple antiviral mechanisms. Molecules. 2021; 26 ( 22 ):690.
dc.identifier.citedreferenceThimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, et al. Antiviral and immunomodulatory activity of curcumin: a case for prophylactic therapy for COVID-19. Heliyon. 2021; 7 ( 2 ): e06350.
dc.identifier.citedreferenceBabaei F, Nassiri-Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): new treatment option against COVID-19. Food Sci Nutr. 2020; 8 ( 10 ): 5215 - 5227.
dc.identifier.citedreferenceVahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, et al. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: a systematic review of clinical trials. Nutrients. 2022; 14 ( 2 ):256.
dc.identifier.citedreferenceAskari G, Sahebkar A, Soleimani D, et al. The efficacy of curcumin-piperine co-supplementation on clinical symptoms, duration, severity, and inflammatory factors in COVID-19 outpatients: a randomized double-blind, placebo-controlled trial. Trials. 2022; 23 ( 1 ): 472.
dc.identifier.citedreferenceKumar G, Kumar D, Singh NP. Therapeutic approach against 2019-nCoV by inhibition of ACE-2 receptor. Drug Res (Stuttg). 2021; 71 ( 4 ): 213 - 218.
dc.identifier.citedreferenceNag A, Banerjee R, Paul S, Kundu R. Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) omicron, an in silico study. Comput Biol Med. 2022; 146: 105552.
dc.identifier.citedreferenceKushwaha AD, Mishra KP, Singh M, Ganju L, Saraswat D. Nanocurcumin formulation: a possible therapeutic agent for post COVID inflammatory syndrome. Immunopharmacol Immunotoxicol. 2022; 44 ( 2 ): 141 - 146.
dc.identifier.citedreferenceSaber-Moghaddam N, Salari S, Hejazi S, et al. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: an open label nonrandomized clinical trial. Phytother Res. 2021; 35: 2616 - 2623.
dc.identifier.citedreferenceMuchtaridi M, Amirah SR, Harmonis JA, Ikram EHK. Role of nuclear factor erythroid 2 (Nrf2) in the recovery of long COVID-19 using natural antioxidants: a systematic review. Antioxidants (Basel). 2022; 11 ( 8 ):1551.
dc.identifier.citedreferenceJunior AG, Tolouei SEL, Dos Reis Livero FA, Gasparotto F, Boeing T, de Souza P. Natural agents modulating ACE-2: a review of compounds with potential against SARS-CoV-2 infections. Curr Pharm des. 2021; 27 ( 13 ): 1588 - 1596.
dc.identifier.citedreferenceHamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203 ( 2 ): 631 - 637.
dc.identifier.citedreferenceGheware A, Ray A, Rana D, et al. ACE2 protein expression in lung tissues of severe COVID-19 infection. Sci Rep. 2022; 12 ( 1 ): 4058.
dc.identifier.citedreferenceShanmugarajan D, Prabitha P, Kumar BP, Suresh B. Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets. RSC Adv. 2020; 10 ( 52 ): 31385 - 31399.
dc.identifier.citedreferencePal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2): an update. Cureus. 2020; 12 ( 3 ): e7423.
dc.identifier.citedreferenceWrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367 ( 6483 ): 1260 - 1263.
dc.identifier.citedreferenceZhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46 ( 4 ): 586 - 590.
dc.identifier.citedreferenceRaghavendran K, Napolitano LM. Definition of ALI/ARDS. Crit Care Clin. 2011; 27 ( 3 ): 429 - 437.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.