Show simple item record

Observing System Choice Can Minimize Interference of the Biosphere in Studies of Urban CO2 Emissions

dc.contributor.authorLal, Raj M.
dc.contributor.authorKort, Eric A.
dc.date.accessioned2023-04-04T17:38:44Z
dc.date.available2024-04-04 13:38:42en
dc.date.available2023-04-04T17:38:44Z
dc.date.issued2023-03-27
dc.identifier.citationLal, Raj M.; Kort, Eric A. (2023). "Observing System Choice Can Minimize Interference of the Biosphere in Studies of Urban CO2 Emissions." Journal of Geophysical Research: Atmospheres 128(6): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/176016
dc.description.abstractCities around the world have introduced initiatives to reduce CO2 emissions. Atmospheric observations can provide evaluation and assessment of these initiatives by quantifying emissions, considering local sources and sinks. The relative importance of the urban biosphere, which can act as both a source (respiration) and sink (photosynthesis) of CO2, has previously been suggested to strongly impact urban CO2 measurements, confounding the ability to use observations to study fossil emissions. However, if using an observing framework that measures a local urban background and the direct urban core outflow, for example, along a downwind airborne transect, the biosphere’s role may be minimized. Here, we combine real, airborne observations of CO2 downwind of select cities in the Northeast US with high-resolution, back-trajectory modeling and spatially and temporally resolved surface biosphere and fossil fuel fluxes to characterize the relative biosphere importance to urban CO2 profiles. We show the biosphere influence using this urban observing system to be small, averaging only 15% of the local CO2 enhancement annually, <10% outside of summer, and with a maximum influence of 29% in summer when the biosphere drawdown is most pronounced. Furthermore, when considering two biosphere models that differ by >80%, the impact on observed urban CO2 signals is reduced to only 12% on average. Urban observing frameworks that utilize this local background approach—including those via aircraft or satellite observations—can minimize the biosphere’s influence and thus help facilitate robust assessments of urban fossil fuel CO2 emissions.Plain Language SummaryCities around the world have announced plans to reduce CO2 emissions. Atmospheric CO2 observations provide a potential pathway toward independent assessment of implemented policies. However, these measurements can be strongly influenced by the urban biosphere, which can act as both a source (respiration) and sink (photosynthesis) of CO2. If using an observing approach that introduces a local, urban background—for example, observations via a downwind airborne transect that captures an entire urban outflow—the relative role of the biosphere may be minimized. Here, we combine back trajectory modeling with high-resolution surface fossil fuel and biosphere CO2 fluxes across six cities and one powerplant in the NE US to demonstrate that observing strategies using this approach can greatly reduce biosphere interferences in studies of urban CO2 (<10% biosphere interference outside of summer months, on average) and pave the way to conduct robust studies of urban fossil fuel CO2 emissions.Key PointsUrban fossil CO2 emissions can be isolated from biosphere influences using observation approaches that define a local backgroundHigh variability of biosphere representation has minimal influence on bio contribution to urban CO2 using local background framework
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfossil fuel emissions
dc.subject.othergreenhouse gas observations
dc.subject.otherbiosphere
dc.subject.otherurban CO2
dc.titleObserving System Choice Can Minimize Interference of the Biosphere in Studies of Urban CO2 Emissions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176016/1/jgrd58549.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176016/2/2022JD037452-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176016/3/jgrd58549_am.pdf
dc.identifier.doi10.1029/2022JD037452
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRamaswami, A., Tong, K., Canadell, J. G., Jackson, R. B., Stokes, E., Dhakal, S., et al. ( 2021 ). Carbon analytics for net-zero emissions sustainable cities. Nature Sustainability, 4 ( 6 ), 460 – 463. https://doi.org/10.1038/s41893-021-00715-5
dc.identifier.citedreferenceGately, C. K., & Hutyra, L. R. ( 2017 ). Large uncertainties in urban-scale carbon emissions. Journal of Geophysical Research: Atmospheres, 122 ( 20 ), 11242 – 11260. https://doi.org/10.1002/2017jd027359
dc.identifier.citedreferenceGourdji, S. M., Karion, A., Lopez-Coto, I., Ghosh, S., Mueller, K. L., Zhou, Y., et al. ( 2022 ). A modified vegetation photosynthesis and respiration model (VPRM) for the Eastern USA and Canada, evaluated with comparison to atmospheric observations and other biospheric models. Journal of Geophysical Research: Biogeosciences, 127 ( 1 ), e2021JG006290. https://doi.org/10.1029/2021jg006290
dc.identifier.citedreferenceGurney, K. R., Liang, J., Patarasuk, R., Song, Y., Huang, J., & Roest, G. ( 2020 ). The Vulcan version 3.0 high-resolution fossil fuel CO 2 emissions for the United States. Journal of Geophysical Research: Atmospheres, 125 ( 19 ), e2020JD032974. https://doi.org/10.1029/2020jd032974
dc.identifier.citedreferenceGurney, K. R., Liang, J., Roest, G., Song, Y., Mueller, K., & Lauvaux, T. ( 2021 ). Under-reporting of greenhouse gas emissions in U.S. cities. Nature Communications, 12 ( 1 ), 553. https://doi.org/10.1038/s41467-020-20871-0
dc.identifier.citedreferenceHardiman, B. S., Wang, J. A., Hutyra, L. R., Gately, C. K., Getson, J. M., & Friedl, M. A. ( 2017 ). Accounting for urban biogenic fluxes in regional carbon budgets. Science of the Total Environment, 592, 366 – 372. https://doi.org/10.1016/j.scitotenv.2017.03.028
dc.identifier.citedreferenceKarion, A., Callahan, W., Stock, M., Prinzivalli, S., Verhulst, K. R., Kim, J., et al. ( 2020 ). Greenhouse gas observations from the Northeast Corridor tower network. Earth System Science Data, 12 ( 1 ), 699 – 717. https://doi.org/10.5194/essd-12-699-2020
dc.identifier.citedreferenceKarion, A., Lopez-Coto, I., Gourdji, S. M., Mueller, K., Ghosh, S., Callahan, W., et al. ( 2021 ). Background conditions for an urban greenhouse gas network in the Washington, DC, and Baltimore metropolitan region. Atmospheric Chemistry and Physics, 21 ( 8 ), 6257 – 6273. https://doi.org/10.5194/acp-21-6257-2021
dc.identifier.citedreferenceKort, E. A., Angevine, W. M., Duren, R., & Miller, C. E. ( 2013 ). Surface observations for monitoring urban fossil fuel CO 2 emissions: Minimum site location requirements for the Los Angeles megacity. Journal of Geophysical Research: Atmospheres, 118 ( 3 ), 1577 – 1584. https://doi.org/10.1002/jgrd.50135
dc.identifier.citedreferenceLin, J. C., Gerbig, C., Wofsy, S. C., Andrews, B. C., Daube, K. J., Davis, K. J., & Grainger, C. A. ( 2003 ). A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. Journal of Geophysical Research, 108 ( D16 ), ACH2-1 – ACH2-17. https://doi.org/10.1029/2002jd003161
dc.identifier.citedreferenceMahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., et al. ( 2008 ). A satellite-based biosphere parameterization for net ecosystem CO 2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global Biogeochemical Cycles, 22 ( 2 ). https://doi.org/10.1029/2006gb002735
dc.identifier.citedreferenceMcKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R., & Stephens, B. B. ( 2012 ). Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proceedings of the National Academy of Sciences, 109 ( 22 ), 8423 – 8428. https://doi.org/10.1073/pnas.1116645109
dc.identifier.citedreferenceMi, Z., Guan, D., Liu, Z., Liu, J., Viguie, V., Fromer, N., & Wang, Y. ( 2019 ). Cities: The core of climate change mitigation. Journal of Cleaner Production, 207, 582 – 589. https://doi.org/10.1016/j.jclepro.2018.10.034
dc.identifier.citedreferenceMiller, J. B., Lehman, S. J., Verhulst, K. R., Miller, C. E., Duren, R. M., Yadav, V., et al. ( 2020 ). Large and seasonally varying biospheric CO 2 fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon. Proceedings of the National Academy of Sciences, 117 ( 43 ), 26681 – 26687. https://doi.org/10.1073/pnas.2005253117
dc.identifier.citedreferencePlant, G., Kort, E. A., Floerchinger, C., Gvakharia, A., Vimont, I., & Sweeney, C. ( 2019 ). Large fugitive methane emissions from urban centers along the U.S. East Coast. Geophysical Research Letters, 46 ( 14 ), 8500 – 8507. https://doi.org/10.1029/2019gl082635
dc.identifier.citedreferenceSargent, M., Barrera, Y., Nehrkorn, T., Hutyra, L. R., Gately, C. K., Jones, T., et al. ( 2018 ). Anthropogenic and biogenic CO 2 fluxes in the Boston urban region. Proceedings of the National Academy of Sciences, 115 ( 29 ), 7491 – 7496. https://doi.org/10.1073/pnas.1803715115
dc.identifier.citedreferenceShusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., & Cohen, R. C. ( 2016 ). The BErkeley atmospheric CO 2 observation network: Initial evaluation. Atmospheric Chemistry and Physics, 16 ( 21 ), 13449 – 13463. https://doi.org/10.5194/acp-16-13449-2016
dc.identifier.citedreferenceTurnbull, J. C., Karion, A., Davis, K. J., Lauvaux, T., Miles, N. L., Richardson, S. J., et al. ( 2019 ). Synthesis of urban CO 2 emission estimates from multiple methods from the Indianapolis Flux Project (INFLUX). Environmental Science & Technology, 53 ( 1 ), 287 – 295. https://doi.org/10.1021/acs.est.8b05552
dc.identifier.citedreferenceWu, D., Lin, J. C., Duarte, H. F., Yadav, V., Parazoo, N. C., Oda, T., & Kort, E. A. ( 2021 ). A model for urban biogenic CO 2 fluxes: Solar-induced fluorescence for modeling urban biogenic fluxes (SMUrF v1). Geoscientific Model Development, 14 ( 6 ), 3633 – 3661. https://doi.org/10.5194/gmd-14-3633-2021
dc.identifier.citedreferenceWu, D., Lin, J. C., Fasoli, B., Oda, T., Ye, X., Lauvaux, T., et al. ( 2018 ). A Lagrangian approach towards extracting signals of urban CO 2 emissions from satellite observations of atmospheric column CO 2 (XCO 2 ): X-stochastic time-inverted Lagrangian transport model (“X-STILT v1”). Geoscientific Model Development, 11 ( 12 ), 4843 – 4871. https://doi.org/10.5194/gmd-11-4843-2018
dc.identifier.citedreferenceYadav, V., Ghosh, S., Mueller, K., Karion, A., Roest, G., Gourdji, S. M., et al. ( 2021 ). The impact of COVID-19 on CO 2 emissions in the Los Angeles and Washington DC/Baltimore metropolitan areas. Geophysical Research Letters, 48 ( 11 ), e2021GL092744. https://doi.org/10.1029/2021gl092744
dc.identifier.citedreferenceDodman, D. ( 2009 ). Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environment and Urbanization, 21 ( 1 ), 185 – 201. https://doi.org/10.1177/0956247809103016
dc.identifier.citedreferenceFasoli, B., Lin, J. C., Bowling, D. R., Mitchell, L., & Mendoza, D. ( 2018 ). Simulating atmospheric tracer concentrations for spatially distributed receptors: Updates to the stochastic time-inverted Lagrangian transport model’s R interface (STILT-R version 2). Geoscientific Model Development, 11 ( 7 ), 2813 – 2824. https://doi.org/10.5194/gmd-11-2813-2018
dc.identifier.citedreferenceGately, C., & Hutyra, L. ( 2018 ). CMS: CO 2 emissions from fossil fuels combustion, ACES inventory for Northeastern USA. ORNL DAAC, 10.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.